organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4-Di­acetyl­hepta­nedi­nitrile

aDepartment of Light Chemical Engineering, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: wjt@njut.edu.cn

(Received 24 November 2008; accepted 27 November 2008; online 3 December 2008)

The asymmetric unit of the title compound, C11H14N2O2, contains one half-mol­ecule as the central C atom of the mol­ecule lies on a twofold rotation axis. In the crystal structure, weak inter­molecular C—H⋯N hydrogen bonds link the mol­ecules into zigzag chains along c.

Related literature

For details of the biological activity of amino­thia­zoles, see: Kabalka & Mereddy (2006[Kabalka, G. W. & Mereddy, A. R. (2006). Tetrahedron Lett. 47, 5171-5172.]). For their use in organic synthesis, see: Kim et al. (2001[Kim, D. Y., Huh, S. C. & Kim, S. M. (2001). Tetrahedron Lett. 42, 6299-6301.]); Ranu & Banerjee (2005[Ranu, B. C. & Banerjee, S. (2005). Org. Lett. 7, 3049-3052.]); Ranu et al. (2006[Ranu, B. C., Banerjee, S. & Jana, R. (2006). Tetrahedron, 3, 776-782.]); Wang et al. (2008[Wang, G.-W., Zhuang, L.-H., Wu, W.-Y. & Wang, J.-T. (2008). Acta Cryst. E64, o856.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14N2O2

  • Mr = 206.24

  • Monoclinic, C 2/c

  • a = 12.562 (3) Å

  • b = 7.8700 (16) Å

  • c = 10.941 (2) Å

  • β = 84.91 (3)°

  • V = 1077.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.961, Tmax = 0.991

  • 1009 measured reflections

  • 974 independent reflections

  • 758 reflections with I > 2σ(I)

  • Rint = 0.024

  • 3 standard reflections every 200 reflections intensity decay: 9%

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.152

  • S = 1.00

  • 974 reflections

  • 70 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6B⋯Ni 0.97 2.66 3.533 (5) 150
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The biological activity of aminothiazoles has been well documented. They have broad applications in the treatment of allergies, hypertension, schizophrenia,inflammation, bacterial infections, and HIV (Kabalka & Mereddy, 2006). Dicarbonyl compounds represent an important class of starting materials materials used to increase the carbon number of organic compounds (Kim et al., 2001). Many dicarbonyl compounds have been synthesized by the Michael addition method using diethyl malonate as starting compound, but only a few Michael addition diadducts were synthesized under normal conditions (Ranu & Banerjee, 2005; Ranu et al., 2006). We are focusing our synthetic and structural studies on new products of Michael addition reactions from dicarbonyl compounds (Wang et al.,2008) and we report here the crystal structure of the title compound (I), Fig. 1.

All bond lengths are within normal ranges (Allen et al., 1987). The asymmetric unit contains one half-molecule, and the central C4 atom lies on a twofold rotation axis at right angles to the ac plane, which generates the other half-molecule. In the crystal structure weak, intermolecular C6—H6B···N hydrogen bonds link the molecules into zig-zag chains along the c axis, Table 1, Fig 2.

Related literature top

For details of the biological activity of aminothiazoles, see: Kabalka & Mereddy (2006). For their use in organic synthesis, see: Kim et al. (2001); Ranu & Banerjee (2005); Ranu et al. (2006); Wang et al. (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

2,4-Pentanedione (50 mmol) was dissolved in n-hexane (40 ml) and anhydrous potassium carbonate (100 mmol) and tetrabutylammonium bromide (0.5 g) added. Acrylonitrile (100 mmol) was added dropwise to this solution and the mixture refluxed for 6 h. 50 ml ethyl acetate were then added, the organic layer was filtered and the solvent removed under vacuum to yield the crude product (I). This was crystallized from ethyl acetate (15 ml). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of acetonitrile.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.96 and 0.97 Å for methyl and methylene H atoms, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x= 1.5 for methyl H and x = 1.2 for methylene H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I) showing the atom-numbering scheme and 30% displacement ellipsoids (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the a axis. Hydrogen bonds are drawn as dashed lines.
4,4-Diacetylheptanedinitrile top
Crystal data top
C11H14N2O2F(000) = 440
Mr = 206.24Dx = 1.271 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 12.562 (3) Åθ = 10–13°
b = 7.8700 (16) ŵ = 0.09 mm1
c = 10.941 (2) ÅT = 293 K
β = 84.91 (3)°Block, colourless
V = 1077.4 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
758 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.3°, θmin = 3.1°
ω/2θ scansh = 1415
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.961, Tmax = 0.991l = 013
1009 measured reflections3 standard reflections every 200 reflections
974 independent reflections intensity decay: 9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.152H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0339P)2 + 4.1549P]
where P = (Fo2 + 2Fc2)/3
974 reflections(Δ/σ)max < 0.001
70 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C11H14N2O2V = 1077.4 (4) Å3
Mr = 206.24Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.562 (3) ŵ = 0.09 mm1
b = 7.8700 (16) ÅT = 293 K
c = 10.941 (2) Å0.30 × 0.20 × 0.10 mm
β = 84.91 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
758 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.961, Tmax = 0.9913 standard reflections every 200 reflections
1009 measured reflections intensity decay: 9%
974 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.152H-atom parameters constrained
S = 1.00Δρmax = 0.27 e Å3
974 reflectionsΔρmin = 0.20 e Å3
70 parameters
Special details top

Experimental. 1H NMR (DMSO, δ, p.p.m.) 2.15 (s, 6H), 2.23 (t, 4H), 2.31(t, 4H).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O0.65270 (17)0.0258 (3)0.3475 (2)0.0523 (7)
N0.3630 (3)0.4652 (4)0.5714 (3)0.0646 (9)
C10.6246 (3)0.1760 (4)0.1653 (3)0.0495 (9)
H1A0.65300.12100.09120.074*
H1B0.56080.23680.15030.074*
H1C0.67650.25410.19200.074*
C20.5988 (2)0.0454 (4)0.2629 (3)0.0369 (7)
C30.50000.0686 (5)0.25000.0288 (8)
C40.3719 (2)0.3939 (4)0.4802 (3)0.0442 (8)
C50.3865 (3)0.3008 (4)0.3639 (3)0.0440 (8)
H5A0.40020.38020.29660.053*
H5B0.32180.23830.35110.053*
C60.4802 (2)0.1776 (4)0.3665 (2)0.0341 (7)
H6A0.46700.10290.43670.041*
H6B0.54450.24210.37770.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O0.0447 (12)0.0599 (15)0.0551 (13)0.0160 (11)0.0197 (10)0.0091 (12)
N0.072 (2)0.0551 (19)0.0633 (19)0.0016 (17)0.0109 (15)0.0178 (17)
C10.0502 (19)0.0408 (19)0.057 (2)0.0116 (15)0.0038 (15)0.0075 (16)
C20.0355 (15)0.0341 (16)0.0418 (16)0.0002 (13)0.0073 (12)0.0048 (13)
C30.0305 (18)0.0244 (19)0.0319 (19)0.0000.0057 (15)0.000
C40.0466 (17)0.0325 (16)0.0519 (19)0.0021 (14)0.0048 (14)0.0001 (15)
C50.0497 (18)0.0375 (17)0.0440 (17)0.0072 (14)0.0005 (13)0.0057 (14)
C60.0423 (15)0.0281 (15)0.0324 (14)0.0013 (12)0.0058 (11)0.0006 (12)
Geometric parameters (Å, º) top
O—C21.205 (3)C3—C61.538 (3)
N—C41.142 (4)C4—C51.466 (4)
C1—C21.497 (4)C5—C61.528 (4)
C1—H1A0.9600C5—H5A0.9700
C1—H1B0.9600C5—H5B0.9700
C1—H1C0.9600C6—H6A0.9700
C2—C31.547 (3)C6—H6B0.9700
C2—C1—H1A109.5N—C4—C5178.3 (4)
C2—C1—H1B109.5C4—C5—C6109.8 (3)
H1A—C1—H1B109.5C4—C5—H5A109.7
C2—C1—H1C109.5C6—C5—H5A109.7
H1A—C1—H1C109.5C4—C5—H5B109.7
H1B—C1—H1C109.5C6—C5—H5B109.7
O—C2—C1122.3 (3)H5A—C5—H5B108.2
O—C2—C3120.4 (3)C5—C6—C3114.0 (2)
C1—C2—C3117.2 (2)C5—C6—H6A108.8
C6—C3—C6i112.2 (3)C3—C6—H6A108.8
C6—C3—C2i109.09 (15)C5—C6—H6B108.8
C6—C3—C2108.63 (15)C3—C6—H6B108.8
C2i—C3—C2109.2 (3)H6A—C6—H6B107.6
O—C2—C3—C67.9 (4)C1—C2—C3—C2i54.4 (2)
C1—C2—C3—C6173.3 (3)C4—C5—C6—C3178.0 (2)
O—C2—C3—C6i114.6 (3)C6i—C3—C6—C557.5 (2)
C1—C2—C3—C6i64.2 (3)C2i—C3—C6—C562.9 (3)
O—C2—C3—C2i126.8 (3)C2—C3—C6—C5178.1 (2)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···Nii0.972.663.533 (5)150
Symmetry code: (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC11H14N2O2
Mr206.24
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)12.562 (3), 7.8700 (16), 10.941 (2)
β (°) 84.91 (3)
V3)1077.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.961, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
1009, 974, 758
Rint0.024
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.152, 1.00
No. of reflections974
No. of parameters70
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.20

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6B···Ni0.97002.6613.533 (5)149.6
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKabalka, G. W. & Mereddy, A. R. (2006). Tetrahedron Lett. 47, 5171–5172.  Web of Science CrossRef CAS Google Scholar
First citationKim, D. Y., Huh, S. C. & Kim, S. M. (2001). Tetrahedron Lett. 42, 6299–6301.  Web of Science CrossRef CAS Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationRanu, B. C. & Banerjee, S. (2005). Org. Lett. 7, 3049–3052.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRanu, B. C., Banerjee, S. & Jana, R. (2006). Tetrahedron, 3, 776–782.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-W., Zhuang, L.-H., Wu, W.-Y. & Wang, J.-T. (2008). Acta Cryst. E64, o856.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds