metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m32-m33

trans-N,N,N′,N′-Tetra­kis(carb­oxy­meth­yl)cyclo­hexane-1,2-di­ammonium tetra­chloridocadmium(II) tetra­hydrate

aCollege of Chemistry and Life Science, Gannan Normal University, Ganzhou, Jiangxi 341000, People's Republic of China, and bDepartment of Chemistry and Environmental Science, Zhangzhou Normal University, Zhangzhou, Fujian 363000, People's Republic of China
*Correspondence e-mail: ghx919@yahoo.com.cn

(Received 27 November 2008; accepted 5 December 2008; online 10 December 2008)

In the title compound, (C14H24N2O8)[CdCl4]·4H2O, the Cd atom in the tetra­hedral [CdCl4]2− anion lies on a twofold rotation axis, and the diprotonated organic mol­ecule, trans-N,N,N′,N′-tetra­kis(carb­oxy­meth­yl)cyclo­hexane-1,2-diammon­ium, has 2 symmetry with the twofold rotation axis running through the mid-point of two C—C bonds in the cyclo­hexane unit. In the crystal structure, classical intra­molecular O—H⋯O and N—H⋯O and inter­molecular O—H⋯O, N—H⋯O, O—H⋯Cl and C—H⋯Cl hydrogen bonds are observed.

Related literature

For the structure of 1,2-diamino­cyclo­hexane-N,N′-tetra­acetate ferrate(III), see: Seibig & Van Eldik (1998[Seibig, S. & Van Eldik, R. (1998). Inorg. Chim. Acta, 279, 37-43.]). For related tetra­acetate-based Cu(II) dimeric and polymeric complexes, see: Wang et al. (1999[Wang, Q. M., Wu, X. T., Lin, P., Zhang, W. J., Sheng, T. L., Yu, H., Chen, L. & Li, J. M. (1999). Polyhedron, 18, 1411-1417.]); Ben Amor & Jouini (1999[Ben Amor, F. & Jouini, T. (1999). Acta Cryst. C55, 499-501.]). For highly stable chiral three-dimensional cadmium 1,2,4-benzene­tricarboxyl­ate structures with NLO and fluorescence properties, see: Wang et al. (2006[Wang, L., Yang, M., Li, G. H., Shi, Z. & Feng, S. H. (2006). Inorg. Chem. 45, 2474-2478.]). For a flexible multicarboxyl­ate ligand used to form homochiral helical Zn and Cd coordination polymers, see: Zang et al. (2006[Zang, S. Q., Su, Y., Li, Y. Z., Ni, Z. P. & Meng, Q. J. (2006). Inorg. Chem. 45, 174-180.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H24N2O8)[CdCl4]·4H2O

  • Mr = 674.63

  • Monoclinic, P 2/c

  • a = 11.3772 (14) Å

  • b = 8.5734 (10) Å

  • c = 16.2189 (16) Å

  • β = 124.119 (6)°

  • V = 1309.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.30 mm−1

  • T = 291 (2) K

  • 0.68 × 0.54 × 0.28 mm

Data collection
  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.472, Tmax = 0.712

  • 12160 measured reflections

  • 2400 independent reflections

  • 2319 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.069

  • S = 1.01

  • 2400 reflections

  • 166 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O3i 0.84 (4) 2.34 (4) 2.970 (3) 132 (5)
N1—H1B⋯O2 0.91 2.27 2.750 (3) 112
N1—H1B⋯O2ii 0.91 2.04 2.857 (2) 149
O1—H1C⋯O1W 0.92 1.70 2.590 (4) 162
O2W—H2WA⋯O1Wiii 0.84 (3) 2.24 (3) 2.993 (4) 151 (5)
O2W—H2WB⋯Cl1iv 0.82 (3) 2.51 (4) 3.144 (3) 136 (4)
O1W—H1WB⋯Cl1v 0.86 (7) 2.45 (3) 3.227 (3) 152 (6)
O4—H4C⋯O2Wvi 0.83 1.75 2.535 (3) 157
C1—H1A⋯Cl2vii 0.98 2.67 3.637 (3) 171
C4—H4A⋯Cl2ii 0.97 2.64 3.600 (2) 170
C4—H4B⋯Cl2v 0.97 2.83 3.610 (3) 138
C6—H6A⋯Cl1ii 0.97 2.60 3.537 (2) 163
Symmetry codes: (i) -x+1, -y, -z+2; (ii) [-x+1, y, -z+{\script{3\over 2}}]; (iii) [-x, y+1, -z+{\script{3\over 2}}]; (iv) [x, -y+2, z+{\script{1\over 2}}]; (v) [x, -y+1, z+{\script{1\over 2}}]; (vi) -x+1, -y+1, -z+2; (vii) -x+1, -y+1, -z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

In recent years, one-, two- and three-dimensional infinite supramolecular coordination assemblies of Cd(II) have been the subject of great interest owing to their potential applications in many fields, such as catalysis and optical properties (Wang et al., 2006; Zang et al., 2006). Trans-1,2- cyclohexanediamine-N,N,N',N'-tetra-acetic acid (H4CTA) is a multifunctional ligand that not only can coordinate to metal ions to form coordination complexes, also can act as hydrogen bonding donors in forming supramolecular coordination assemblies (Ben Amor & Jouini, 1999; Seibig & Van Eldik, 1998; Wang et al., 1999). In this work, we report a novel Cd(II) complex accidently obtained by CdCl2 and H4CTA, [CdCl4].H6CTA.4H2O (I).

The molecular structure of the compound (I) is revealed in Fig. 1. The asymmetric unit of the complex consists of 1/2 [CdCl4]2- tetrahedral anion unit, one protonated H6CTA cation plus two interstitial water molecules. The Cd(II) atom in the anion is tetrahedrally coordinated by four chlorine atoms, in which the bond length of Cd—Cl lie in the range from 2.4465 (6) Å to 2.4725 (7) Å, and the bond angles Cl—Cd—Cl vary from 101.26 (3) to 114.62 (3)°. The cadmium atom in the tetrahedral anion unit, [CdCl4]2-, lies on a crystallographic rotation axis (site symmetry 2), and the diprotonated organic molecule, [H6CTA]2+, has a twofold rotation symmetry with the crystallographic twofold axis running through the middle of two C—C bonds of the cyclohexane part.

In the crystal structure of the compound (I), classic inter- and intra- molecular O—H···O, N—H···O, O—H···Cl and C—H···Cl hydrogen bonds are observed (Table 1), which link the ammonium cations, [CdCl4]2- anions and uncoordinated water molecules into a 3-D hydrogen-bonded network and stabilize the crystal packing, as shown in Fig. 2.

Related literature top

For the structure of 1,2-diaminocyclohexane-N,N'-tetraacetate ferrate(III), see: Seibig & Van Eldik (1998). For related tetraacetate-based Cu(II) dimeric and polymeric complexes, see: Wang et al. (1999); Ben Amor & Jouini (1999). For highly stable chiral three-dimensional cadmium 1,2,4-benzenetricarboxylate structures with NLO and fluorescence properties, see: Wang et al. (2006). For a flexible multicarboxylate ligand used to form homochiral helical Zn and Cd coordination polymers, see: Zang et al. (2006).

Experimental top

Trans-1,2-cyclohexanediamine-N,N,N',N' -tetra-acetic acid (0.012 mol, 0.4156 g) and CdCl2 (0.0045 mol, 0.8249 g) were dissolved in dilute HCl (10 ml, 1M) and the resultant solution was evaporated slowly at ca 323 K. The title compound was obtained as block colourless crystals after several days.

Refinement top

The C-bound H atoms were positioned geometrically, with C—H = 0.98 Å and 0.97 Å and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq. Atom H1B was positioned geometrically and allowed to ride on N1, with N—H = 0.91Å and Uiso(H)= 1.2Ueq(N). The H atoms bonded to carboxyl O atoms were located in a difference Fourier map and refined with O–H distance restraints of 0.85 (2) Å. Water H atoms were located in a difference map and refined with O—H and H···H distance restraints of 0.85 (1) and 1.39 (2) Å, respectively, and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level. Symmetry related atoms are labeled A (symmetry code: -x, y, -z - 3/2) for the CdCl4 unit and (1 - x,y, -z - 1/2) for the cation.
[Figure 2] Fig. 2. View of the 3-D network for compound (I) along the b axis.
trans-N,N,N',N'- Tetrakis(carboxymethyl)cyclohexane-1,2-diammonium tetrachloridocadmium(II) tetrahydrate top
Crystal data top
(C14H24N2O8)[CdCl4]·4H2OF(000) = 684
Mr = 674.63Dx = 1.711 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ycCell parameters from 4992 reflections
a = 11.3772 (14) Åθ = 3.0–25.4°
b = 8.5734 (10) ŵ = 1.30 mm1
c = 16.2189 (16) ÅT = 291 K
β = 124.119 (6)°Block, colorless
V = 1309.7 (3) Å30.68 × 0.54 × 0.28 mm
Z = 2
Data collection top
Siemens SMART CCD area-detector
diffractometer
2400 independent reflections
Radiation source: fine-focus sealed tube2319 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 25.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.472, Tmax = 0.712k = 910
12160 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0429P)2 + 0.6848P]
where P = (Fo2 + 2Fc2)/3
2400 reflections(Δ/σ)max = 0.002
166 parametersΔρmax = 0.33 e Å3
9 restraintsΔρmin = 0.59 e Å3
Crystal data top
(C14H24N2O8)[CdCl4]·4H2OV = 1309.7 (3) Å3
Mr = 674.63Z = 2
Monoclinic, P2/cMo Kα radiation
a = 11.3772 (14) ŵ = 1.30 mm1
b = 8.5734 (10) ÅT = 291 K
c = 16.2189 (16) Å0.68 × 0.54 × 0.28 mm
β = 124.119 (6)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2400 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2319 reflections with I > 2σ(I)
Tmin = 0.472, Tmax = 0.712Rint = 0.021
12160 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0259 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.33 e Å3
2400 reflectionsΔρmin = 0.59 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.00000.53761 (3)0.25000.03615 (11)
Cl10.02889 (8)0.72055 (7)0.37802 (5)0.04979 (18)
Cl20.21701 (5)0.38349 (7)0.32009 (4)0.03949 (15)
O10.4348 (2)0.2419 (2)0.94146 (13)0.0498 (5)
H1C0.36710.16500.90990.075*
O1W0.2453 (3)0.0262 (3)0.8865 (2)0.0679 (6)
O20.40158 (16)0.24536 (18)0.79129 (11)0.0359 (4)
O2W0.0832 (3)0.9342 (3)0.8284 (2)0.0894 (9)
O30.75562 (17)0.18174 (18)0.96741 (12)0.0415 (4)
O40.96749 (15)0.3009 (2)1.05918 (12)0.0402 (4)
H4C0.99160.23071.10100.060*
N10.62609 (17)0.44661 (18)0.85909 (12)0.0222 (3)
H1B0.60070.36090.81940.027*
C10.5801 (2)0.5898 (2)0.79036 (14)0.0247 (4)
H1A0.62970.58540.75680.030*
C20.6258 (3)0.7396 (2)0.85186 (17)0.0363 (5)
H2A0.58480.74200.89050.044*
H2B0.72830.74020.89800.044*
C30.5796 (3)0.8841 (3)0.78646 (19)0.0443 (6)
H3A0.60880.97690.82770.053*
H3B0.62480.88560.75050.053*
C40.5549 (2)0.4321 (2)0.91397 (15)0.0270 (4)
H4A0.62610.41840.98460.032*
H4B0.50220.52670.90520.032*
C50.4558 (2)0.2950 (3)0.87470 (16)0.0301 (4)
C60.7845 (2)0.4427 (2)0.92917 (16)0.0306 (5)
H6A0.81570.52960.97520.037*
H6B0.82700.45390.89170.037*
C70.8335 (2)0.2919 (3)0.98686 (15)0.0306 (5)
H2WA0.126 (7)0.924 (6)0.7667 (17)0.18 (3)*
H2WB0.090 (5)1.020 (3)0.848 (3)0.106 (18)*
H1WA0.271 (5)0.061 (4)0.915 (4)0.15 (2)*
H1WB0.189 (5)0.069 (4)0.899 (6)0.29 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03114 (15)0.04045 (17)0.03324 (15)0.0000.01584 (12)0.000
Cl10.0697 (4)0.0412 (3)0.0407 (3)0.0038 (3)0.0323 (3)0.0005 (3)
Cl20.0280 (3)0.0544 (4)0.0334 (3)0.0020 (2)0.0156 (2)0.0005 (2)
O10.0634 (11)0.0554 (11)0.0410 (10)0.0215 (9)0.0357 (9)0.0021 (8)
O1W0.0683 (14)0.0591 (14)0.0808 (16)0.0126 (11)0.0445 (14)0.0116 (12)
O20.0398 (8)0.0370 (8)0.0317 (8)0.0104 (7)0.0205 (7)0.0036 (7)
O2W0.0851 (18)0.0461 (13)0.0653 (16)0.0025 (13)0.0017 (14)0.0128 (12)
O30.0376 (9)0.0303 (8)0.0397 (9)0.0023 (7)0.0113 (7)0.0016 (7)
O40.0262 (8)0.0442 (9)0.0355 (9)0.0021 (7)0.0083 (7)0.0114 (7)
N10.0222 (8)0.0239 (8)0.0187 (8)0.0013 (6)0.0103 (7)0.0016 (6)
C10.0271 (10)0.0240 (9)0.0206 (9)0.0011 (8)0.0120 (9)0.0022 (8)
C20.0394 (12)0.0262 (11)0.0295 (11)0.0050 (9)0.0109 (10)0.0033 (9)
C30.0488 (14)0.0257 (11)0.0440 (13)0.0060 (10)0.0174 (12)0.0003 (10)
C40.0297 (10)0.0328 (10)0.0213 (10)0.0010 (9)0.0161 (9)0.0015 (8)
C50.0303 (11)0.0328 (11)0.0300 (11)0.0018 (9)0.0185 (9)0.0054 (9)
C60.0207 (10)0.0348 (11)0.0297 (11)0.0005 (8)0.0101 (9)0.0033 (9)
C70.0288 (11)0.0341 (11)0.0241 (10)0.0006 (9)0.0119 (9)0.0013 (9)
Geometric parameters (Å, º) top
Cd1—Cl2i2.4465 (6)N1—H1B0.9105
Cd1—Cl22.4465 (6)C1—C21.527 (3)
Cd1—Cl12.4725 (7)C1—C1ii1.536 (4)
Cd1—Cl1i2.4725 (7)C1—H1A0.9800
O1—C51.314 (3)C2—C31.520 (3)
O1—H1C0.9209C2—H2A0.9700
O1W—H1WA0.84 (4)C2—H2B0.9700
O1W—H1WB0.86 (7)C3—C3ii1.508 (5)
O2—C51.207 (3)C3—H3A0.9700
O2W—H2WA0.84 (3)C3—H3B0.9700
O2W—H2WB0.82 (3)C4—C51.501 (3)
O3—C71.209 (3)C4—H4A0.9700
O4—C71.304 (3)C4—H4B0.9700
O4—H4C0.8305C6—C71.508 (3)
N1—C61.497 (3)C6—H6A0.9700
N1—C41.508 (2)C6—H6B0.9700
N1—C11.539 (2)
Cl2i—Cd1—Cl2114.62 (3)C1—C2—H2B109.2
Cl2i—Cd1—Cl1110.91 (2)H2A—C2—H2B107.9
Cl2—Cd1—Cl1109.16 (2)C3ii—C3—C2109.91 (19)
Cl2i—Cd1—Cl1i109.16 (2)C3ii—C3—H3A109.7
Cl2—Cd1—Cl1i110.91 (2)C2—C3—H3A109.7
Cl1—Cd1—Cl1i101.26 (3)C3ii—C3—H3B109.7
C5—O1—H1C105.8C2—C3—H3B109.7
H1WA—O1W—H1WB110 (3)H3A—C3—H3B108.2
H2WA—O2W—H2WB116 (3)C5—C4—N1109.79 (16)
C7—O4—H4C112.1C5—C4—H4A109.7
C6—N1—C4111.50 (15)N1—C4—H4A109.7
C6—N1—C1110.05 (15)C5—C4—H4B109.7
C4—N1—C1114.62 (15)N1—C4—H4B109.7
C6—N1—H1B106.8H4A—C4—H4B108.2
C4—N1—H1B106.7O2—C5—O1125.9 (2)
C1—N1—H1B106.7O2—C5—C4122.82 (18)
C2—C1—C1ii111.29 (14)O1—C5—C4111.22 (18)
C2—C1—N1110.17 (15)N1—C6—C7111.04 (17)
C1ii—C1—N1112.08 (13)N1—C6—H6A109.4
C2—C1—H1A107.7C7—C6—H6A109.4
C1ii—C1—H1A107.7N1—C6—H6B109.4
N1—C1—H1A107.7C7—C6—H6B109.4
C3—C2—C1111.84 (18)H6A—C6—H6B108.0
C3—C2—H2A109.2O3—C7—O4126.6 (2)
C1—C2—H2A109.2O3—C7—C6123.08 (19)
C3—C2—H2B109.2O4—C7—C6110.27 (18)
C6—N1—C1—C261.6 (2)C1—N1—C4—C5111.04 (18)
C4—N1—C1—C265.0 (2)N1—C4—C5—O226.1 (3)
C6—N1—C1—C1ii173.88 (18)N1—C4—C5—O1155.57 (17)
C4—N1—C1—C1ii59.5 (2)C4—N1—C6—C760.0 (2)
C1ii—C1—C2—C353.8 (3)C1—N1—C6—C7171.67 (16)
N1—C1—C2—C3178.77 (19)N1—C6—C7—O310.0 (3)
C1—C2—C3—C3ii58.3 (3)N1—C6—C7—O4168.89 (18)
C6—N1—C4—C5123.10 (18)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3iii0.84 (4)2.34 (4)2.970 (3)132 (5)
N1—H1B···O20.912.272.750 (3)112
N1—H1B···O2ii0.912.042.857 (2)149
O1—H1C···O1W0.921.702.590 (4)162
O2W—H2WA···O1Wiv0.84 (3)2.24 (3)2.993 (4)151 (5)
O2W—H2WB···Cl1v0.82 (3)2.51 (4)3.144 (3)136 (4)
O1W—H1WB···Cl1vi0.86 (7)2.45 (3)3.227 (3)152 (6)
O4—H4C···O2Wvii0.831.752.535 (3)157
C1—H1A···Cl2viii0.982.673.637 (3)171
C4—H4A···Cl2ii0.972.643.600 (2)170
C4—H4B···Cl2vi0.972.833.610 (3)138
C6—H6A···Cl1ii0.972.603.537 (2)163
Symmetry codes: (ii) x+1, y, z+3/2; (iii) x+1, y, z+2; (iv) x, y+1, z+3/2; (v) x, y+2, z+1/2; (vi) x, y+1, z+1/2; (vii) x+1, y+1, z+2; (viii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C14H24N2O8)[CdCl4]·4H2O
Mr674.63
Crystal system, space groupMonoclinic, P2/c
Temperature (K)291
a, b, c (Å)11.3772 (14), 8.5734 (10), 16.2189 (16)
β (°) 124.119 (6)
V3)1309.7 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.30
Crystal size (mm)0.68 × 0.54 × 0.28
Data collection
DiffractometerSiemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.472, 0.712
No. of measured, independent and
observed [I > 2σ(I)] reflections
12160, 2400, 2319
Rint0.021
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.069, 1.01
No. of reflections2400
No. of parameters166
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.59

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O3i0.84 (4)2.34 (4)2.970 (3)132 (5)
N1—H1B···O20.912.272.750 (3)112.3
N1—H1B···O2ii0.912.042.857 (2)149.0
O1—H1C···O1W0.921.702.590 (4)161.5
O2W—H2WA···O1Wiii0.84 (3)2.24 (3)2.993 (4)151 (5)
O2W—H2WB···Cl1iv0.82 (3)2.51 (4)3.144 (3)136 (4)
O1W—H1WB···Cl1v0.86 (7)2.45 (3)3.227 (3)152 (6)
O4—H4C···O2Wvi0.831.752.535 (3)157.4
C1—H1A···Cl2vii0.982.673.637 (3)170.9
C4—H4A···Cl2ii0.972.643.600 (2)170.2
C4—H4B···Cl2v0.972.833.610 (3)138.1
C6—H6A···Cl1ii0.972.603.537 (2)163.0
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y, z+3/2; (iii) x, y+1, z+3/2; (iv) x, y+2, z+1/2; (v) x, y+1, z+1/2; (vi) x+1, y+1, z+2; (vii) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by Jiangxi Provincial Educational Foundation (No. 20060237), the Natural Science Foundation of Fujian Province (No. 2008 J0172) and the Key Laboratory of Jiangxi University for Functional Materials Chemistry.

References

First citationBen Amor, F. & Jouini, T. (1999). Acta Cryst. C55, 499–501.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSeibig, S. & Van Eldik, R. (1998). Inorg. Chim. Acta, 279, 37–43.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Q. M., Wu, X. T., Lin, P., Zhang, W. J., Sheng, T. L., Yu, H., Chen, L. & Li, J. M. (1999). Polyhedron, 18, 1411–1417.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, L., Yang, M., Li, G. H., Shi, Z. & Feng, S. H. (2006). Inorg. Chem. 45, 2474–2478.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZang, S. Q., Su, Y., Li, Y. Z., Ni, Z. P. & Meng, Q. J. (2006). Inorg. Chem. 45, 174–180.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m32-m33
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds