organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o164-o165

(2R,3R)-2-[(4-Chloro­phen­yl)hy­droxy­meth­yl]cyclo­penta­none

aCollege of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, Henan 453003, People's Republic of China
*Correspondence e-mail: lyhxxjbm@126.com

(Received 4 December 2008; accepted 15 December 2008; online 20 December 2008)

The title compound, C12H13ClO2, was prepared by the direct asymmetric inter­molecular aldol reaction of cyclo­penta­none and 4-chloro­benzaldehyde catalysed by L-tryptophan in water. The absolute mol­ecular structure was determined to be a racemic twin with 91% (2R,3R) isomer and 9% of the (2S,3S) form. In the crystal structure, the mol­ecules are connected into a one-dimensional chain along the a axis through the formation of inter­molecular O—H⋯O hydrogen bonds. Further, non-conventional C—H⋯O and C—H⋯π contacts are observed in the structure, which consolidate the crystal packing.

Related literature

For the structure of 2-[hydr­oxy(4-nitro­phen­yl)meth­yl]-4-methyl­cyclo­hexa­none, see: Li (2007[Li, Y.-P. (2007). Acta Cryst. E63, o3834.]). For a structure with C—H⋯O hydrogen bonds, see: Nangia (2002[Nangia, A. (2002). CrystEngComm, 4, 93-101.]). For a database study of C—H⋯π inter­actions in the conformation of peptides, see: Umezawa et al. (1999[Umezawa, Y., Tsuboyama, S., Takahashi, H., Uzawa, J. & Nishio, M. (1999). Bioorg. Med. Chem. 7, 2021-2026.]). For direct inter­molecular aldol reactions catalysed by acyclic amino acids, see: Córdova et al. (2006[Córdova, A., Zou, W. B., Dziedzic, P., Ibrahem, I., Reyes, E. & Xu, Y. M. (2006). Chem. Eur. J. 12, 5383-5397.]); Deng & Cai (2007[Deng, D. S. & Cai, J. W. (2007). Helv. Chim. Acta, 90, 114-120.]). For asymmetric direct aldol reaction assisted by water and a proline-derived tetra­zole catalyst, see: Torii et al. (2004[Torii, H., Nakadai, M., Ishihara, K., Saito, S. & Yamamoto, H. (2004). Angew. Chem. Int. Ed. 43, 1983-1986.]). For the development of direct catalytic asymmetric aldol, Mannich, Michael and Diels–Alder reactions, see: Notz et al. (2004[Notz, W., Tanaka, F. & Barbas, C. F. III (2004). Acc. Chem. Res. 37, 580-591.]).

[Scheme 1]

Experimental

Crystal data
  • C12H13ClO2

  • Mr = 224.67

  • Orthorhombic, P 21 21 21

  • a = 5.7401 (1) Å

  • b = 10.4549 (2) Å

  • c = 18.2135 (3) Å

  • V = 1093.03 (3) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.90 mm−1

  • T = 150 (2) K

  • 0.43 × 0.31 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.336, Tmax = 0.484

  • 3762 measured reflections

  • 1936 independent reflections

  • 1865 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.168

  • S = 1.14

  • 1936 reflections

  • 146 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.52 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 572 Friedel pairs

  • Flack parameter: 0.09 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.92 (7) 1.89 (7) 2.793 (4) 165 (7)
C10—H10A⋯O2ii 0.99 2.53 3.328 (5) 138
C5—H5ACg2iii 0.95 2.96 3.818 (4) 150
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (iii) [-x, y+{\script{3\over 2}}, -z+{\script{1\over 2}}]. Cg2 is the centroid of the C1–C5,C12 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The direct asymmetric aldol reaction is one of the most important C—C bond-forming reactions (Notz et al., 2004.). It is not surprising that a large number of catalysts and methods have been developed to achieve efficient adducts with high diastereo- and enantioselectivities (Córdova et al. 2006; Torii et al. 2004.). Our primary results demonstrating that acyclic amino acids could catalyze the direct stereoseletive aldol reaction in water micelles (Deng & Cai, 2007). In this contribution, as an extension to our previous studies, we report the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1.), the bond lengths and angles are within ranges as reported by Li (2007). The structural analysis reveals that the absolute molecular structure was a (2R, 3R)- isomer. The most striking feature of the title compound is the interesting arrangement of the title molecules, which connect each other to form a one-dimension chain along the a axis by intermolecular O—H···O hydrogen bonds (Fig. 2). Furthermore, the weak non-conventional intermolecular C—H···π contact is observed, in which C5—H5A is donor and the chlorophenyl ring Cg2 (C1, C2, C3, C4, C12, C5) is π acceptor (Umezawa et al., 1999). This contact, with additional intermolecular C—H···O interactions (Nangia et al. 2002), further consolidate the crystal packing. Details of hydrogen bonds are given in Table 1.

Related literature top

For the structure of 2-[hydroxy(4-nitrophenyl)methyl]-4-methylcyclohexanone, see: Li (2007). For a structure with C—H···O hydrogen bonds, see: Nangia (2002). For a database study of C—H···π interactions in the conformation of peptides, see: Umezawa et al. (1999). For direct intermolecular aldol reactions catalysed by acyclic amino acids, see: Córdova et al. (2006); Deng & Cai (2007). For asymmetric direct aldol reaction assisted by water and a proline-derived tetrazole catalyst, see: Torii et al. (2004). For the development of direct catalytic asymmetric aldol, Mannich, Michael and Diels–Alder reactions, see: Notz et al. (2004). Cg2 is the centroid of the C1–C5,C12 ring.

Experimental top

4-chlorobenzaldehyde (71 mm g, 0.5 mmol) and cyclopentanone (0.5 ml) was added to a solution of L-tryptophan (30.6 mg, 0.15 mmol) and pure water (0.5 ml) at room temperature. The mixture was stirred, monitored by TLC. The mixture was quenched with a saturated aqueous NaHCO3 solution and extracted by ethyl acetate (3× ml). The resulting solvent was removed in vacuo to yield the crude product. Purification by silica gel chromatography using 100 ~200 mesh ZCX II eluted by hexane-ethyl acetate (3:1, v/v) gave the yellow solid (70 mg, yield 63%). The crystalline compound was obtained through the slow volatilization of ethyl acetate containing the title compound.

Refinement top

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.95 Å (aromatic CH), 0.99 Å (methylene CH2), or 0.92 Å (hydroxy), and with Uĩso~(H) = 1.2Ueq(C) or 1.5Ueq(methylene C). Moreover, the Flack parameter was refined as 0.09 (3) and indicates a possible racemic twin of about 10%. This may be because the number of measured Friedel pairs is relatively low. 572 Friedel pairs were measured, which is a fraction of measured Friedel pairs of 0.419, as indicated in the check.cif of PLATON (Spek, 2003).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. View of the title molecular structure with atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms.
[Figure 2] Fig. 2. View of the one-dimension chain along the a axis by intermolecular O—H···O hydrogen bonds.
(2R,3R)-2-[(4-Chlorophenyl)hydroxymethyl]cyclopentanone top
Crystal data top
C12H13ClO2F(000) = 472
Mr = 224.67Dx = 1.365 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 2189 reflections
a = 5.7401 (1) Åθ = 4.9–76.7°
b = 10.4549 (2) ŵ = 2.90 mm1
c = 18.2135 (3) ÅT = 150 K
V = 1093.03 (3) Å3Block, colorless
Z = 40.43 × 0.31 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
1936 independent reflections
Radiation source: fine-focus sealed tube1865 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 76.7°, θmin = 4.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 75
Tmin = 0.336, Tmax = 0.484k = 912
3762 measured reflectionsl = 2217
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.168 w = 1/[σ2(Fo2) + (0.0962P)2 + 1.0311P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
1936 reflectionsΔρmax = 0.34 e Å3
146 parametersΔρmin = 0.52 e Å3
0 restraintsAbsolute structure: Flack (1983), 572 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (3)
Crystal data top
C12H13ClO2V = 1093.03 (3) Å3
Mr = 224.67Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.7401 (1) ŵ = 2.90 mm1
b = 10.4549 (2) ÅT = 150 K
c = 18.2135 (3) Å0.43 × 0.31 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
1936 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1865 reflections with I > 2σ(I)
Tmin = 0.336, Tmax = 0.484Rint = 0.040
3762 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.168Δρmax = 0.34 e Å3
S = 1.14Δρmin = 0.52 e Å3
1936 reflectionsAbsolute structure: Flack (1983), 572 Friedel pairs
146 parametersAbsolute structure parameter: 0.09 (3)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0477 (5)0.4383 (3)0.06246 (17)0.0418 (7)
O20.5454 (4)0.3133 (2)0.01098 (14)0.0355 (6)
C30.0344 (7)0.7839 (4)0.1635 (2)0.0361 (8)
H3A0.16150.79510.19620.043*
C110.5311 (6)0.3306 (3)0.0549 (2)0.0303 (7)
C20.0105 (6)0.6644 (3)0.1340 (2)0.0324 (7)
H2A0.08580.59400.14690.039*
C60.2476 (6)0.5168 (3)0.05323 (19)0.0291 (7)
H6A0.283 (8)0.528 (4)0.005 (2)0.035*
C100.5749 (7)0.2346 (3)0.1141 (2)0.0388 (8)
H10A0.71740.18450.10360.047*
H10B0.44150.17510.11880.047*
C120.2900 (8)0.8713 (4)0.0969 (2)0.0423 (9)
H12A0.38510.94200.08370.051*
C50.3327 (7)0.7509 (3)0.0683 (2)0.0373 (8)
H5A0.46010.73970.03560.045*
C10.1955 (6)0.6465 (3)0.08574 (18)0.0288 (7)
C70.4634 (6)0.4583 (4)0.08953 (19)0.0322 (7)
H7A0.595 (8)0.518 (5)0.075 (2)0.039*
C40.1048 (6)0.8865 (3)0.1455 (2)0.0330 (7)
C90.6046 (7)0.3132 (4)0.1835 (2)0.0443 (9)
H9A0.76830.34110.18940.053*
H9B0.55730.26370.22730.053*
C80.4435 (8)0.4280 (4)0.1717 (2)0.0415 (9)
H8A0.49460.50190.20170.050*
H8B0.28100.40630.18500.050*
Cl10.05251 (19)1.03468 (8)0.18560 (5)0.0445 (3)
H10.075 (14)0.358 (6)0.044 (4)0.08 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0210 (11)0.0328 (14)0.0716 (18)0.0039 (11)0.0011 (12)0.0157 (13)
O20.0268 (11)0.0352 (13)0.0444 (13)0.0035 (11)0.0001 (11)0.0124 (10)
C30.0272 (15)0.042 (2)0.0396 (17)0.0004 (16)0.0043 (14)0.0058 (15)
C110.0170 (13)0.0257 (16)0.0481 (18)0.0006 (13)0.0004 (13)0.0017 (13)
C20.0253 (15)0.0308 (17)0.0410 (17)0.0021 (13)0.0015 (13)0.0030 (14)
C60.0192 (13)0.0277 (17)0.0403 (17)0.0022 (13)0.0007 (12)0.0057 (14)
C100.0382 (19)0.0217 (16)0.056 (2)0.0033 (15)0.0023 (17)0.0028 (15)
C120.042 (2)0.035 (2)0.050 (2)0.0024 (17)0.0116 (18)0.0000 (17)
C50.0322 (17)0.0246 (17)0.055 (2)0.0013 (14)0.0142 (17)0.0003 (16)
C10.0244 (14)0.0285 (17)0.0334 (16)0.0043 (13)0.0034 (13)0.0020 (13)
C70.0235 (14)0.0342 (18)0.0388 (16)0.0018 (16)0.0015 (13)0.0035 (14)
C40.0350 (17)0.0255 (16)0.0384 (16)0.0065 (14)0.0005 (14)0.0027 (13)
C90.0403 (19)0.046 (2)0.047 (2)0.0113 (18)0.0042 (17)0.0053 (18)
C80.0411 (19)0.044 (2)0.0390 (17)0.0109 (18)0.0030 (16)0.0057 (15)
Cl10.0542 (6)0.0270 (4)0.0522 (5)0.0076 (4)0.0046 (4)0.0052 (3)
Geometric parameters (Å, º) top
O1—C61.420 (4)C10—H10B0.9900
O1—H10.92 (7)C12—C51.384 (6)
O2—C111.216 (4)C12—C41.392 (5)
C3—C41.378 (5)C12—H12A0.9500
C3—C21.384 (5)C5—C11.383 (5)
C3—H3A0.9500C5—H5A0.9500
C11—C101.494 (5)C7—C81.534 (5)
C11—C71.528 (5)C7—H7A1.01 (5)
C2—C11.392 (5)C4—Cl11.739 (4)
C2—H2A0.9500C9—C81.530 (5)
C6—C11.510 (5)C9—H9A0.9900
C6—C71.531 (5)C9—H9B0.9900
C6—H6A1.08 (4)C8—H8A0.9900
C10—C91.517 (6)C8—H8B0.9900
C10—H10A0.9900
C6—O1—H1111 (5)C1—C5—H5A119.0
C4—C3—C2120.2 (3)C12—C5—H5A119.0
C4—C3—H3A119.9C5—C1—C2118.3 (3)
C2—C3—H3A119.9C5—C1—C6120.4 (3)
O2—C11—C10126.9 (3)C2—C1—C6121.3 (3)
O2—C11—C7123.7 (3)C11—C7—C6112.1 (3)
C10—C11—C7109.3 (3)C11—C7—C8104.0 (3)
C3—C2—C1120.5 (3)C6—C7—C8116.3 (3)
C3—C2—H2A119.7C11—C7—H7A104 (3)
C1—C2—H2A119.7C6—C7—H7A104 (3)
O1—C6—C1108.2 (3)C8—C7—H7A115 (2)
O1—C6—C7111.8 (3)C3—C4—C12120.3 (3)
C1—C6—C7110.4 (3)C3—C4—Cl1119.6 (3)
O1—C6—H6A109 (2)C12—C4—Cl1120.1 (3)
C1—C6—H6A109 (2)C10—C9—C8103.9 (3)
C7—C6—H6A108 (2)C10—C9—H9A111.0
C11—C10—C9104.9 (3)C8—C9—H9A111.0
C11—C10—H10A110.8C10—C9—H9B111.0
C9—C10—H10A110.8C8—C9—H9B111.0
C11—C10—H10B110.8H9A—C9—H9B109.0
C9—C10—H10B110.8C9—C8—C7104.7 (3)
H10A—C10—H10B108.8C9—C8—H8A110.8
C5—C12—C4118.6 (4)C7—C8—H8A110.8
C5—C12—H12A120.7C9—C8—H8B110.8
C4—C12—H12A120.7C7—C8—H8B110.8
C1—C5—C12122.0 (3)H8A—C8—H8B108.9
C4—C3—C2—C10.3 (5)O2—C11—C7—C8173.9 (4)
O2—C11—C10—C9163.5 (4)C10—C11—C7—C86.1 (4)
C7—C11—C10—C916.5 (4)O1—C6—C7—C1163.0 (4)
C4—C12—C5—C10.8 (7)C1—C6—C7—C11176.4 (3)
C12—C5—C1—C20.4 (6)O1—C6—C7—C856.5 (4)
C12—C5—C1—C6179.9 (4)C1—C6—C7—C864.1 (4)
C3—C2—C1—C50.1 (5)C2—C3—C4—C120.7 (6)
C3—C2—C1—C6179.8 (3)C2—C3—C4—Cl1177.7 (3)
O1—C6—C1—C5163.3 (3)C5—C12—C4—C31.0 (6)
C7—C6—C1—C574.0 (4)C5—C12—C4—Cl1177.4 (3)
O1—C6—C1—C217.0 (4)C11—C10—C9—C832.5 (4)
C7—C6—C1—C2105.7 (4)C10—C9—C8—C736.6 (4)
O2—C11—C7—C647.5 (4)C11—C7—C8—C926.1 (4)
C10—C11—C7—C6132.5 (3)C6—C7—C8—C9149.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.92 (7)1.89 (7)2.793 (4)165 (7)
C10—H10A···O2ii0.992.533.328 (5)138
C5—H5A···Cg2iii0.952.963.818 (4)150
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H13ClO2
Mr224.67
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)5.7401 (1), 10.4549 (2), 18.2135 (3)
V3)1093.03 (3)
Z4
Radiation typeCu Kα
µ (mm1)2.90
Crystal size (mm)0.43 × 0.31 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.336, 0.484
No. of measured, independent and
observed [I > 2σ(I)] reflections
3762, 1936, 1865
Rint0.040
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.168, 1.14
No. of reflections1936
No. of parameters146
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.52
Absolute structureFlack (1983), 572 Friedel pairs
Absolute structure parameter0.09 (3)

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.92 (7)1.89 (7)2.793 (4)165 (7)
C10—H10A···O2ii0.992.533.328 (5)138
C5—H5A···Cg2iii0.952.963.818 (4)150
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z; (iii) x, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by the Doctoral Foundation and Cultivatable Foundation (2008-PYJJ-011) of Luoyang Normal University.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCórdova, A., Zou, W. B., Dziedzic, P., Ibrahem, I., Reyes, E. & Xu, Y. M. (2006). Chem. Eur. J. 12, 5383–5397.  PubMed Google Scholar
First citationDeng, D. S. & Cai, J. W. (2007). Helv. Chim. Acta, 90, 114–120.  Web of Science CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLi, Y.-P. (2007). Acta Cryst. E63, o3834.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNangia, A. (2002). CrystEngComm, 4, 93–101.  Web of Science CrossRef CAS Google Scholar
First citationNotz, W., Tanaka, F. & Barbas, C. F. III (2004). Acc. Chem. Res. 37, 580–591.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorii, H., Nakadai, M., Ishihara, K., Saito, S. & Yamamoto, H. (2004). Angew. Chem. Int. Ed. 43, 1983–1986.  Web of Science CSD CrossRef CAS Google Scholar
First citationUmezawa, Y., Tsuboyama, S., Takahashi, H., Uzawa, J. & Nishio, M. (1999). Bioorg. Med. Chem. 7, 2021–2026.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o164-o165
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds