organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2-Di-2-pyridylethyl­ene–phenyl­succinic acid (1/1)

aCollege of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
*Correspondence e-mail: nysyhqz@126.com

(Received 13 November 2008; accepted 29 November 2008; online 20 December 2008)

In the title 1:1 adduct, C10H10O4·C12H10N2, the two components are linked by O—H⋯N hydrogen bonds to form a one-dimensional chain. The dihedral angle between the pyridine rings is 15.68 (8)° These chains are further inter­connected by weak inter­molecular C—H⋯O hydrogen bonds and weak C—H⋯π inter­actions to generate a three-dimensional network.

Related literature

For (S)- and (R,S)-phenyl­succinic acids, see: Fischer & Profir (2003a[Fischer, A. & Profir, V. M. (2003a). Acta Cryst. E59, o319-o320.],b[Fischer, A. & Profir, V. M. (2003b). Acta Cryst. E59, o485-o487.]). For weak C—H⋯O hydrogen bonds, see, for example: Bhogala et al. (2005[Bhogala, B. R., Basavoju, S. & Nangia, A. (2005). Cryst. Growth Des. 5, 1683-1686.]); Wang et al. (2008[Wang, Y.-T., Tang, G.-M., Zhang, Y.-C. & Wan, W.-Z. (2008). Acta Cryst. E64, o1753.]). For C—H⋯π inter­actions, see, for example: Fun & Kia (2008[Fun, H.-K. & Kia, R. (2008). Acta Cryst. E64, m1116-m1117.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10O4·C12H10N2

  • Mr = 376.40

  • Triclinic, [P \overline 1]

  • a = 8.6707 (13) Å

  • b = 10.9714 (17) Å

  • c = 11.2013 (17) Å

  • α = 80.801 (2)°

  • β = 69.696 (2)°

  • γ = 77.663 (2)°

  • V = 972.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 291 (2) K

  • 0.34 × 0.33 × 0.29 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.957, Tmax = 0.975

  • 7261 measured reflections

  • 3605 independent reflections

  • 2369 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.133

  • S = 1.03

  • 3605 reflections

  • 253 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯N1 0.82 1.88 2.699 (2) 176
O1—H1⋯N2i 0.82 1.88 2.683 (2) 165
C2—H2⋯O2ii 0.93 2.56 3.472 (3) 164
C11—H11⋯O3iii 0.93 2.43 3.350 (3) 170
C3—H3⋯Cg1iv 0.93 2.86 3.650 (4) 143
Symmetry codes: (i) x, y+1, z-1; (ii) x-1, y, z+1; (iii) x+1, y-1, z; (iv) -x, -y+1, -z+1. Cg1 is the centroid of the C15–C20 phenyl ring.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The asymmetric unit consists of the two heteromolecular components of the title compound in a (1/1) ratio (Fig.1). These molecules are linked by intermolecular O—H···N hydrogen bonds to form a one-dimensional chain (Table 1, Fig.2). The chains interact with each other via weak intermolecular C—H···O hydrogen bonds and C—H···π interactions (Tab 1). Cg1 is the centroid of the phenyl ring C15 - C20. These hydrogen bonds, albeit rather weak, link the chains into two-dimensional layers structure (Fig. 3), which are further connected by weak intermolecular C—H···π interactions to generate a three-dimensional supramolecular structure (Fig. 4).

Related literature top

For (S)- and (R,S)-phenylsuccinic acids, see: Fischer & Profir (2003a,b). For weak C—H···O hydrogen bonds, see, for example: Bhogala et al. (2005); Wang et al. (2008). For C—H···π interactions, see, for example: Fun & Kia (2008).

Experimental top

1,2-bis(2-pyridyl)ethylene (0.15 mmol), (R)-Phenylsuccinic acid (0.15 mmol), and NaOH (0.1 mmol) were added to a H2O solution (20 ml) in a Teflonlined stainless steel reactor. The mixture was heated at 450 K for 4 d, and then slowly cooled down to room temperature. Colorless crystals of the title compound were obtained.

Refinement top

All H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 Å (aromatic H) and Uĩso~(H) = 1.2Ueq(C), with C—H = 0.97 Å (CH2) and Uĩso~(H) = 1.2Ueq(C), with C—H = 0.98 Å(CH) and Uĩso~(H) = 1.2Ueq(C) and with O—H = 0.82 Å (OH) and Uĩso~(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the heteromolecular components of the title compound with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the one-dimensional hydrogen-bonding pattern network.
[Figure 3] Fig. 3. The crystal packing of (I), showing the two-dimensional structure.
[Figure 4] Fig. 4. A view of the C—H···π interactions in the crystal structure of the title compound.
1,2-Di-2-pyridylethylene–phenylsuccinic acid (1/1) top
Crystal data top
C10H10O4·C12H10N2Z = 2
Mr = 376.40F(000) = 396
Triclinic, P1Dx = 1.286 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.6707 (13) ÅCell parameters from 1614 reflections
b = 10.9714 (17) Åθ = 2.5–26.0°
c = 11.2013 (17) ŵ = 0.09 mm1
α = 80.801 (2)°T = 291 K
β = 69.696 (2)°Block, colorless
γ = 77.663 (2)°0.34 × 0.33 × 0.29 mm
V = 972.0 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3605 independent reflections
Radiation source: fine-focus sealed tube2369 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1010
Tmin = 0.957, Tmax = 0.975k = 1313
7261 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.1924P]
where P = (Fo2 + 2Fc2)/3
3605 reflections(Δ/σ)max < 0.001
253 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C10H10O4·C12H10N2γ = 77.663 (2)°
Mr = 376.40V = 972.0 (3) Å3
Triclinic, P1Z = 2
a = 8.6707 (13) ÅMo Kα radiation
b = 10.9714 (17) ŵ = 0.09 mm1
c = 11.2013 (17) ÅT = 291 K
α = 80.801 (2)°0.34 × 0.33 × 0.29 mm
β = 69.696 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3605 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2369 reflections with I > 2σ(I)
Tmin = 0.957, Tmax = 0.975Rint = 0.022
7261 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
3605 reflectionsΔρmin = 0.20 e Å3
253 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47679 (18)0.96437 (13)0.17709 (14)0.0637 (5)
H10.54530.98150.24640.096*
O20.6712 (2)0.79683 (17)0.17226 (16)0.0896 (7)
O30.27415 (18)0.75636 (14)0.27577 (13)0.0620 (4)
O40.45071 (18)0.57475 (13)0.26650 (13)0.0618 (4)
H40.38670.56010.33870.093*
N10.2501 (2)0.51408 (15)0.50443 (15)0.0485 (4)
N20.66326 (19)0.01005 (14)0.57849 (15)0.0454 (4)
C10.1106 (3)0.5966 (2)0.5536 (2)0.0546 (6)
H1A0.09950.67640.51100.065*
C20.0168 (3)0.5695 (2)0.6635 (2)0.0567 (6)
H20.11080.62950.69470.068*
C30.0007 (3)0.4507 (2)0.7260 (2)0.0561 (6)
H30.08450.42890.79990.067*
C40.1410 (3)0.3649 (2)0.6774 (2)0.0531 (5)
H4A0.15310.28460.71870.064*
C50.2663 (2)0.39814 (18)0.56644 (18)0.0434 (5)
C60.4216 (3)0.31193 (19)0.5089 (2)0.0503 (5)
H60.48940.33860.42840.060*
C70.4745 (2)0.20028 (18)0.56004 (19)0.0470 (5)
H70.40710.17420.64090.056*
C80.6279 (2)0.11358 (18)0.50279 (18)0.0440 (5)
C90.7339 (3)0.1334 (2)0.3775 (2)0.0657 (7)
H90.70900.20460.32560.079*
C100.8761 (3)0.0464 (2)0.3313 (2)0.0720 (7)
H100.94800.05950.24850.086*
C110.9108 (3)0.0587 (2)0.4075 (2)0.0624 (6)
H111.00500.11870.37750.075*
C120.8017 (3)0.07322 (19)0.5304 (2)0.0549 (6)
H120.82520.14450.58270.066*
C130.5369 (2)0.85814 (19)0.12306 (19)0.0462 (5)
C140.4165 (2)0.81888 (18)0.00741 (18)0.0427 (5)
H140.36820.89310.05500.051*
C150.2750 (2)0.77139 (17)0.01329 (17)0.0399 (5)
C160.1120 (2)0.83595 (19)0.02700 (19)0.0488 (5)
H160.08810.90740.06940.059*
C170.0154 (3)0.7948 (2)0.0046 (2)0.0588 (6)
H170.12360.83940.03160.071*
C180.0169 (3)0.6883 (2)0.0573 (2)0.0635 (6)
H180.06880.66120.07230.076*
C190.1789 (3)0.6220 (2)0.0970 (2)0.0603 (6)
H190.20180.54980.13810.072*
C200.3064 (3)0.66335 (19)0.07542 (19)0.0497 (5)
H200.41450.61860.10260.060*
C210.5086 (2)0.7212 (2)0.08432 (18)0.0501 (5)
H21A0.55410.64620.03960.060*
H21B0.60130.75380.08990.060*
C220.3968 (2)0.68718 (19)0.21791 (18)0.0438 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0595 (9)0.0537 (9)0.0538 (9)0.0004 (7)0.0032 (7)0.0158 (7)
O20.0579 (10)0.0906 (13)0.0669 (11)0.0189 (9)0.0120 (9)0.0282 (9)
O30.0591 (9)0.0598 (10)0.0442 (8)0.0097 (8)0.0023 (7)0.0005 (7)
O40.0653 (10)0.0513 (9)0.0446 (8)0.0079 (7)0.0029 (7)0.0062 (7)
N10.0520 (10)0.0422 (10)0.0428 (9)0.0012 (8)0.0126 (8)0.0046 (8)
N20.0471 (9)0.0384 (9)0.0450 (9)0.0050 (7)0.0134 (8)0.0056 (7)
C10.0621 (14)0.0425 (12)0.0498 (13)0.0039 (10)0.0165 (11)0.0013 (10)
C20.0534 (13)0.0584 (14)0.0490 (13)0.0073 (11)0.0135 (10)0.0080 (11)
C30.0525 (13)0.0640 (15)0.0420 (12)0.0079 (11)0.0068 (10)0.0006 (11)
C40.0551 (13)0.0464 (12)0.0479 (12)0.0053 (10)0.0107 (10)0.0051 (10)
C50.0458 (11)0.0419 (11)0.0398 (11)0.0055 (9)0.0141 (9)0.0012 (9)
C60.0508 (12)0.0475 (12)0.0425 (11)0.0031 (10)0.0098 (9)0.0052 (9)
C70.0514 (12)0.0457 (12)0.0387 (11)0.0053 (9)0.0122 (9)0.0011 (9)
C80.0495 (11)0.0413 (11)0.0397 (11)0.0062 (9)0.0150 (9)0.0005 (9)
C90.0788 (16)0.0581 (15)0.0403 (12)0.0049 (12)0.0092 (11)0.0063 (11)
C100.0762 (17)0.0708 (17)0.0427 (13)0.0047 (13)0.0013 (12)0.0010 (12)
C110.0553 (13)0.0549 (14)0.0608 (14)0.0042 (11)0.0055 (11)0.0083 (12)
C120.0521 (12)0.0431 (12)0.0600 (14)0.0005 (10)0.0148 (11)0.0038 (10)
C130.0405 (11)0.0446 (12)0.0451 (11)0.0064 (9)0.0083 (9)0.0060 (9)
C140.0421 (10)0.0409 (11)0.0375 (10)0.0041 (8)0.0072 (8)0.0005 (8)
C150.0393 (10)0.0417 (11)0.0325 (10)0.0047 (8)0.0081 (8)0.0034 (8)
C160.0436 (11)0.0463 (12)0.0477 (12)0.0027 (9)0.0091 (9)0.0012 (9)
C170.0378 (11)0.0715 (16)0.0586 (14)0.0083 (11)0.0134 (10)0.0115 (12)
C180.0639 (15)0.0765 (17)0.0579 (14)0.0299 (13)0.0258 (12)0.0094 (13)
C190.0706 (16)0.0599 (14)0.0529 (13)0.0190 (12)0.0183 (12)0.0052 (11)
C200.0473 (12)0.0501 (13)0.0457 (12)0.0033 (10)0.0113 (9)0.0025 (10)
C210.0409 (11)0.0568 (13)0.0450 (12)0.0067 (9)0.0094 (9)0.0039 (10)
C220.0433 (11)0.0477 (12)0.0370 (10)0.0047 (9)0.0117 (9)0.0018 (9)
Geometric parameters (Å, º) top
O1—C131.315 (2)C9—H90.9300
O1—H10.8200C10—C111.365 (3)
O2—C131.204 (2)C10—H100.9300
O3—C221.209 (2)C11—C121.380 (3)
O4—C221.324 (2)C11—H110.9300
O4—H40.8200C12—H120.9300
N1—C11.347 (2)C13—C141.531 (3)
N1—C51.352 (2)C14—C151.529 (3)
N2—C121.344 (2)C14—C211.532 (3)
N2—C81.352 (2)C14—H140.9800
C1—C21.380 (3)C15—C161.391 (3)
C1—H1A0.9300C15—C201.399 (3)
C2—C31.381 (3)C16—C171.389 (3)
C2—H20.9300C16—H160.9300
C3—C41.378 (3)C17—C181.383 (3)
C3—H30.9300C17—H170.9300
C4—C51.395 (3)C18—C191.390 (3)
C4—H4A0.9300C18—H180.9300
C5—C61.474 (3)C19—C201.387 (3)
C6—C71.326 (3)C19—H190.9300
C6—H60.9300C20—H200.9300
C7—C81.465 (3)C21—C221.513 (3)
C7—H70.9300C21—H21A0.9700
C8—C91.398 (3)C21—H21B0.9700
C9—C101.382 (3)
C13—O1—H1109.5N2—C12—H12118.2
C22—O4—H4109.5C11—C12—H12118.2
C1—N1—C5118.17 (17)O2—C13—O1123.53 (18)
C12—N2—C8118.53 (17)O2—C13—C14123.50 (18)
N1—C1—C2123.70 (19)O1—C13—C14112.95 (16)
N1—C1—H1A118.1C15—C14—C13108.73 (16)
C2—C1—H1A118.1C15—C14—C21112.41 (16)
C1—C2—C3118.01 (19)C13—C14—C21110.86 (15)
C1—C2—H2121.0C15—C14—H14108.2
C3—C2—H2121.0C13—C14—H14108.2
C4—C3—C2119.24 (19)C21—C14—H14108.2
C4—C3—H3120.4C16—C15—C20118.20 (19)
C2—C3—H3120.4C16—C15—C14120.81 (18)
C3—C4—C5120.13 (19)C20—C15—C14120.98 (17)
C3—C4—H4A119.9C17—C16—C15120.7 (2)
C5—C4—H4A119.9C17—C16—H16119.6
N1—C5—C4120.74 (17)C15—C16—H16119.6
N1—C5—C6115.87 (17)C18—C17—C16120.7 (2)
C4—C5—C6123.39 (18)C18—C17—H17119.7
C7—C6—C5126.66 (19)C16—C17—H17119.7
C7—C6—H6116.7C17—C18—C19119.3 (2)
C5—C6—H6116.7C17—C18—H18120.4
C6—C7—C8126.93 (19)C19—C18—H18120.4
C6—C7—H7116.5C20—C19—C18120.1 (2)
C8—C7—H7116.5C20—C19—H19120.0
N2—C8—C9120.45 (18)C18—C19—H19120.0
N2—C8—C7116.06 (17)C19—C20—C15121.01 (19)
C9—C8—C7123.49 (18)C19—C20—H20119.5
C10—C9—C8119.6 (2)C15—C20—H20119.5
C10—C9—H9120.2C22—C21—C14112.58 (16)
C8—C9—H9120.2C22—C21—H21A109.1
C11—C10—C9119.9 (2)C14—C21—H21A109.1
C11—C10—H10120.0C22—C21—H21B109.1
C9—C10—H10120.0C14—C21—H21B109.1
C10—C11—C12118.0 (2)H21A—C21—H21B107.8
C10—C11—H11121.0O3—C22—O4123.46 (18)
C12—C11—H11121.0O3—C22—C21123.82 (18)
N2—C12—C11123.6 (2)O4—C22—C21112.68 (16)
C5—N1—C1—C20.1 (3)O2—C13—C14—C15104.5 (2)
N1—C1—C2—C30.5 (3)O1—C13—C14—C1574.0 (2)
C1—C2—C3—C40.6 (3)O2—C13—C14—C2119.5 (3)
C2—C3—C4—C50.0 (3)O1—C13—C14—C21161.95 (18)
C1—N1—C5—C40.7 (3)C13—C14—C15—C16114.07 (19)
C1—N1—C5—C6179.70 (18)C21—C14—C15—C16122.80 (19)
C3—C4—C5—N10.6 (3)C13—C14—C15—C2064.7 (2)
C3—C4—C5—C6179.8 (2)C21—C14—C15—C2058.5 (2)
N1—C5—C6—C7171.0 (2)C20—C15—C16—C170.8 (3)
C4—C5—C6—C79.4 (3)C14—C15—C16—C17178.00 (17)
C5—C6—C7—C8179.33 (19)C15—C16—C17—C180.5 (3)
C12—N2—C8—C90.3 (3)C16—C17—C18—C190.2 (3)
C12—N2—C8—C7179.38 (18)C17—C18—C19—C200.5 (3)
C6—C7—C8—N2173.9 (2)C18—C19—C20—C150.3 (3)
C6—C7—C8—C96.4 (4)C16—C15—C20—C190.4 (3)
N2—C8—C9—C100.2 (3)C14—C15—C20—C19178.39 (18)
C7—C8—C9—C10179.9 (2)C15—C14—C21—C2262.5 (2)
C8—C9—C10—C110.9 (4)C13—C14—C21—C22175.58 (17)
C9—C10—C11—C120.9 (4)C14—C21—C22—O326.4 (3)
C8—N2—C12—C110.3 (3)C14—C21—C22—O4155.70 (18)
C10—C11—C12—N20.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N10.821.882.699 (2)176
O1—H1···N2i0.821.882.683 (2)165
C2—H2···O2ii0.932.563.472 (3)164
C11—H11···O3iii0.932.433.350 (3)170
C3—H3···Cg1iv0.932.863.650 (4)143
Symmetry codes: (i) x, y+1, z1; (ii) x1, y, z+1; (iii) x+1, y1, z; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H10O4·C12H10N2
Mr376.40
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.6707 (13), 10.9714 (17), 11.2013 (17)
α, β, γ (°)80.801 (2), 69.696 (2), 77.663 (2)
V3)972.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.34 × 0.33 × 0.29
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.957, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
7261, 3605, 2369
Rint0.022
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.133, 1.03
No. of reflections3605
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.20

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···N10.821.882.699 (2)176
O1—H1···N2i0.821.882.683 (2)165
C2—H2···O2ii0.932.563.472 (3)164
C11—H11···O3iii0.932.433.350 (3)170
C3—H3···Cg1iv0.932.863.650 (4)143
Symmetry codes: (i) x, y+1, z1; (ii) x1, y, z+1; (iii) x+1, y1, z; (iv) x, y+1, z+1.
 

Acknowledgements

The authors thank Nanyang Normal University for supporting this work.

References

First citationBhogala, B. R., Basavoju, S. & Nangia, A. (2005). Cryst. Growth Des. 5, 1683–1686.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFischer, A. & Profir, V. M. (2003a). Acta Cryst. E59, o319–o320.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFischer, A. & Profir, V. M. (2003b). Acta Cryst. E59, o485–o487.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFun, H.-K. & Kia, R. (2008). Acta Cryst. E64, m1116–m1117.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y.-T., Tang, G.-M., Zhang, Y.-C. & Wan, W.-Z. (2008). Acta Cryst. E64, o1753.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds