metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m87-m88

Di­ammonium aqua­(ethyl­ene­di­amine­tetra­acetato)iron(II) trihydrate

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: lyhhming@126.com

(Received 12 November 2008; accepted 11 December 2008; online 17 December 2008)

In the title compound, (NH4)2[Fe(C10H12N2O8)(H2O)]·3H2O, the FeII center is in a distorted penta­gonal-bipyramidal geometry. Two carboxyl­ate O and two N atoms from the ethyl­enediaminetetra­acetate (EDTA) ion and one O atom from coordinated water comprise the equatorial plane. Two other carboxyl­ate O atoms from the EDTA ion occupy the apical sites. Both ammonium cations and all water mol­ecules function as hydrogen-bond donors, and ten N—H⋯O and nine O—H⋯O hydrogen bonds form a three-dimensional network between the complex anions, cations and the water mol­ecules.

Related literature

For an eight-coordinate Eu(II)–EDTA polymer complex, see: Janicki et al. (2005[Janicki, R., Mondry, A. & Starynowicz, P. (2005). Z. Anorg. Allg. Chem. 631, 2475-2477.]). For seven-coordinate EDTA-aqua vanadate(III) complexes, see: Shimoi et al. (1991[Shimoi, M., Saito, Y. & Ogino, H. (1991). Bull. Chem. Soc. Jpn, 64, 2629-2634.]). For hydrate structures of [Fe(III)EDTA(H2O)] anions with Na, Ag, K, and Tl cations, see: Solans et al. (1984[Solans, X., Font Altaba, M. & Garcia-Oricain, J. (1984). Acta Cryst. C40, 635-638.]). For high-concentration EDTA ferric ammonium salts solution, applied in the photographic processing of films and paper, see: Wang et al. (1999[Wang, Z. S., Sui, X. Y. & Pan, C. F. (1999). Imaging Sci. Photochem. 17, 264-269.]). For the preparative method of high-concentration ferric ammonium ethyl­ene diamine tetra­acetate solution, see: Zheng et al. (2006[Zheng, R., Xiong, Y. & Zeng, Y. T. (2006). China Patent CN 1 731 277A.]).

[Scheme 1]

Experimental

Crystal data
  • (NH4)2[Fe(C10H12N2O8)(H2O)]·3H2O

  • Mr = 452.21

  • Triclinic, [P \overline 1]

  • a = 8.7615 (10) Å

  • b = 8.9485 (10) Å

  • c = 13.4742 (15) Å

  • α = 80.3090 (10)°

  • β = 81.0050 (10)°

  • γ = 68.7790 (10)°

  • V = 965.47 (19) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 291 (2) K

  • 0.49 × 0.43 × 0.36 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.682, Tmax = 0.748

  • 7220 measured reflections

  • 3455 independent reflections

  • 3162 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.077

  • S = 1.06

  • 3455 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—O5 2.1362 (15)
Fe1—O7 2.1736 (13)
Fe1—O3 2.2036 (15)
Fe1—O1 2.2603 (13)
Fe1—O9 2.2741 (14)
Fe1—N1 2.3015 (16)
Fe1—N2 2.3087 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4F⋯O2i 0.92 1.93 2.821 (2) 166
N4—H4E⋯O7ii 0.86 2.54 2.990 (2) 114
N4—H4E⋯O7iii 0.86 2.15 2.924 (2) 149
N4—H4D⋯O3ii 0.82 2.04 2.844 (2) 167
N4—H4C⋯O4iv 0.80 2.14 2.928 (2) 171
N3—H3D⋯O4ii 0.82 2.11 2.919 (2) 172
N3—H3C⋯O11 0.83 2.29 3.083 (3) 159
N3—H3B⋯O9i 0.84 2.60 3.184 (3) 127
N3—H3B⋯O1i 0.84 2.29 3.121 (2) 167
N3—H3A⋯O4 0.86 2.22 3.081 (3) 174
O12—H8W⋯O6i 0.84 1.95 2.783 (2) 170
O12—H7W⋯O10v 0.83 1.92 2.732 (3) 167
O11—H6W⋯O12vi 0.83 1.93 2.749 (2) 169
O11—H5W⋯O5i 0.83 2.66 3.213 (2) 125
O11—H5W⋯O6i 0.83 1.94 2.750 (2) 165
O10—H4W⋯O2i 0.85 1.92 2.767 (3) 179
O10—H3W⋯O11 0.85 1.88 2.727 (3) 179
O9—H2W⋯O8vii 0.84 1.96 2.753 (2) 159
O9—H1W⋯O1viii 0.83 2.11 2.920 (2) 166
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+1, -z+1; (iii) x-1, y-1, z; (iv) x, y-1, z; (v) x, y+1, z; (vi) -x+1, -y+1, -z+2; (vii) -x+2, -y+2, -z+1; (viii) -x+2, -y+1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

High concentrated EDTA ferric ammonium salts solution is an important oxidizer and bleacher in the photographic processing of film or paper because it can oxidize metallic silver in the film into silver ions that can be dissolved in the solution (Wang et al. 1999) and (Zheng et al. 2006). In the present study, we try to improve the production method by H4EDTA and ammonia reacted with ferric oxide.

In the title compound the iron atom adopts a distorted pentagonal bipyramidal geometry with a hexadentate EDTA ligand and an aqua ligand. The molecular structure unit (Fig.1) consists of one iron(II) ion, one ethylenediamine tetraacetic acid ion, two ammonium ions, one coordinated water molecule and three lattice water molecules. Two carboxylate oxygen atoms and two nitrogen atoms from the EDTA ion and one oxygen atom from the coordinated water comprise the equatorial basal plane, and two other carboxylate oxygen atoms from the EDTA ion occupy the apical sites in the title structure (Fig. 1). The Fe–O and Fe–N bond distances are in the range of 2.1362 (15) - 2.2741 (14) Å and 2.3015 (16) - 2.3087 (15) Å, respectively (Table 1).

The title structure is quite similar to those of [Fe(III)(EDTA)(H2O)]- , although the molecules have different cations (Na, Ag in a six-coordinate, and K and Tl in a seven coordinate fashion to oxygen atoms of water and C==O groups of EDTA), and the iron(III) atoms exhibit different distorted pentagonal bipyramidal coordination geometries (Solans et al. 1984). Similar coordination spheres were found in seven-coordinate EDTA-aqua-vanadate(III) complexes, and they were described as capped trigonal prisms (Shimoi et al. 1991). An eight-coordinate polymeric Eu(II)EDTA chain structure with guanidine cations and crystal water was discussed by Janicki et al. (2005), and the coordination figure described as a distorted dodecahedron.

In the title compound, there are many ammonium cations and water molecules between the complex anions (Fig. 2). Both ammonium cations and all water molecules function as hydrogen bond donors. Ten intermolecular N—H···O and nine O—H···O hydrogen bonds form a three-dimensional network (Table 2).

Related literature top

For an eight-coordinate Eu(II)–EDTA polymer complex, see: Janicki et al. (2005). For seven-coordinate EDTA-aqua vanadate(III) complexes, see: Shimoi et al. (1991). For hydrate structures of [Fe(III)EDTA(H2O)]- anions with Na, Ag, K, and Tl cations, see: Solans et al. (1984). For high-concentration EDTA ferric ammonium salts solution, applied in the photographic processing of films and paper, see: Wang et al. (1999). For the preparative method of high-concentration ferric ammonium ethylene diamine tetraacetate solution, see: Zheng et al. (2006).

Experimental top

The title compound was prepared by H4EDTA reacted with ferric oxide and ammonia in a water solution at 365 K over 3 hours, and recrystallized from water solution at room temperature yielding colorless crystals suitable for single-crystal X-ray diffraction. In the experimental process, it was found that a large number of precipitates were formed.

Refinement top

The positions of water H and ammonium H atoms were located in a difference Fourier map and were allowed to ride with distances between 0.82 Å and 0.92 Å and with Uiso(H) = 1.5 Ueq(O,N). Methylene H atoms were positioned geometrically and refined as riding atoms, with C-H = 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labelling of non-hydrogen atoms. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The Packing diagram for the title compound.
Diammonium aqua(ethylenediaminetetraacetato)iron(II) trihydrate top
Crystal data top
(NH4)2[Fe(C10H12N2O8)(H2O)]·3H2OZ = 2
Mr = 452.21F(000) = 476
Triclinic, P1Dx = 1.556 Mg m3
a = 8.7615 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9485 (10) ÅCell parameters from 4241 reflections
c = 13.4742 (15) Åθ = 2.5–28.2°
α = 80.309 (1)°µ = 0.85 mm1
β = 81.005 (1)°T = 291 K
γ = 68.779 (1)°Block, colorless
V = 965.47 (19) Å30.49 × 0.43 × 0.36 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3455 independent reflections
Radiation source: fine-focus sealed tube3162 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 107
Tmin = 0.682, Tmax = 0.748k = 1010
7220 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0388P)2 + 0.4698P]
where P = (Fo2 + 2Fc2)/3
3455 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
(NH4)2[Fe(C10H12N2O8)(H2O)]·3H2Oγ = 68.779 (1)°
Mr = 452.21V = 965.47 (19) Å3
Triclinic, P1Z = 2
a = 8.7615 (10) ÅMo Kα radiation
b = 8.9485 (10) ŵ = 0.85 mm1
c = 13.4742 (15) ÅT = 291 K
α = 80.309 (1)°0.49 × 0.43 × 0.36 mm
β = 81.005 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3455 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3162 reflections with I > 2σ(I)
Tmin = 0.682, Tmax = 0.748Rint = 0.014
7220 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.06Δρmax = 0.64 e Å3
3455 reflectionsΔρmin = 0.42 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell esds are taken

into account individually in the estimation of esds in distances, angles

and torsion angles; correlations between esds in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and

goodness of fit S are based on F2, conventional R-factors R are based

on F, with F set to zero for negative F2. The threshold expression of

F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is

not relevant to the choice of reflections for refinement. R-factors based

on F2 are statistically about twice as large as those based on F, and R-

factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.94793 (3)0.68146 (3)0.671097 (18)0.02226 (10)
O11.03201 (18)0.41904 (16)0.64597 (10)0.0310 (3)
O21.0923 (2)0.17641 (16)0.73677 (11)0.0407 (4)
O30.72359 (19)0.75376 (18)0.59390 (11)0.0375 (4)
O40.50219 (18)0.69625 (18)0.57643 (11)0.0374 (3)
O51.15739 (18)0.59663 (18)0.75470 (11)0.0389 (4)
O61.2694 (2)0.6171 (2)0.88633 (14)0.0562 (5)
O70.93429 (17)0.92929 (15)0.62018 (10)0.0277 (3)
O80.74650 (19)1.17534 (16)0.62741 (11)0.0374 (4)
O91.10045 (19)0.65543 (17)0.51796 (10)0.0381 (4)
H1W1.05200.62870.47940.057*
H2W1.14410.72080.48620.057*
O100.3395 (3)0.0526 (3)0.8643 (2)0.0869 (8)
H3W0.37460.13020.86210.130*
H4W0.26310.09050.82550.130*
O110.4508 (2)0.30309 (19)0.85471 (13)0.0492 (4)
H5W0.38340.39090.87010.074*
H6W0.51540.26040.89900.074*
O120.3125 (2)0.8118 (2)1.01257 (12)0.0526 (4)
H7W0.33250.88520.97280.079*
H8W0.29980.74500.98070.079*
N10.7780 (2)0.56023 (18)0.77262 (11)0.0252 (3)
N20.8680 (2)0.82077 (18)0.81073 (11)0.0253 (3)
N30.3994 (2)0.3950 (2)0.62827 (14)0.0434 (5)
H3A0.42160.48290.61650.065*
H3B0.29730.41730.62750.065*
H3C0.42900.34600.68400.065*
H3D0.42890.36000.57350.065*
N40.2346 (2)0.0091 (2)0.56668 (13)0.0329 (4)
H4C0.31120.07300.57470.049*
H4D0.26280.07130.52160.049*
H4E0.15200.01560.55760.049*
H4F0.20660.06050.62360.049*
C10.6843 (3)0.6605 (2)0.85380 (15)0.0317 (5)
H1A0.64490.59410.90880.038*
H1B0.58920.74560.82760.038*
C20.7883 (3)0.7347 (2)0.89379 (14)0.0324 (5)
H2A0.71970.80980.94050.039*
H2B0.87220.65060.93060.039*
C31.0140 (2)0.3246 (2)0.72460 (14)0.0274 (4)
C40.8884 (3)0.3989 (2)0.81065 (14)0.0298 (4)
H4A0.82440.32980.83790.036*
H4B0.94490.40800.86450.036*
C50.6256 (2)0.6764 (2)0.62043 (14)0.0277 (4)
C60.6622 (3)0.5452 (2)0.70988 (15)0.0298 (4)
H6A0.56000.55010.75150.036*
H6B0.70810.44060.68500.036*
C71.1596 (3)0.6683 (2)0.82744 (16)0.0327 (5)
C81.0194 (3)0.8263 (2)0.84213 (15)0.0320 (5)
H8A1.00160.84400.91270.038*
H8B1.04760.91530.80210.038*
C90.8172 (2)1.0346 (2)0.66590 (14)0.0254 (4)
C100.7585 (3)0.9832 (2)0.77436 (14)0.0284 (4)
H10A0.75691.05990.81780.034*
H10B0.64720.98290.77730.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.02344 (16)0.01963 (15)0.02343 (15)0.00748 (11)0.00147 (10)0.00263 (10)
O10.0358 (8)0.0264 (7)0.0304 (7)0.0123 (6)0.0021 (6)0.0037 (6)
O20.0507 (10)0.0224 (7)0.0425 (8)0.0020 (7)0.0104 (7)0.0049 (6)
O30.0385 (9)0.0395 (8)0.0382 (8)0.0212 (7)0.0116 (7)0.0098 (6)
O40.0304 (8)0.0406 (8)0.0422 (8)0.0095 (7)0.0115 (7)0.0070 (7)
O50.0296 (8)0.0402 (8)0.0446 (8)0.0003 (7)0.0105 (7)0.0194 (7)
O60.0533 (11)0.0431 (9)0.0717 (12)0.0026 (8)0.0379 (10)0.0198 (9)
O70.0303 (8)0.0230 (7)0.0292 (7)0.0102 (6)0.0018 (6)0.0036 (5)
O80.0390 (9)0.0231 (7)0.0429 (8)0.0058 (6)0.0035 (7)0.0039 (6)
O90.0536 (10)0.0368 (8)0.0300 (7)0.0254 (7)0.0042 (7)0.0059 (6)
O100.0917 (18)0.0635 (13)0.121 (2)0.0420 (13)0.0600 (15)0.0275 (13)
O110.0491 (11)0.0368 (9)0.0549 (10)0.0059 (8)0.0071 (8)0.0056 (7)
O120.0699 (12)0.0548 (10)0.0420 (9)0.0291 (9)0.0085 (8)0.0101 (8)
N10.0283 (9)0.0206 (8)0.0258 (8)0.0087 (7)0.0010 (6)0.0018 (6)
N20.0286 (9)0.0205 (8)0.0254 (8)0.0071 (7)0.0021 (6)0.0025 (6)
N30.0350 (11)0.0508 (12)0.0409 (10)0.0070 (9)0.0048 (8)0.0135 (9)
N40.0308 (10)0.0314 (9)0.0349 (9)0.0094 (8)0.0049 (7)0.0009 (7)
C10.0321 (12)0.0288 (10)0.0310 (10)0.0111 (9)0.0084 (8)0.0045 (8)
C20.0438 (13)0.0287 (10)0.0221 (9)0.0116 (9)0.0037 (8)0.0046 (8)
C30.0308 (11)0.0236 (9)0.0312 (10)0.0109 (8)0.0083 (8)0.0044 (8)
C40.0371 (12)0.0226 (9)0.0276 (9)0.0103 (9)0.0034 (8)0.0022 (7)
C50.0246 (11)0.0260 (9)0.0313 (10)0.0059 (8)0.0017 (8)0.0077 (8)
C60.0282 (11)0.0272 (10)0.0370 (10)0.0138 (9)0.0027 (8)0.0028 (8)
C70.0330 (12)0.0294 (10)0.0378 (11)0.0095 (9)0.0094 (9)0.0068 (9)
C80.0384 (12)0.0259 (10)0.0343 (10)0.0102 (9)0.0096 (9)0.0071 (8)
C90.0258 (10)0.0220 (9)0.0310 (10)0.0108 (8)0.0047 (8)0.0030 (7)
C100.0281 (11)0.0222 (9)0.0315 (10)0.0047 (8)0.0010 (8)0.0050 (8)
Geometric parameters (Å, º) top
Fe1—O52.1362 (15)N2—C81.474 (3)
Fe1—O72.1736 (13)N2—C21.479 (2)
Fe1—O32.2036 (15)N3—H3A0.8605
Fe1—O12.2603 (13)N3—H3B0.8446
Fe1—O92.2741 (14)N3—H3C0.8315
Fe1—N12.3015 (16)N3—H3D0.8178
Fe1—N22.3087 (15)N4—H4C0.8003
O1—C31.267 (2)N4—H4D0.8238
O2—C31.249 (2)N4—H4E0.8603
O3—C51.263 (2)N4—H4F0.9157
O4—C51.256 (2)C1—C21.509 (3)
O5—C71.265 (2)C1—H1A0.9700
O6—C71.250 (3)C1—H1B0.9700
O7—C91.272 (2)C2—H2A0.9700
O8—C91.247 (2)C2—H2B0.9700
O9—H1W0.8318C3—C41.526 (3)
O9—H2W0.8355C4—H4A0.9700
O10—H3W0.8503C4—H4B0.9700
O10—H4W0.8501C5—C61.519 (3)
O11—H5W0.8306C6—H6A0.9700
O11—H6W0.8337C6—H6B0.9700
O12—H7W0.8281C7—C81.519 (3)
O12—H8W0.8377C8—H8A0.9700
N1—C61.472 (3)C8—H8B0.9700
N1—C41.476 (2)C9—C101.524 (3)
N1—C11.480 (2)C10—H10A0.9700
N2—C101.473 (2)C10—H10B0.9700
O5—Fe1—O7100.92 (6)H4C—N4—H4F110.2
O5—Fe1—O3174.97 (6)H4D—N4—H4F105.4
O7—Fe1—O383.47 (5)H4E—N4—H4F107.6
O5—Fe1—O182.60 (5)N1—C1—C2111.70 (16)
O7—Fe1—O1151.04 (5)N1—C1—H1A109.3
O3—Fe1—O194.76 (5)C2—C1—H1A109.3
O5—Fe1—O994.18 (6)N1—C1—H1B109.3
O7—Fe1—O978.64 (5)C2—C1—H1B109.3
O3—Fe1—O989.08 (6)H1A—C1—H1B107.9
O1—Fe1—O972.42 (5)N2—C2—C1111.31 (16)
O5—Fe1—N1100.90 (6)N2—C2—H2A109.4
O7—Fe1—N1135.11 (5)C1—C2—H2A109.4
O3—Fe1—N174.15 (6)N2—C2—H2B109.4
O1—Fe1—N170.68 (5)C1—C2—H2B109.4
O9—Fe1—N1137.67 (5)H2A—C2—H2B108.0
O5—Fe1—N274.47 (6)O2—C3—O1124.77 (18)
O7—Fe1—N272.13 (5)O2—C3—C4118.09 (17)
O3—Fe1—N2104.83 (6)O1—C3—C4117.14 (16)
O1—Fe1—N2135.37 (5)N1—C4—C3109.71 (15)
O9—Fe1—N2145.64 (6)N1—C4—H4A109.7
N1—Fe1—N276.69 (6)C3—C4—H4A109.7
C3—O1—Fe1114.30 (11)N1—C4—H4B109.7
C5—O3—Fe1119.01 (13)C3—C4—H4B109.7
C7—O5—Fe1120.10 (13)H4A—C4—H4B108.2
C9—O7—Fe1114.48 (11)O4—C5—O3124.92 (19)
Fe1—O9—H1W108.9O4—C5—C6117.13 (17)
Fe1—O9—H2W125.8O3—C5—C6117.91 (17)
H1W—O9—H2W110.1N1—C6—C5112.74 (15)
H3W—O10—H4W103.6N1—C6—H6A109.0
H5W—O11—H6W110.3C5—C6—H6A109.0
H7W—O12—H8W110.5N1—C6—H6B109.0
C6—N1—C4110.25 (15)C5—C6—H6B109.0
C6—N1—C1109.26 (16)H6A—C6—H6B107.8
C4—N1—C1113.59 (15)O6—C7—O5123.93 (19)
C6—N1—Fe1108.49 (11)O6—C7—C8119.19 (18)
C4—N1—Fe1105.15 (12)O5—C7—C8116.89 (18)
C1—N1—Fe1109.94 (11)N2—C8—C7109.75 (15)
C10—N2—C8111.42 (15)N2—C8—H8A109.7
C10—N2—C2113.67 (16)C7—C8—H8A109.7
C8—N2—C2109.64 (16)N2—C8—H8B109.7
C10—N2—Fe1105.16 (11)C7—C8—H8B109.7
C8—N2—Fe1106.44 (11)H8A—C8—H8B108.2
C2—N2—Fe1110.19 (11)O8—C9—O7124.40 (17)
H3A—N3—H3B109.4O8—C9—C10118.26 (17)
H3A—N3—H3C109.9O7—C9—C10117.33 (16)
H3B—N3—H3C110.5N2—C10—C9110.49 (15)
H3A—N3—H3D102.0N2—C10—H10A109.6
H3B—N3—H3D97.3C9—C10—H10A109.6
H3C—N3—H3D126.5N2—C10—H10B109.6
H4C—N4—H4D108.9C9—C10—H10B109.6
H4C—N4—H4E107.9H10A—C10—H10B108.1
H4D—N4—H4E116.7
O5—Fe1—O1—C369.29 (14)O5—Fe1—N2—C826.04 (11)
O7—Fe1—O1—C3168.49 (13)O7—Fe1—N2—C881.18 (11)
O3—Fe1—O1—C3106.39 (14)O3—Fe1—N2—C8159.12 (11)
O9—Fe1—O1—C3166.08 (15)O1—Fe1—N2—C887.90 (13)
N1—Fe1—O1—C335.04 (13)O9—Fe1—N2—C848.15 (16)
N2—Fe1—O1—C310.34 (17)N1—Fe1—N2—C8131.55 (12)
O7—Fe1—O3—C5156.62 (15)O5—Fe1—N2—C292.77 (13)
O1—Fe1—O3—C552.44 (15)O7—Fe1—N2—C2160.01 (14)
O9—Fe1—O3—C5124.71 (15)O3—Fe1—N2—C282.07 (13)
N1—Fe1—O3—C515.92 (14)O1—Fe1—N2—C230.91 (16)
N2—Fe1—O3—C587.09 (15)O9—Fe1—N2—C2166.96 (12)
O7—Fe1—O5—C757.10 (17)N1—Fe1—N2—C212.74 (13)
O3—Fe1—O5—C793.4 (6)C6—N1—C1—C2157.54 (16)
O1—Fe1—O5—C7152.03 (17)C4—N1—C1—C278.9 (2)
O9—Fe1—O5—C7136.32 (16)Fe1—N1—C1—C238.59 (19)
N1—Fe1—O5—C783.43 (17)C10—N2—C2—C180.2 (2)
N2—Fe1—O5—C710.69 (16)C8—N2—C2—C1154.34 (16)
O5—Fe1—O7—C9106.42 (13)Fe1—N2—C2—C137.50 (19)
O3—Fe1—O7—C971.08 (13)N1—C1—C2—N252.0 (2)
O1—Fe1—O7—C9159.12 (13)Fe1—O1—C3—O2157.92 (16)
O9—Fe1—O7—C9161.46 (14)Fe1—O1—C3—C421.5 (2)
N1—Fe1—O7—C911.38 (16)C6—N1—C4—C373.5 (2)
N2—Fe1—O7—C936.83 (13)C1—N1—C4—C3163.54 (16)
O5—Fe1—N1—C6155.86 (11)Fe1—N1—C4—C343.29 (17)
O7—Fe1—N1—C686.33 (13)O2—C3—C4—N1164.14 (17)
O3—Fe1—N1—C623.24 (11)O1—C3—C4—N116.4 (2)
O1—Fe1—N1—C677.77 (12)Fe1—O3—C5—O4173.21 (14)
O9—Fe1—N1—C647.10 (15)Fe1—O3—C5—C64.5 (2)
N2—Fe1—N1—C6133.15 (12)C4—N1—C6—C5143.50 (16)
O5—Fe1—N1—C437.92 (12)C1—N1—C6—C591.00 (18)
O7—Fe1—N1—C4155.73 (10)Fe1—N1—C6—C528.85 (18)
O3—Fe1—N1—C4141.18 (12)O4—C5—C6—N1164.22 (16)
O1—Fe1—N1—C440.17 (11)O3—C5—C6—N117.9 (2)
O9—Fe1—N1—C470.84 (14)Fe1—O5—C7—O6172.42 (18)
N2—Fe1—N1—C4108.91 (12)Fe1—O5—C7—C87.9 (3)
O5—Fe1—N1—C184.71 (13)C10—N2—C8—C7151.24 (16)
O7—Fe1—N1—C133.10 (16)C2—N2—C8—C782.04 (19)
O3—Fe1—N1—C196.19 (13)Fe1—N2—C8—C737.13 (18)
O1—Fe1—N1—C1162.80 (14)O6—C7—C8—N2148.1 (2)
O9—Fe1—N1—C1166.53 (12)O5—C7—C8—N232.2 (3)
N2—Fe1—N1—C113.72 (12)Fe1—O7—C9—O8150.62 (16)
O5—Fe1—N2—C10144.36 (13)Fe1—O7—C9—C1028.3 (2)
O7—Fe1—N2—C1037.14 (11)C8—N2—C10—C979.50 (19)
O3—Fe1—N2—C1040.80 (13)C2—N2—C10—C9156.01 (16)
O1—Fe1—N2—C10153.78 (11)Fe1—N2—C10—C935.41 (17)
O9—Fe1—N2—C1070.17 (16)O8—C9—C10—N2173.41 (17)
N1—Fe1—N2—C10110.13 (12)O7—C9—C10—N27.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4F···O2i0.921.932.821 (2)166
N4—H4E···O7ii0.862.542.990 (2)114
N4—H4E···O7iii0.862.152.924 (2)149
N4—H4D···O3ii0.822.042.844 (2)167
N4—H4C···O4iv0.802.142.928 (2)171
N3—H3D···O4ii0.822.112.919 (2)172
N3—H3C···O110.832.293.083 (3)159
N3—H3B···O9i0.842.603.184 (3)127
N3—H3B···O1i0.842.293.121 (2)167
N3—H3A···O40.862.223.081 (3)174
O12—H8W···O6i0.841.952.783 (2)170
O12—H7W···O10v0.831.922.732 (3)167
O11—H6W···O12vi0.831.932.749 (2)169
O11—H5W···O5i0.832.663.213 (2)125
O11—H5W···O6i0.831.942.750 (2)165
O10—H4W···O2i0.851.922.767 (3)179
O10—H3W···O110.851.882.727 (3)179
O9—H2W···O8vii0.841.962.753 (2)159
O9—H1W···O1viii0.832.112.920 (2)166
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x1, y1, z; (iv) x, y1, z; (v) x, y+1, z; (vi) x+1, y+1, z+2; (vii) x+2, y+2, z+1; (viii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula(NH4)2[Fe(C10H12N2O8)(H2O)]·3H2O
Mr452.21
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.7615 (10), 8.9485 (10), 13.4742 (15)
α, β, γ (°)80.309 (1), 81.005 (1), 68.779 (1)
V3)965.47 (19)
Z2
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.49 × 0.43 × 0.36
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.682, 0.748
No. of measured, independent and
observed [I > 2σ(I)] reflections
7220, 3455, 3162
Rint0.014
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.077, 1.06
No. of reflections3455
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.42

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Fe1—O52.1362 (15)Fe1—O92.2741 (14)
Fe1—O72.1736 (13)Fe1—N12.3015 (16)
Fe1—O32.2036 (15)Fe1—N22.3087 (15)
Fe1—O12.2603 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4F···O2i0.921.932.821 (2)165.5
N4—H4E···O7ii0.862.542.990 (2)114.0
N4—H4E···O7iii0.862.152.924 (2)149.1
N4—H4D···O3ii0.822.042.844 (2)166.8
N4—H4C···O4iv0.802.142.928 (2)170.6
N3—H3D···O4ii0.822.112.919 (2)172.0
N3—H3C···O110.832.293.083 (3)158.7
N3—H3B···O9i0.842.603.184 (3)127.1
N3—H3B···O1i0.842.293.121 (2)166.7
N3—H3A···O40.862.223.081 (3)174.1
O12—H8W···O6i0.841.952.783 (2)170.2
O12—H7W···O10v0.831.922.732 (3)166.6
O11—H6W···O12vi0.831.932.749 (2)168.9
O11—H5W···O5i0.832.663.213 (2)125.3
O11—H5W···O6i0.831.942.750 (2)165.1
O10—H4W···O2i0.851.922.767 (3)179.4
O10—H3W···O110.851.882.727 (3)178.9
O9—H2W···O8vii0.841.962.753 (2)158.7
O9—H1W···O1viii0.832.112.920 (2)165.9
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x1, y1, z; (iv) x, y1, z; (v) x, y+1, z; (vi) x+1, y+1, z+2; (vii) x+2, y+2, z+1; (viii) x+2, y+1, z+1.
 

Acknowledgements

This work was supported by the Doctoral Foundation of Luoyang Normal University.

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJanicki, R., Mondry, A. & Starynowicz, P. (2005). Z. Anorg. Allg. Chem. 631, 2475–2477.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShimoi, M., Saito, Y. & Ogino, H. (1991). Bull. Chem. Soc. Jpn, 64, 2629–2634.  CrossRef CAS Web of Science Google Scholar
First citationSolans, X., Font Altaba, M. & Garcia-Oricain, J. (1984). Acta Cryst. C40, 635–638.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWang, Z. S., Sui, X. Y. & Pan, C. F. (1999). Imaging Sci. Photochem. 17, 264–269.  Google Scholar
First citationZheng, R., Xiong, Y. & Zeng, Y. T. (2006). China Patent CN 1 731 277A.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m87-m88
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds