organic compounds
1,4-Bis(4-chlorophenylseleno)-2,5-dimethoxybenzene
aCenter for Fundamental Research: Metal Structures in Four Dimensions, Risø National Laboratory for Sustainable Energy, Technical University of Denmark, Frederiksborgvej 399, PO 49, DK-4000 Roskilde, Denmark, and bDepartment of Medicinal Chemistry, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
*Correspondence e-mail: henning.sorensen@risoe.dk
The title compound, C20H16Cl2O2Se2, utilizes the symmetry of the crystallographic inversion center. Molecular chains are formed through symmetric C—H⋯Cl interactions around inversion centers, mimicking the commonly observed symmetric hydrogen-bonded dimer pattern often found in carboxylic acids.
Related literature
For background to the electrophilic arylselenylation of reactive et al. (2008); Nicolaou et al. (1979); Gassman et al. (1982); Yoshida et al. (1991); Tiecco et al. (1994); Engman & Eriksson (1996); Henriksen (1994); Henriksen & Stuhr-Hansen (1998). For related structures, see: Oddershede et al. (2003). For related supramolecular patterns, see: Gavezzotti & Filippini (1994); Allen et al. (1999); Sørensen & Larsen (2003); Sørensen et al. (1999).
see: SantiExperimental
Crystal data
|
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell CAD-4 EXPRESS; data reduction: DREAR (Blessing, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808039469/sg2281sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808039469/sg2281Isup2.hkl
Crystals suitable for an X-ray diffraction experiment were obtained by slow crystallization from hot toluene.
Hydrogen atoms of (1) were found in the difference Fourier map. All hydrogen atoms were treated as riding atoms with C—H distances of 0.95 for Car and 0.98 for the CMe. Isotropic displacement parameters for all H atoms were constrained to 1.2Ueq of the connected non-hydrogen atom (1.5Ueq for Me groups).
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell
CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: DREAR (Blessing, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C20H16Cl2O2Se2 | F(000) = 508 |
Mr = 517.15 | Dx = 1.788 Mg m−3 |
Monoclinic, P21/n | Melting point: 193 K |
Hall symbol: -P 2yn | Cu Kα radiation, λ = 1.54184 Å |
a = 11.7737 (17) Å | Cell parameters from 20 reflections |
b = 6.6535 (6) Å | θ = 39.3–40.7° |
c = 13.438 (5) Å | µ = 7.47 mm−1 |
β = 114.136 (16)° | T = 122 K |
V = 960.7 (4) Å3 | Block, white |
Z = 2 | 0.44 × 0.15 × 0.13 mm |
Enraf–Nonius CAD-4 diffractometer | 1919 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.030 |
Graphite monochromator | θmax = 74.9°, θmin = 4.2° |
ω–2θ scans | h = −14→14 |
Absorption correction: gaussian (DeTitta, 1985). | k = −7→8 |
Tmin = 0.242, Tmax = 0.796 | l = 0→16 |
2641 measured reflections | 5 standard reflections every 166.7 min |
1976 independent reflections | intensity decay: 5.7% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | H-atom parameters constrained |
wR(F2) = 0.076 | w = 1/[σ2(Fo2) + (0.0433P)2 + 0.9774P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
1976 reflections | Δρmax = 0.60 e Å−3 |
119 parameters | Δρmin = −1.20 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0029 (3) |
C20H16Cl2O2Se2 | V = 960.7 (4) Å3 |
Mr = 517.15 | Z = 2 |
Monoclinic, P21/n | Cu Kα radiation |
a = 11.7737 (17) Å | µ = 7.47 mm−1 |
b = 6.6535 (6) Å | T = 122 K |
c = 13.438 (5) Å | 0.44 × 0.15 × 0.13 mm |
β = 114.136 (16)° |
Enraf–Nonius CAD-4 diffractometer | 1919 reflections with I > 2σ(I) |
Absorption correction: gaussian (DeTitta, 1985). | Rint = 0.030 |
Tmin = 0.242, Tmax = 0.796 | 5 standard reflections every 166.7 min |
2641 measured reflections | intensity decay: 5.7% |
1976 independent reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.076 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.60 e Å−3 |
1976 reflections | Δρmin = −1.20 e Å−3 |
119 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Se1 | 0.745362 (19) | 0.19839 (3) | 0.007848 (17) | 0.01812 (12) | |
Cl | 1.00097 (5) | 0.82041 (8) | 0.40315 (5) | 0.02427 (15) | |
O1 | 1.23891 (13) | 0.1213 (2) | 0.13084 (12) | 0.0192 (3) | |
C1 | 1.2567 (2) | 0.2869 (3) | 0.20396 (19) | 0.0232 (5) | |
H1A | 1.3459 | 0.3140 | 0.2431 | 0.035* | |
H1B | 1.2213 | 0.2535 | 0.2564 | 0.035* | |
H1C | 1.2150 | 0.4063 | 0.1623 | 0.035* | |
C2 | 1.11846 (19) | 0.0668 (3) | 0.06767 (16) | 0.0160 (4) | |
C3 | 1.0144 (2) | 0.1577 (3) | 0.07253 (17) | 0.0168 (4) | |
H3 | 1.0245 | 0.2653 | 0.1219 | 0.020* | |
C4 | 0.89557 (19) | 0.0910 (3) | 0.00514 (16) | 0.0159 (4) | |
C5 | 0.82080 (19) | 0.3830 (3) | 0.12694 (17) | 0.0172 (4) | |
C6 | 0.8614 (2) | 0.3181 (3) | 0.23448 (19) | 0.0194 (4) | |
H6 | 0.8506 | 0.1815 | 0.2493 | 0.023* | |
C7 | 0.9173 (2) | 0.4513 (3) | 0.32023 (17) | 0.0197 (4) | |
H7 | 0.9457 | 0.4067 | 0.3936 | 0.024* | |
C8 | 0.93109 (19) | 0.6504 (3) | 0.29699 (17) | 0.0174 (4) | |
C9 | 0.8891 (2) | 0.7196 (3) | 0.19057 (19) | 0.0211 (5) | |
H9 | 0.8985 | 0.8570 | 0.1762 | 0.025* | |
C10 | 0.8331 (2) | 0.5850 (3) | 0.10537 (17) | 0.0201 (4) | |
H10 | 0.8030 | 0.6308 | 0.0321 | 0.024* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Se1 | 0.01674 (16) | 0.01956 (17) | 0.01817 (16) | 0.00021 (7) | 0.00723 (11) | −0.00363 (7) |
Cl | 0.0267 (3) | 0.0243 (3) | 0.0206 (3) | −0.0041 (2) | 0.0084 (2) | −0.00601 (18) |
O1 | 0.0174 (7) | 0.0196 (7) | 0.0194 (7) | −0.0023 (6) | 0.0063 (6) | −0.0059 (6) |
C1 | 0.0242 (11) | 0.0227 (11) | 0.0217 (11) | −0.0045 (9) | 0.0084 (9) | −0.0084 (8) |
C2 | 0.0178 (9) | 0.0154 (9) | 0.0145 (9) | −0.0025 (8) | 0.0064 (7) | 0.0012 (7) |
C3 | 0.0215 (10) | 0.0136 (9) | 0.0164 (9) | −0.0016 (8) | 0.0089 (8) | −0.0014 (7) |
C4 | 0.0192 (9) | 0.0143 (9) | 0.0156 (9) | 0.0004 (7) | 0.0084 (8) | 0.0013 (7) |
C5 | 0.0169 (9) | 0.0178 (10) | 0.0196 (10) | 0.0013 (8) | 0.0103 (8) | −0.0016 (8) |
C6 | 0.0211 (10) | 0.0160 (10) | 0.0216 (11) | 0.0022 (8) | 0.0091 (9) | 0.0024 (8) |
C7 | 0.0208 (10) | 0.0215 (11) | 0.0170 (9) | 0.0033 (8) | 0.0080 (8) | 0.0037 (8) |
C8 | 0.0169 (9) | 0.0173 (10) | 0.0189 (10) | 0.0001 (8) | 0.0080 (8) | −0.0038 (8) |
C9 | 0.0255 (11) | 0.0163 (10) | 0.0213 (11) | −0.0001 (8) | 0.0093 (9) | 0.0018 (8) |
C10 | 0.0245 (11) | 0.0196 (10) | 0.0170 (10) | 0.0017 (8) | 0.0093 (8) | 0.0031 (8) |
Se1—C4 | 1.921 (2) | C4—C2i | 1.398 (3) |
Se1—C5 | 1.923 (2) | C5—C6 | 1.393 (3) |
Cl—C8 | 1.741 (2) | C5—C10 | 1.395 (3) |
O1—C2 | 1.371 (2) | C6—C7 | 1.388 (3) |
O1—C1 | 1.433 (2) | C6—H6 | 0.9500 |
C1—H1A | 0.9800 | C7—C8 | 1.386 (3) |
C1—H1B | 0.9800 | C7—H7 | 0.9500 |
C1—H1C | 0.9800 | C8—C9 | 1.387 (3) |
C2—C3 | 1.391 (3) | C9—C10 | 1.389 (3) |
C2—C4i | 1.398 (3) | C9—H9 | 0.9500 |
C3—C4 | 1.392 (3) | C10—H10 | 0.9500 |
C3—H3 | 0.9500 | ||
C4—Se1—C5 | 97.92 (9) | C6—C5—Se1 | 120.74 (16) |
C2—O1—C1 | 116.88 (17) | C10—C5—Se1 | 119.64 (16) |
O1—C1—H1A | 109.5 | C7—C6—C5 | 120.6 (2) |
O1—C1—H1B | 109.5 | C7—C6—H6 | 119.7 |
H1A—C1—H1B | 109.5 | C5—C6—H6 | 119.7 |
O1—C1—H1C | 109.5 | C8—C7—C6 | 118.9 (2) |
H1A—C1—H1C | 109.5 | C8—C7—H7 | 120.6 |
H1B—C1—H1C | 109.5 | C6—C7—H7 | 120.6 |
O1—C2—C3 | 124.29 (19) | C7—C8—C9 | 121.7 (2) |
O1—C2—C4i | 115.37 (18) | C7—C8—Cl | 119.75 (17) |
C3—C2—C4i | 120.34 (19) | C9—C8—Cl | 118.60 (17) |
C2—C3—C4 | 120.07 (19) | C8—C9—C10 | 119.0 (2) |
C2—C3—H3 | 120.0 | C8—C9—H9 | 120.5 |
C4—C3—H3 | 120.0 | C10—C9—H9 | 120.5 |
C3—C4—C2i | 119.60 (19) | C9—C10—C5 | 120.3 (2) |
C3—C4—Se1 | 123.88 (16) | C9—C10—H10 | 119.9 |
C2i—C4—Se1 | 116.50 (15) | C5—C10—H10 | 119.9 |
C6—C5—C10 | 119.6 (2) | ||
C1—O1—C2—C3 | −1.8 (3) | C10—C5—C6—C7 | −2.0 (3) |
C1—O1—C2—C4i | 178.06 (18) | Se1—C5—C6—C7 | 179.10 (16) |
O1—C2—C3—C4 | −179.78 (19) | C5—C6—C7—C8 | 0.6 (3) |
C4i—C2—C3—C4 | 0.4 (3) | C6—C7—C8—C9 | 0.8 (3) |
C2—C3—C4—C2i | −0.4 (3) | C6—C7—C8—Cl | 179.98 (16) |
C2—C3—C4—Se1 | 177.83 (15) | C7—C8—C9—C10 | −0.7 (3) |
C5—Se1—C4—C3 | −3.27 (19) | Cl—C8—C9—C10 | −179.91 (17) |
C5—Se1—C4—C2i | 174.97 (16) | C8—C9—C10—C5 | −0.8 (3) |
C4—Se1—C5—C6 | −83.67 (18) | C6—C5—C10—C9 | 2.1 (3) |
C4—Se1—C5—C10 | 97.46 (18) | Se1—C5—C10—C9 | −179.02 (17) |
Symmetry code: (i) −x+2, −y, −z. |
Experimental details
Crystal data | |
Chemical formula | C20H16Cl2O2Se2 |
Mr | 517.15 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 122 |
a, b, c (Å) | 11.7737 (17), 6.6535 (6), 13.438 (5) |
β (°) | 114.136 (16) |
V (Å3) | 960.7 (4) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 7.47 |
Crystal size (mm) | 0.44 × 0.15 × 0.13 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | Gaussian (DeTitta, 1985). |
Tmin, Tmax | 0.242, 0.796 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2641, 1976, 1919 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.626 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.076, 1.10 |
No. of reflections | 1976 |
No. of parameters | 119 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.60, −1.20 |
Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), DREAR (Blessing, 1987), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
Acknowledgements
The authors thank Flemming Hansen, Centre of Crystallographic Studies, University of Copenhagen, for obtaining the crystallographic data. The Danish National Research Foundation is acknowledged for supporting the Center for Fundamental Research: Metal Structures in Four Dimensions.
References
Allen, F. H., Motherwell, W. D. S., Raithby, P. R., Shields, G. P. & Taylor, R. (1999). New J. Chem. 23, 25–34. Web of Science CrossRef CAS Google Scholar
Blessing, R. H. (1987). Crystallogr. Rev. 1, 3–58. CrossRef Google Scholar
DeTitta, G. T. (1985). J. Appl. Cryst. 18, 75–79. CrossRef CAS Web of Science IUCr Journals Google Scholar
Engman, L. & Eriksson, P. (1996). Heterocycles, 43, 861–871. CrossRef CAS Google Scholar
Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Gassman, P. G., Miura, A. & Miura, T. (1982). J. Org. Chem. 47, 951–954. CrossRef CAS Web of Science Google Scholar
Gavezzotti, A. & Filippini, G. (1994). J. Phys. Chem. 98, 4831–4837. CrossRef CAS Web of Science Google Scholar
Henriksen, L. (1994). Tetrahedron Lett. 35, 7057–7060. CrossRef CAS Web of Science Google Scholar
Henriksen, L. & Stuhr-Hansen, N. (1998). Phosphorus Sulfur Silicon Relat. Elem. 136–138, 175–190. Google Scholar
Nicolaou, K. C., Claremon, D. A., Barnette, W. E. & Seits, S. P. (1979). J. Am. Chem. Soc. 101, 3704–3706. CrossRef CAS Web of Science Google Scholar
Oddershede, J., Henriksen, L. & Larsen, S. (2003). Org. Biomol. Chem. 1, 1053–1060. Web of Science CSD CrossRef PubMed CAS Google Scholar
Santi, C., Tiecco, M., Testaferri, L., Tomassini, C., Santoro, S. & Bizzoca, G. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 956–960. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sørensen, H. O., Collet, A. & Larsen, S. (1999). Acta Cryst. C55, 953–956. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sørensen, H. O. & Larsen, S. (2003). Acta Cryst. B59, 132–140. Web of Science CSD CrossRef IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tiecco, M., Testaferri, L., Tingoli, M., Marini, F. & Mariggio, S. (1994). Tetrahedron, 50, 10549–10554. CrossRef CAS Web of Science Google Scholar
Yoshida, M., Sasage, S., Kawamura, K., Suzuki, T. & Kamigata, N. (1991). Bull. Chem. Soc. Jpn, 64, 416–422. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structure of the title compound, shown in Fig. 1, crystallized in space group P 21/n utilizing the crystallography inversion center in the molecular symmetry. Generally the molecular geometry of 1 is in close agreement with the related compound 1,3-dimethoxy-4,6-bis(phenylseleno)benzene, hereafter DMPSB. All bond distances and angles are the same within the experimental uncertainty. The molecular conformation of 1 is also very similar to the chloro-unsubstituted compound DMPSB having the planes of phenylseleno groups arranged perpendicular to the plane of the central benzene moiety, but rotated in opposite directions forming a Z like conformation (Fig. 1). Leading to the formation of intramolecular Car—H···π interactions.
The molecular packing arrangement is dominated by molecular chains (see Fig. 2) formed by cyclic Car—H···Cl interactions [H7···Cli = 2.96 Å, C7—H7···Cli = 166.0°; symmetry code: (i) 2 - x,1 - y,1 - z] around an inversion center leading to a pattern, which highly resembles the cyclic hydrogen-bonded dimers frequently observed in carboxylic acids. The Car—H···Cl type of cyclic interaction found in 1 has also been observed in other compounds having a p-chlorosubstituted phenyl group, e.g. in the structure of racemic p-chlorophenoxypropionic acid, where the distance H···Cl is 2.92 Å [C—H···Cl 175°]. The chains are stacked such that the π-π interactions between the phenelseleno groups and between the benzene rings along the diagonal of the b and c-axes, respectively. Due to the chain formation in 1 the packing arrangement is rather different from the pattern found in DMPSB, where interactions with chlorine cannot be formed.