metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m80-m81

catena-Poly[[bis­­(nitrato-κ2O,O′)copper(II)]-μ-2,2′-(ethane-1,2-diyldi­thio)di-1,3,4-thia­diazole-κ2N4:N4′]

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: jh_q128105@126.com

(Received 20 November 2008; accepted 6 December 2008; online 17 December 2008)

In the title compound, [Cu(NO3)2(C6H6N4S4)]n, the CuII atom, occupying a crystallographic inversion centre, is six-coordinated by two N atoms of two 2,2′-[1,2-ethane­diyl­bis­(thio)]bis­[1,3,4-thia­diazole] ligands in trans positions, and four O atoms from two symmetry-related opposite nitrate anions, which are asymmetrically bonded, resulting in a strong distorted octa­hedral geometry of the central atom. The ethane group is equally disordered over two sites via another inversion centre. The bridging bidentate 2,2′-[1,2-ethanediylbis(thio)]bis­[1,3,4-thia­diazole] ligands link the CuII centres into a one-dimensional chain. The chains are inter­connected via inter­molecular S⋯O inter­actions [3.044 (4) and 3.084 (5) Å] and weak C—H⋯O hydrogen bonds, generating a three-dimensional supra­molecular structure.

Related literature

For related catena-poly Cu(II) complexes, see, for example: Wang et al. (2008[Wang, J. G., Qin, J. H., Hu, P. Z. & Zhao, B. T. (2008). Z. Kristallogr. New Cryst. Struct. 223, 225-227.]). For elongated Cu—O bonds see, for example: Lee & Barboiu (2004[Lee, A. & Barboiu, M. (2004). Acta Cryst. C60, m156-m158.]); Youngme et al. (2007[Youngme, S., Chotkhun, T. & Chaichit, N. (2007). Acta Cryst. C63, m59-m61.]). For C—H⋯O hydrogen bonds, see: Bhogala et al. (2005[Bhogala, B. R., Basavoju, S. & Nangia, A. (2005). Cryst. Growth Des. 5, 1683-1686.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(NO3)2(C6H6N4S4)]

  • Mr = 449.95

  • Triclinic, [P \overline 1]

  • a = 5.2143 (8) Å

  • b = 7.0214 (10) Å

  • c = 10.6476 (16) Å

  • α = 105.144 (2)°

  • β = 100.000 (2)°

  • γ = 93.958 (2)°

  • V = 367.88 (9) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 2.09 mm−1

  • T = 296 (2) K

  • 0.48 × 0.29 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]) Tmin = 0.432, Tmax = 0.924

  • 1983 measured reflections

  • 1336 independent reflections

  • 1273 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.173

  • S = 1.05

  • 1336 reflections

  • 110 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.86 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—O1 2.588 (4)
Cu1—O3 1.971 (3)
Cu1—N2 2.007 (4)
O1—Cu1—O3 54.74 (14)
N2—Cu1—O3 89.02 (15)
O1—Cu1—O3i 125.26 (14)
Symmetry code: (i) -x, -y, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1ii 0.93 2.49 3.083 (6) 122
Symmetry code: (ii) x+1, y, z.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELX97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As shown in Fig. 1, the copper atom is coordinated by four O atoms from two chelating nitrate anions and two N atoms from two Ci symmetry-related 2,2'-[1,2-ethanediylbis(thio)]bis[1,3,4-thiadiazole] ligands. The geometry around the Cu(II) atom appears to be strong distorted octahedral, which is shown with the angle O1—Cu1—O3 = 54.74 (14) °. The nitrate anions are asymmetrically bonded, with Cu1—O3 = 1.971 (3) Å and Cu1—O1 = 2.588 (4) Å (Table 1). Two examples of asymmetrically bonded carboxylate groups show the wide range of short and long Cu(II)–O distances: 1.989 (2) Å and 2.339 (3) Å (Youngme et al., 2007); 1.962 (3) Å and 2.706 Å were reported by Lee & Barboiu (2004).

The ethane group was disordered and the C3 atom was refined on split positions with occupancy (50:50). The 2,2'-[1,2-ethanediylbis(thio)]bis[1,3,4-thiadiazole] ligands adopt a N, N-bidentate bridging mode in trans configuration and bridge the copper atoms into one-dimensional infinite chains, with the bridged Cu-Cu distance of 11.2455 (12) Å (Fig. 2). The chains interact with neigboring molecules via intermolecular S···O interactions (the shortest distances found: O2···S1 = 3.084 (5) Å and O2···S2 = 3.044 (4) Å, with symmetry codes (1 - x, -1 - y, -z) and (1 - x, 1 - y, 1 - z), respectively, and weak intermolecular C—H···O hydrogen bonds (Bhogala et al. (2005), (Table 2). These chains are linked by the S···O interactions into two-dimensional layers (Fig. 3), which are further connected by weak intermolecular C—H···O hydrogen bonds to generate a a three-dimensional supramolecular structure (Fig. 4).

Related literature top

For related catena-poly Cu(II) complexes, see, for example: Wang et al. (2008). For elongated Cu—O bonds see, for example: Lee & Barboiu (2004); Youngme et al. (2007). For C—H···O hydrogen bonds, see: Bhogala et al. (2005);

Experimental top

The reaction of 2,2'-[1,2-ethanediyl-bis(thio)]bis(1,3,4- thiadiazole) (0.2 mmol) with Cu(NO3)2 (0.2 mmol) in MeOH(10 ml) for a few minutes afforded a light blue solid, which was filtered, washed with acetone, and dried on air. The single crystals suitable for X-ray analysis were obtained by slow diffusion of Et2O into the acetonitrile solution of the solid.

Refinement top

All hydrogen atoms were positioned geometrically and treated as riding, with C—H = 0.93 Å (CH) and Uĩso~(H) = 1.2Ueq(C), with C—H = 0.97 Å (CH2) and Uĩso~(H) = 1.2Ueq(C),

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELX97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the local coordination of the Cu(II) cation in the title compound. Displacement ellipsoids are drawn at the 30% probability level. The disordered ethane group was omitted for clarity. Symmetry codes: (A) (-x, -y, -z); (B) (1 - x, 1 - y, 1 - z); (C) (-1 + x, -1 + y, -1 + z).
[Figure 2] Fig. 2. A view of the polymeric chain in the title compound.
[Figure 3] Fig. 3. A view of the two-dimensional network, indicating the S···O interactions by dashed lines.
[Figure 4] Fig. 4. A view of the compound packing down the b axis.
catena-Poly[[bis(nitrato-κ2O,O')copper(II)]-µ- 2,2'-(ethane-1,2-diyldithio)di-1,3,4-thiadiazole-κ2N4:N4'] top
Crystal data top
[Cu(NO3)2(C6H6N4S4)]Z = 1
Mr = 449.95F(000) = 225
Triclinic, P1Dx = 2.031 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.2143 (8) ÅCell parameters from 1855 reflections
b = 7.0214 (10) Åθ = 3.0–29.2°
c = 10.6476 (16) ŵ = 2.09 mm1
α = 105.144 (2)°T = 296 K
β = 100.000 (2)°Plate, colorless
γ = 93.958 (2)°0.48 × 0.29 × 0.04 mm
V = 367.88 (9) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
1336 independent reflections
Radiation source: fine-focus sealed tube1273 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
phi and ω scansθmax = 25.5°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 63
Tmin = 0.432, Tmax = 0.924k = 88
1983 measured reflectionsl = 1112
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.1363P)2 + 0.4692P]
where P = (Fo2 + 2Fc2)/3
1336 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 1.86 e Å3
1 restraintΔρmin = 0.50 e Å3
Crystal data top
[Cu(NO3)2(C6H6N4S4)]γ = 93.958 (2)°
Mr = 449.95V = 367.88 (9) Å3
Triclinic, P1Z = 1
a = 5.2143 (8) ÅMo Kα radiation
b = 7.0214 (10) ŵ = 2.09 mm1
c = 10.6476 (16) ÅT = 296 K
α = 105.144 (2)°0.48 × 0.29 × 0.04 mm
β = 100.000 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1336 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1273 reflections with I > 2σ(I)
Tmin = 0.432, Tmax = 0.924Rint = 0.020
1983 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0581 restraint
wR(F2) = 0.173H-atom parameters constrained
S = 1.05Δρmax = 1.86 e Å3
1336 reflectionsΔρmin = 0.50 e Å3
110 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C30.6301 (17)0.4878 (11)0.4823 (9)0.0366 (14)0.499 (9)
H3A0.76020.59210.54220.044*0.499 (9)
H3B0.62430.49720.39260.044*0.499 (9)
C3'0.4746 (17)0.4163 (12)0.5298 (9)0.0366 (14)0.501 (9)
H3B'0.29880.34850.49170.044*0.501 (9)
H3A'0.48900.46800.62490.044*0.501 (9)
Cu10.00000.00000.00000.0312 (3)
S10.6997 (3)0.12017 (17)0.26648 (12)0.0406 (4)
S20.7207 (3)0.23982 (18)0.49437 (12)0.0455 (4)
O10.2024 (8)0.3668 (6)0.0576 (4)0.0546 (10)
O20.0393 (10)0.5352 (6)0.2188 (4)0.0650 (12)
O30.1101 (7)0.2255 (5)0.1244 (3)0.0417 (8)
N10.0491 (8)0.3829 (5)0.1353 (4)0.0385 (9)
N20.3011 (8)0.0167 (6)0.1409 (4)0.0345 (8)
N30.3672 (7)0.1312 (5)0.2605 (4)0.0370 (9)
C10.4554 (9)0.1563 (6)0.1321 (4)0.0355 (10)
H1A0.43300.26630.05830.043*
C20.5716 (9)0.0958 (6)0.3353 (4)0.0347 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.036 (4)0.032 (3)0.038 (3)0.005 (2)0.007 (3)0.004 (3)
C3'0.036 (4)0.032 (3)0.038 (3)0.005 (2)0.007 (3)0.004 (3)
Cu10.0330 (5)0.0269 (5)0.0289 (5)0.0069 (3)0.0028 (3)0.0009 (3)
S10.0423 (7)0.0364 (7)0.0419 (7)0.0170 (5)0.0040 (5)0.0086 (5)
S20.0479 (8)0.0415 (7)0.0367 (7)0.0153 (5)0.0092 (5)0.0016 (5)
O10.062 (2)0.049 (2)0.059 (2)0.0151 (17)0.020 (2)0.0183 (17)
O20.088 (3)0.0380 (19)0.053 (2)0.024 (2)0.002 (2)0.0102 (17)
O30.0405 (18)0.0406 (17)0.0388 (17)0.0109 (14)0.0058 (14)0.0017 (14)
N10.049 (2)0.0291 (17)0.0304 (18)0.0149 (16)0.0031 (17)0.0004 (14)
N20.0384 (19)0.0289 (17)0.0321 (19)0.0068 (15)0.0039 (15)0.0025 (14)
N30.039 (2)0.0306 (19)0.035 (2)0.0102 (17)0.0015 (17)0.0016 (16)
C10.039 (2)0.032 (2)0.033 (2)0.0098 (18)0.0062 (18)0.0034 (17)
C20.037 (2)0.0291 (19)0.035 (2)0.0078 (18)0.0048 (19)0.0054 (17)
Geometric parameters (Å, º) top
C3—C3i1.479 (17)Cu1—N2ii2.007 (4)
C3—S21.866 (7)S1—C11.693 (5)
C3—H3A0.9700S1—C21.735 (4)
C3—H3B0.9700S2—C21.743 (4)
C3'—C3'i1.504 (17)O1—N11.237 (6)
C3'—S21.863 (7)O2—N11.209 (5)
C3'—H3B'0.9700O3—N11.303 (5)
C3'—H3A'0.9700N2—C11.305 (6)
Cu1—O12.588 (4)N2—N31.389 (5)
Cu1—O3ii1.971 (3)N3—C21.295 (6)
Cu1—O31.971 (3)C1—H1A0.9300
Cu1—N22.007 (4)
C3i—C3—S2108.9 (7)C2—S2—C3'100.6 (3)
C3i—C3—H3A109.9C2—S2—C399.5 (3)
S2—C3—H3A109.9N1—O3—Cu1107.4 (2)
C3i—C3—H3B109.9O2—N1—O1123.7 (5)
S2—C3—H3B109.9O2—N1—O3119.2 (4)
H3A—C3—H3B108.3O1—N1—O3117.1 (4)
C3'i—C3'—S2108.5 (7)O1—Cu1—O354.74 (14)
C3'i—C3'—H3B'110.0N2—Cu1—O389.02 (15)
S2—C3'—H3B'110.0O1—Cu1—O3ii125.26 (14)
C3'i—C3'—H3A'110.0C1—N2—N3113.3 (4)
S2—C3'—H3A'110.0C1—N2—Cu1126.2 (3)
H3B'—C3'—H3A'108.4N3—N2—Cu1120.5 (3)
O3ii—Cu1—O3180.0C2—N3—N2110.7 (4)
O3ii—Cu1—N290.98 (15)N2—C1—S1114.2 (3)
O3—Cu1—N289.02 (15)N2—C1—H1A122.9
O3ii—Cu1—N2ii89.02 (15)S1—C1—H1A122.9
O3—Cu1—N2ii90.98 (15)N3—C2—S1114.8 (3)
N2—Cu1—N2ii180.0N3—C2—S2126.5 (3)
C1—S1—C287.1 (2)S1—C2—S2118.7 (3)
C3'i—C3'—S2—C283.9 (9)Cu1—N2—N3—C2177.8 (3)
C3'i—C3'—S2—C37.8 (7)N3—N2—C1—S11.2 (5)
C3i—C3—S2—C287.1 (9)Cu1—N2—C1—S1177.3 (2)
C3i—C3—S2—C3'7.9 (7)C2—S1—C1—N20.9 (4)
N2—Cu1—O3—N1103.2 (3)N2—N3—C2—S10.1 (5)
N2ii—Cu1—O3—N176.8 (3)N2—N3—C2—S2179.2 (3)
Cu1—O3—N1—O2171.2 (4)C1—S1—C2—N30.4 (4)
Cu1—O3—N1—O19.2 (4)C1—S1—C2—S2178.7 (3)
O3ii—Cu1—N2—C1171.9 (4)C3'—S2—C2—N39.6 (5)
O3—Cu1—N2—C18.1 (4)C3—S2—C2—N327.8 (5)
O3ii—Cu1—N2—N39.7 (3)C3'—S2—C2—S1169.5 (4)
O3—Cu1—N2—N3170.3 (3)C3—S2—C2—S1153.1 (3)
C1—N2—N3—C20.8 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1iii0.932.493.083 (6)122
Symmetry code: (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(NO3)2(C6H6N4S4)]
Mr449.95
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.2143 (8), 7.0214 (10), 10.6476 (16)
α, β, γ (°)105.144 (2), 100.000 (2), 93.958 (2)
V3)367.88 (9)
Z1
Radiation typeMo Kα
µ (mm1)2.09
Crystal size (mm)0.48 × 0.29 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.432, 0.924
No. of measured, independent and
observed [I > 2σ(I)] reflections
1983, 1336, 1273
Rint0.020
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.173, 1.05
No. of reflections1336
No. of parameters110
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.86, 0.50

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELX97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—O12.588 (4)Cu1—N22.007 (4)
Cu1—O31.971 (3)
O1—Cu1—O354.74 (14)O1—Cu1—O3i125.26 (14)
N2—Cu1—O389.02 (15)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1ii0.932.493.083 (6)122.00
Symmetry code: (ii) x+1, y, z.
 

Acknowledgements

The authors thank Luo Yang Normal University for supporting this work.

References

First citationBhogala, B. R., Basavoju, S. & Nangia, A. (2005). Cryst. Growth Des. 5, 1683–1686.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,Wisconsin, USA.  Google Scholar
First citationLee, A. & Barboiu, M. (2004). Acta Cryst. C60, m156–m158.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J. G., Qin, J. H., Hu, P. Z. & Zhao, B. T. (2008). Z. Kristallogr. New Cryst. Struct. 223, 225–227.  CAS Google Scholar
First citationYoungme, S., Chotkhun, T. & Chaichit, N. (2007). Acta Cryst. C63, m59–m61.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m80-m81
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds