organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,2,3,4-Tetra­hydro-1,4-methano­naphthalene-2,3-diol

aCollege of Science, Nanjing University of Technology, Xinmofan Road No. 5, Nanjing 210009, People's Republic of China
*Correspondence e-mail: yaocheng@njut.edu.cn

(Received 23 November 2008; accepted 5 December 2008; online 10 December 2008)

The title compound, C11H12O2, is an inter­mediate in the synthesis of Varenicline, a nicotinic receptor partial agonist used to treat smoking addiction. In the crystal structure, there is an intra­molecular O—H⋯O hydrogen bond that generates an S(5) ring motif. Inter­molecular O—H⋯O hydrogen bonds form centrosymmetric dimers and also link these dimers into chains along the a axis.

Related literature

For background to the use of Varenicline to treat smoking addiction, see: Vetelino, (2004[Vetelino, M. G. (2004). Synthesis, 11, 1755-1758.]); Coe (2005[Coe, J. W. (2005). J. Med. Chem. 48, 3474-3477.]). For details of graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C11H12O2

  • Mr = 176.21

  • Orthorhombic, P b c a

  • a = 10.240 (2) Å

  • b = 6.2370 (12) Å

  • c = 27.503 (6) Å

  • V = 1756.5 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.973, Tmax = 0.991

  • 1581 measured reflections

  • 1581 independent reflections

  • 1045 reflections with I > 2σ(I)

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.168

  • S = 1.03

  • 1581 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2 0.85 2.16 2.578 (3) 110
O1—H1A⋯O2i 0.85 2.34 2.818 (3) 116
O2—H2A⋯O1ii 0.82 1.90 2.714 (3) 176
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound, I, is an important intermediate in the synthesis of Varenicline, a nicotinic receptor partial agonist used to treat smoking addiction (Vetelino, 2004). Varenicline came onto the market in 2006 and displays high affinity for neuronal nicotinic acetylcholine receptors (nAChRs), which mediate the dependence-producing effects of nicotine (Coe, 2005).

We report here the crystal structure of the title compound, (I), Fig. 1. The saturated six-membered C4,C5,C7···C10 ring of the anthracene group carries hydroxy substituents on C8 and C9 and is bridged by the C11 methylene group. In the crystal structure an intramolecular O1—H1A···O2 hydrogen bond generates an S5 ring motif (Bernstein et al., 1995). Intermolecular O1—H1A···O2 hydrogen bonds form centrosymmetric dimers and link these dimers into chains along the a axis, Table 2, Figure 2.

Related literature top

For background to the use of Varenicline to treat smoking addiction, see: Vetelino, (2004); Coe (2005). For details of graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995).

Experimental top

1,4-Dihydro-1,4-methanonaphthalene (79.5 g, 560 mmol) in acetone (800 ml) and H2O (100 ml) was stirred with N-methyl morpholine N-oxide (67.5 g, 576 mmol). OsO4 (15 ml of a 15 mol% t-BuOH solution, 1.48 mmol,0.26mol%) was added and the mixture was stirred vigorously. After 60 h, the solution was filtered, and the white solid product rinsed with acetone and air-dried (60.9 g). The mother liquor was partially concentrated to an oily solid which was triturated with acetone, filtered and rinsed with acetone to provide additional amounts of the title compound (27.4 g, total 88.3 g, 89%). An X-ray grade crystal of I was grown from acetone (10 ml) at room temperature.

Refinement top

H atoms bound to O were located in a difference Fourier map and fixed in these positions with Uiso = 1.5Ueq (O). Other H-atoms were positioned geometrically and refined using a riding model with d(C-H) = 0.93Å, Uiso = 1.2Ueq (C) for aromatic 0.98Å, Uiso = 1.2Ueq (C) for CH, 0.97Å, Uiso = 1.2Ueq (C) for CH2 groups.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level.
[Figure 2] Fig. 2. Crystal packing of (I) viewed down the c axis with hydrogen bonds drawn as dashed lines.
1,2,3,4-Tetrahydro-1,4-methanonaphthalene-2,3-diol top
Crystal data top
C11H12O2F(000) = 752
Mr = 176.21Dx = 1.333 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 10.240 (2) Åθ = 10–13°
b = 6.2370 (12) ŵ = 0.09 mm1
c = 27.503 (6) ÅT = 293 K
V = 1756.5 (6) Å3White, colourless
Z = 80.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1045 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.2°, θmin = 1.5°
ω/2θ scansh = 012
Absorption correction: ψ scan
(North et al., 1968)
k = 07
Tmin = 0.973, Tmax = 0.991l = 032
1581 measured reflections3 standard reflections every 200 reflections
1581 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.06P)2 + 3P]
where P = (Fo2 + 2Fc2)/3
1581 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C11H12O2V = 1756.5 (6) Å3
Mr = 176.21Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.240 (2) ŵ = 0.09 mm1
b = 6.2370 (12) ÅT = 293 K
c = 27.503 (6) Å0.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1045 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.973, Tmax = 0.9913 standard reflections every 200 reflections
1581 measured reflections intensity decay: none
1581 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
1581 reflectionsΔρmin = 0.27 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65327 (18)0.2295 (4)0.51706 (7)0.0289 (5)
H1A0.60830.17980.49360.035*
C10.5544 (4)0.5675 (6)0.71478 (12)0.0417 (9)
H1B0.59500.64680.73910.050*
O20.40283 (18)0.1947 (3)0.51141 (7)0.0287 (6)
H2A0.32700.22140.50400.043*
C20.4181 (4)0.5663 (6)0.71136 (12)0.0392 (9)
H2B0.36860.64630.73320.047*
C30.3563 (3)0.4465 (5)0.67558 (11)0.0333 (8)
H3A0.26570.44560.67330.040*
C40.4303 (3)0.3299 (5)0.64387 (10)0.0235 (7)
C50.5676 (3)0.3324 (5)0.64679 (10)0.0258 (7)
C60.6296 (3)0.4508 (6)0.68204 (11)0.0359 (8)
H6A0.72030.45290.68400.043*
C70.3981 (3)0.1886 (5)0.60039 (10)0.0260 (7)
H7A0.30960.12860.60030.031*
C80.4366 (2)0.3095 (5)0.55428 (10)0.0202 (6)
H8A0.39910.45400.55400.024*
C90.5897 (2)0.3180 (5)0.55809 (10)0.0214 (7)
H9A0.61740.46730.56210.026*
C100.6168 (3)0.1942 (5)0.60542 (10)0.0281 (8)
H10A0.70590.13950.60910.034*
C110.5087 (3)0.0226 (5)0.60427 (11)0.0313 (8)
H11A0.51420.07060.57610.038*
H11B0.50460.06170.63390.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0170 (9)0.0410 (13)0.0288 (11)0.0049 (10)0.0050 (9)0.0077 (10)
C10.062 (2)0.034 (2)0.0297 (18)0.0094 (19)0.0103 (17)0.0012 (16)
O20.0185 (10)0.0364 (13)0.0311 (12)0.0070 (10)0.0050 (9)0.0120 (10)
C20.056 (2)0.034 (2)0.0277 (18)0.0070 (18)0.0077 (16)0.0010 (15)
C30.0305 (17)0.0378 (19)0.0315 (17)0.0057 (16)0.0044 (14)0.0014 (15)
C40.0233 (15)0.0265 (17)0.0206 (15)0.0022 (13)0.0038 (12)0.0031 (13)
C50.0254 (15)0.0266 (17)0.0255 (16)0.0016 (13)0.0039 (12)0.0037 (13)
C60.0338 (18)0.041 (2)0.0324 (18)0.0073 (17)0.0066 (15)0.0035 (16)
C70.0203 (14)0.0264 (17)0.0315 (17)0.0076 (13)0.0012 (12)0.0020 (14)
C80.0156 (14)0.0181 (15)0.0270 (15)0.0034 (12)0.0020 (12)0.0022 (13)
C90.0146 (13)0.0233 (15)0.0263 (15)0.0023 (12)0.0022 (12)0.0024 (13)
C100.0200 (15)0.0345 (19)0.0297 (16)0.0114 (14)0.0018 (12)0.0050 (15)
C110.0453 (19)0.0222 (16)0.0265 (16)0.0034 (15)0.0021 (14)0.0030 (14)
Geometric parameters (Å, º) top
O1—C91.415 (3)C5—C101.513 (4)
O1—H1A0.8501C6—H6A0.9300
C1—C61.390 (5)C7—C81.527 (4)
C1—C21.399 (5)C7—C111.538 (4)
C1—H1B0.9300C7—H7A0.9800
O2—C81.422 (3)C8—C91.572 (4)
O2—H2A0.8200C8—H8A0.9800
C2—C31.388 (5)C9—C101.539 (4)
C2—H2B0.9300C9—H9A0.9800
C3—C41.365 (4)C10—C111.540 (4)
C3—H3A0.9300C10—H10A0.9800
C4—C51.408 (4)C11—H11A0.9700
C4—C71.522 (4)C11—H11B0.9700
C5—C61.374 (4)
C9—O1—H1A119.8C11—C7—H7A115.1
C6—C1—C2120.4 (3)O2—C8—C7112.1 (2)
C6—C1—H1B119.8O2—C8—C9108.3 (2)
C2—C1—H1B119.8C7—C8—C9102.6 (2)
C8—O2—H2A109.5O2—C8—H8A111.1
C3—C2—C1120.3 (3)C7—C8—H8A111.1
C3—C2—H2B119.8C9—C8—H8A111.1
C1—C2—H2B119.8O1—C9—C10113.4 (2)
C4—C3—C2119.1 (3)O1—C9—C8113.1 (2)
C4—C3—H3A120.4C10—C9—C8102.6 (2)
C2—C3—H3A120.4O1—C9—H9A109.2
C3—C4—C5120.8 (3)C10—C9—H9A109.2
C3—C4—C7133.6 (3)C8—C9—H9A109.2
C5—C4—C7105.5 (2)C5—C10—C9106.9 (2)
C6—C5—C4120.5 (3)C5—C10—C1199.9 (2)
C6—C5—C10133.1 (3)C9—C10—C11101.7 (2)
C4—C5—C10106.4 (3)C5—C10—H10A115.5
C5—C6—C1118.9 (3)C9—C10—H10A115.5
C5—C6—H6A120.6C11—C10—H10A115.5
C1—C6—H6A120.6C7—C11—C1093.6 (2)
C4—C7—C8108.1 (2)C7—C11—H11A113.0
C4—C7—C11100.1 (2)C10—C11—H11A113.0
C8—C7—C11101.5 (2)C7—C11—H11B113.0
C4—C7—H7A115.1C10—C11—H11B113.0
C8—C7—H7A115.1H11A—C11—H11B110.4
C6—C1—C2—C30.8 (5)C11—C7—C8—C937.4 (3)
C1—C2—C3—C40.0 (5)O2—C8—C9—O15.3 (3)
C2—C3—C4—C50.7 (5)C7—C8—C9—O1124.1 (2)
C2—C3—C4—C7178.0 (3)O2—C8—C9—C10117.2 (2)
C3—C4—C5—C60.7 (5)C7—C8—C9—C101.5 (3)
C7—C4—C5—C6178.6 (3)C6—C5—C10—C9107.6 (4)
C3—C4—C5—C10177.9 (3)C4—C5—C10—C970.6 (3)
C7—C4—C5—C100.1 (3)C6—C5—C10—C11146.8 (3)
C4—C5—C6—C10.2 (5)C4—C5—C10—C1134.9 (3)
C10—C5—C6—C1178.2 (3)O1—C9—C10—C5168.1 (2)
C2—C1—C6—C50.9 (5)C8—C9—C10—C569.6 (3)
C3—C4—C7—C8106.6 (4)O1—C9—C10—C1187.6 (3)
C5—C4—C7—C871.0 (3)C8—C9—C10—C1134.7 (3)
C3—C4—C7—C11147.6 (3)C4—C7—C11—C1053.4 (2)
C5—C4—C7—C1134.8 (3)C8—C7—C11—C1057.6 (2)
C4—C7—C8—O2176.5 (2)C5—C10—C11—C753.4 (2)
C11—C7—C8—O278.7 (3)C9—C10—C11—C756.4 (2)
C4—C7—C8—C967.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.852.162.578 (3)110
O1—H1A···O2i0.852.342.818 (3)116
O2—H2A···O1ii0.821.902.714 (3)176
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC11H12O2
Mr176.21
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)10.240 (2), 6.2370 (12), 27.503 (6)
V3)1756.5 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.973, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
1581, 1581, 1045
Rint0.000
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.168, 1.03
No. of reflections1581
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.27

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.85002.16002.578 (3)110.00
O1—H1A···O2i0.85002.34002.818 (3)116.00
O2—H2A···O1ii0.82001.90002.714 (3)176.00
Symmetry codes: (i) x+1, y, z+1; (ii) x1/2, y+1/2, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationCoe, J. W. (2005). J. Med. Chem. 48, 3474–3477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVetelino, M. G. (2004). Synthesis, 11, 1755–1758.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds