organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(2-Hydr­­oxy-3-meth­oxy­benzyl­­idene)-1,3-benzodioxole-5-carbohydrazide monohydrate

aCollege of Chemical Engineering & Materials Science, Liaodong University, Dandong 118003, People's Republic of China
*Correspondence e-mail: chunlin_du@163.com

(Received 24 November 2008; accepted 28 November 2008; online 6 December 2008)

Single crystals of the title compound, C16H14N2O5·H2O, were obtained from a condensation reaction of 1,3-benzodioxole-5-carbohydrazide and 3-methoxy­salicylaldehyde in a 95% ethanol solution. The asymmetric unit consists of a Schiff base mol­ecule, which assumes an E configuration with respect to the C=N bond, and a water mol­ecule of crystallization. The dihedral angle between the two substituted benzene rings is 12.7 (2)°. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O and O—H⋯O hydrogen bonds, forming layers parallel to the bc plane.

Related literature

For the biological properties of hydrazones, see: Bedia et al. (2006[Bedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Rollas et al. (2002[Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171-174.]); Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961-o1962.]); Qu et al. (2008[Qu, L.-Z., Yang, T., Cao, G.-B. & Wang, X.-Y. (2008). Acta Cryst. E64, o2061.]); Shan et al. (2008[Shan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.]); Yehye et al. (2008[Yehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o960.]).

[Scheme 1]

Experimental

Crystal data
  • C16H14N2O5·H2O

  • Mr = 332.31

  • Orthorhombic, P 21 21 21

  • a = 4.792 (2) Å

  • b = 12.916 (3) Å

  • c = 24.002 (6) Å

  • V = 1485.6 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 (2) K

  • 0.23 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.974, Tmax = 0.977

  • 8595 measured reflections

  • 1907 independent reflections

  • 1639 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.076

  • S = 1.05

  • 1907 reflections

  • 228 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 2.04 2.743 (2) 143
O1—H1⋯O6 0.82 2.56 3.001 (2) 115
N2—H2⋯O6i 0.899 (10) 2.075 (11) 2.962 (2) 168 (3)
O6—H6A⋯O2 0.857 (10) 1.880 (12) 2.728 (2) 170 (3)
O6—H6B⋯O1ii 0.848 (10) 2.269 (16) 3.043 (2) 152 (2)
O6—H6B⋯O3ii 0.848 (10) 2.538 (19) 3.226 (2) 139 (2)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Hydrazone compounds, derived from the condensation reactions of aldehydes with hydrazides, show interesting biological properties (Okabe et al., 1993; Bedia et al., 2006; Rollas et al., 2002). Recently, a large number of hydrazone derivatives have been reported (Shan et al., 2008; Fun et al., 2008; Qu et al., 2008; Yehye et al., 2008). We report here the structure of a new hydrazone compound, I, Fig. 1, with a Schiff base molecule, which assumes an E configuration with respect to the CN bond and a water molecule in the asymmetric unit. The dihedral angle between the two substituted benzene rings is 12.7 (2)°. All the bond lengths are within normal ranges (Allen et al., 1987).

In the crystal structure, molecules are linked through intermolecular N—H···O and O—H···O hydrogen bonds (Table 1), forming layers parallel to the bc direction (Fig. 2).

Related literature top

For the biological properties of hydrazones, see: Bedia et al. (2006); Rollas et al. (2002); Okabe et al. (1993). For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2008); Qu et al. (2008); Shan et al. (2008); Yehye et al. (2008).

Experimental top

The title compound was prepared by Schiff base condensation reaction of 1,3-benzodioxole-5-carbohydrazide (1.0 mmol) and 3-methoxysalicylaldehyde (1.0 mmol) in a 95% ethanol solution (50 ml). Needle colorless crystals were formed by gradual evaporation of the solution in air for a few days.

Refinement top

The imino H atom was located in a difference map and refined with a N–H distance restraint of 0.90 (1) Å. The water H atoms were also located in a difference map and refined with O–H and H···H distances restraints of 0.85 (1) and 1.37 (2) Å, respectively. The other H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). A rotating group model was used for the methyl group. In the absence of significant anomalous scattering effects, 1034 Friedel pairs were merged.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the a axis.
N'-(2-Hydroxy-3-methoxybenzylidene)-1,3-benzodioxole-5-carbohydrazide monohydrate top
Crystal data top
C16H14N2O5·H2OF(000) = 696
Mr = 332.31Dx = 1.486 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3222 reflections
a = 4.792 (2) Åθ = 2.4–25.6°
b = 12.916 (3) ŵ = 0.12 mm1
c = 24.002 (6) ÅT = 298 K
V = 1485.6 (7) Å3Cut from needle, colorless
Z = 40.23 × 0.20 × 0.20 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1907 independent reflections
Radiation source: fine-focus sealed tube1639 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.974, Tmax = 0.977k = 1613
8595 measured reflectionsl = 3028
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0385P)2 + 0.1335P]
where P = (Fo2 + 2Fc2)/3
1907 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.13 e Å3
4 restraintsΔρmin = 0.13 e Å3
Crystal data top
C16H14N2O5·H2OV = 1485.6 (7) Å3
Mr = 332.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 4.792 (2) ŵ = 0.12 mm1
b = 12.916 (3) ÅT = 298 K
c = 24.002 (6) Å0.23 × 0.20 × 0.20 mm
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
1907 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1639 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.977Rint = 0.030
8595 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0324 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.13 e Å3
1907 reflectionsΔρmin = 0.13 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.9802 (3)0.80320 (10)0.83305 (6)0.0447 (4)
H10.87750.81210.80610.067*
O20.3794 (4)0.78499 (11)0.69933 (6)0.0563 (5)
O31.3470 (3)0.79317 (11)0.91162 (6)0.0489 (4)
O40.3191 (4)0.81446 (12)0.53841 (6)0.0599 (5)
O50.3991 (3)0.98897 (11)0.52200 (6)0.0490 (4)
O60.4857 (4)0.67908 (12)0.79533 (6)0.0528 (4)
N10.7019 (4)0.92306 (13)0.75678 (6)0.0368 (4)
N20.5153 (4)0.95059 (13)0.71517 (7)0.0374 (4)
C11.0510 (4)0.98797 (15)0.82015 (7)0.0349 (4)
C21.1069 (4)0.89400 (14)0.84647 (8)0.0330 (4)
C31.3082 (4)0.88967 (15)0.88912 (8)0.0360 (4)
C41.4481 (5)0.97831 (16)0.90522 (8)0.0415 (5)
H41.57890.97540.93380.050*
C51.3937 (5)1.07197 (16)0.87871 (8)0.0449 (5)
H51.48971.13140.88930.054*
C61.1978 (5)1.07680 (15)0.83680 (8)0.0418 (5)
H61.16241.13970.81930.050*
C70.8453 (5)0.99888 (16)0.77596 (8)0.0388 (5)
H70.81631.06430.76080.047*
C80.3608 (5)0.87806 (15)0.68878 (7)0.0371 (5)
C90.1638 (5)0.91647 (14)0.64528 (7)0.0330 (4)
C100.0244 (5)0.84061 (15)0.61392 (8)0.0383 (5)
H100.05590.77050.62000.046*
C110.1597 (5)0.87353 (15)0.57404 (8)0.0385 (5)
C120.2088 (5)0.97742 (15)0.56457 (7)0.0359 (4)
C130.0799 (5)1.05292 (15)0.59480 (8)0.0412 (5)
H130.11621.12270.58850.049*
C140.1088 (5)1.02087 (15)0.63555 (8)0.0386 (5)
H140.20041.07050.65680.046*
C150.4686 (6)0.88603 (18)0.50433 (8)0.0497 (6)
H15A0.66780.87460.50800.060*
H15B0.41790.87650.46550.060*
C161.5697 (5)0.78022 (19)0.95022 (9)0.0522 (6)
H16A1.53650.82260.98240.078*
H16B1.74210.80050.93300.078*
H16C1.58060.70890.96130.078*
H20.499 (7)1.0186 (9)0.7078 (10)0.080*
H6A0.474 (6)0.7133 (18)0.7649 (6)0.080*
H6B0.366 (5)0.706 (2)0.8170 (8)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0460 (9)0.0381 (8)0.0500 (9)0.0062 (7)0.0165 (7)0.0011 (7)
O20.0772 (12)0.0351 (8)0.0567 (9)0.0061 (9)0.0217 (9)0.0055 (7)
O30.0506 (10)0.0414 (8)0.0548 (8)0.0064 (8)0.0222 (8)0.0105 (7)
O40.0706 (12)0.0453 (8)0.0638 (10)0.0007 (9)0.0276 (10)0.0127 (8)
O50.0524 (10)0.0516 (9)0.0430 (8)0.0055 (8)0.0141 (8)0.0009 (7)
O60.0684 (12)0.0394 (8)0.0505 (9)0.0050 (9)0.0110 (9)0.0016 (7)
N10.0366 (9)0.0429 (9)0.0308 (8)0.0065 (8)0.0034 (8)0.0020 (7)
N20.0394 (10)0.0373 (9)0.0356 (8)0.0034 (8)0.0070 (8)0.0044 (7)
C10.0326 (11)0.0389 (10)0.0333 (9)0.0042 (9)0.0022 (8)0.0020 (8)
C20.0319 (10)0.0339 (9)0.0332 (9)0.0007 (9)0.0005 (8)0.0039 (8)
C30.0357 (11)0.0380 (10)0.0344 (9)0.0002 (10)0.0025 (9)0.0003 (8)
C40.0389 (12)0.0462 (11)0.0393 (10)0.0042 (10)0.0058 (10)0.0047 (9)
C50.0442 (13)0.0380 (11)0.0525 (12)0.0065 (10)0.0029 (11)0.0063 (9)
C60.0450 (13)0.0335 (10)0.0469 (11)0.0031 (10)0.0012 (11)0.0001 (9)
C70.0418 (12)0.0381 (10)0.0365 (10)0.0068 (11)0.0019 (9)0.0038 (8)
C80.0424 (12)0.0366 (10)0.0323 (10)0.0055 (10)0.0005 (9)0.0019 (8)
C90.0356 (11)0.0333 (9)0.0302 (9)0.0016 (9)0.0021 (8)0.0020 (7)
C100.0446 (12)0.0325 (10)0.0377 (10)0.0031 (10)0.0014 (10)0.0007 (8)
C110.0419 (13)0.0376 (10)0.0360 (10)0.0013 (10)0.0009 (9)0.0064 (8)
C120.0357 (11)0.0438 (11)0.0283 (9)0.0039 (9)0.0002 (9)0.0030 (8)
C130.0508 (13)0.0314 (10)0.0414 (10)0.0050 (10)0.0056 (10)0.0021 (9)
C140.0442 (12)0.0345 (10)0.0372 (10)0.0001 (9)0.0066 (10)0.0010 (8)
C150.0480 (14)0.0602 (14)0.0410 (11)0.0083 (13)0.0079 (11)0.0006 (10)
C160.0456 (13)0.0630 (14)0.0478 (12)0.0021 (12)0.0128 (11)0.0145 (11)
Geometric parameters (Å, º) top
O1—C21.359 (2)C4—H40.9300
O1—H10.8200C5—C61.377 (3)
O2—C81.232 (2)C5—H50.9300
O3—C31.371 (2)C6—H60.9300
O3—C161.423 (2)C7—H70.9300
O4—C111.377 (2)C8—C91.492 (3)
O4—C151.427 (3)C9—C141.394 (3)
O5—C121.378 (2)C9—C101.405 (3)
O5—C151.435 (3)C10—C111.369 (3)
O6—H6A0.857 (10)C10—H100.9300
O6—H6B0.848 (10)C11—C121.381 (3)
N1—C71.282 (3)C12—C131.363 (3)
N1—N21.387 (2)C13—C141.395 (3)
N2—C81.352 (3)C13—H130.9300
N2—H20.899 (10)C14—H140.9300
C1—C21.394 (3)C15—H15A0.9700
C1—C61.404 (3)C15—H15B0.9700
C1—C71.455 (3)C16—H16A0.9600
C2—C31.408 (3)C16—H16B0.9600
C3—C41.382 (3)C16—H16C0.9600
C4—C51.392 (3)
C2—O1—H1109.5N2—C8—C9116.35 (16)
C3—O3—C16117.72 (17)C14—C9—C10119.66 (18)
C11—O4—C15105.99 (16)C14—C9—C8123.96 (18)
C12—O5—C15105.81 (15)C10—C9—C8116.36 (17)
H6A—O6—H6B105.5 (19)C11—C10—C9117.68 (18)
C7—N1—N2114.10 (16)C11—C10—H10121.2
C8—N2—N1120.86 (16)C9—C10—H10121.2
C8—N2—H2122.6 (19)C10—C11—O4128.26 (18)
N1—N2—H2116.6 (19)C10—C11—C12121.75 (19)
C2—C1—C6119.08 (18)O4—C11—C12109.99 (18)
C2—C1—C7123.01 (19)C13—C12—O5128.10 (17)
C6—C1—C7117.90 (18)C13—C12—C11122.03 (18)
O1—C2—C1123.91 (17)O5—C12—C11109.86 (17)
O1—C2—C3116.37 (16)C12—C13—C14117.03 (17)
C1—C2—C3119.72 (17)C12—C13—H13121.5
O3—C3—C4125.24 (18)C14—C13—H13121.5
O3—C3—C2114.56 (17)C9—C14—C13121.83 (18)
C4—C3—C2120.20 (18)C9—C14—H14119.1
C3—C4—C5120.09 (19)C13—C14—H14119.1
C3—C4—H4120.0O4—C15—O5108.32 (17)
C5—C4—H4120.0O4—C15—H15A110.0
C6—C5—C4120.1 (2)O5—C15—H15A110.0
C6—C5—H5120.0O4—C15—H15B110.0
C4—C5—H5120.0O5—C15—H15B110.0
C5—C6—C1120.83 (19)H15A—C15—H15B108.4
C5—C6—H6119.6O3—C16—H16A109.5
C1—C6—H6119.6O3—C16—H16B109.5
N1—C7—C1123.44 (18)H16A—C16—H16B109.5
N1—C7—H7118.3O3—C16—H16C109.5
C1—C7—H7118.3H16A—C16—H16C109.5
O2—C8—N2122.73 (19)H16B—C16—H16C109.5
O2—C8—C9120.92 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.042.743 (2)143
O1—H1···O60.822.563.001 (2)115
N2—H2···O6i0.90 (1)2.08 (1)2.962 (2)168 (3)
O6—H6A···O20.86 (1)1.88 (1)2.728 (2)170 (3)
O6—H6B···O1ii0.85 (1)2.27 (2)3.043 (2)152 (2)
O6—H6B···O3ii0.85 (1)2.54 (2)3.226 (2)139 (2)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC16H14N2O5·H2O
Mr332.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)298
a, b, c (Å)4.792 (2), 12.916 (3), 24.002 (6)
V3)1485.6 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.23 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 1K CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.974, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
8595, 1907, 1639
Rint0.030
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.076, 1.05
No. of reflections1907
No. of parameters228
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.13

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.042.743 (2)143.4
O1—H1···O60.822.563.001 (2)115.2
N2—H2···O6i0.899 (10)2.075 (11)2.962 (2)168 (3)
O6—H6A···O20.857 (10)1.880 (12)2.728 (2)170 (3)
O6—H6B···O1ii0.848 (10)2.269 (16)3.043 (2)152 (2)
O6—H6B···O3ii0.848 (10)2.538 (19)3.226 (2)139 (2)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x1, y, z.
 

Acknowledgements

The author acknowledges Liaodong University for research funding.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBedia, K.-K., Elcin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationQu, L.-Z., Yang, T., Cao, G.-B. & Wang, X.-Y. (2008). Acta Cryst. E64, o2061.  Web of Science CrossRef IUCr Journals Google Scholar
First citationRollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationShan, S., Tian, Y.-L., Wang, S.-H., Wang, W.-L. & Xu, Y.-L. (2008). Acta Cryst. E64, o1363.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYehye, W. A., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o960.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds