organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o111-o112

N,N-Di­methyl­anilinium 2,4,6-tri­nitro­phenolate

aDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: vembu57@yahoo.com

(Received 5 December 2008; accepted 9 December 2008; online 13 December 2008)

In the title compound, C8H12N+·C6H2N3O7, there are N—H⋯O and C—H⋯O inter­actions which generate R21(5), R21(6) and R12(6) ring motifs. The supra­molecular aggregation is completed by the presence of edge-to-face and offset face-to-face ππ inter­actions with centroid–centroid distances of 3.673 and 3.697 Å, respectively.

Related literature

For a detailed account of the design of organic polar crystals, see: Pecaut & Bagieu-Beucher (1993[Pecaut, J. & Bagieu-Beucher, M. (1993). Acta Cryst. C49, 834-837.]). For hydrogen bonding in nitro­phenol complexes, see: In et al. (1997[In, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367-369.]); Zadrenko et al. (1997[Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961-967.]); Mizutani et al. (1998[Mizutani, T., Takagi, H., Ueno, Y., Honiguchi, T., Yamamura, K. & Ogoshi, H. (1998). J. Phys. Org. Chem. 11, 737-742.]). For the supra­molecular architecture of mol­ecular complexes of trinitro­phenols, see: Botoshansky et al. (1994[Botoshansky, M., Herbstein, F. H. & Kapon, M. (1994). Acta Cryst. B50, 191-200.]); Vembu et al. (2003[Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003). Acta Cryst. E59, o913-o916.]). For details of the monoclinic polymorph of the title compound, see: Takayanagi et al. (1996[Takayanagi, H., Kai, T., Yamaguchi, S.-I., Takeda, K. & Goto, M. (1996). Chem. Pharm. Bull. 44, 2199-2204. ]). For hydrogen-bonding criteria, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York, Oxford University Press.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York, Oxford University Press.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C8H12N+·C6H2N3O7

  • Mr = 350.29

  • Orthorhombic, P n a 21

  • a = 15.9960 (10) Å

  • b = 9.1491 (6) Å

  • c = 10.3899 (9) Å

  • V = 1520.55 (19) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.08 mm−1

  • T = 90.0 (5) K

  • 0.26 × 0.24 × 0.08 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.]) Tmin = 0.767, Tmax = 0.919

  • 16980 measured reflections

  • 2823 independent reflections

  • 2755 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.060

  • S = 1.03

  • 2823 reflections

  • 283 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1309 Friedel pairs

  • Flack parameter: 0.07 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N7—H7⋯O16 0.892 (17) 1.825 (18) 2.7128 (14) 172.8 (16)
N7—H7⋯O19 0.892 (17) 2.578 (16) 3.0517 (15) 114.0 (12)
C2—H2⋯O16 0.931 (18) 2.341 (17) 3.0464 (16) 132.4 (13)
C2—H2⋯O24 0.931 (18) 2.498 (17) 3.3444 (17) 151.4 (14)
C8—H8A⋯O19 1.001 (18) 2.411 (18) 3.1171 (18) 126.9 (13)
C9—H9C⋯O19 0.997 (18) 2.592 (17) 3.2311 (17) 121.9 (12)
C9—H9B⋯O21i 0.974 (19) 2.571 (19) 3.5074 (17) 161.3 (14)
C9—H9B⋯O25ii 0.974 (19) 2.476 (18) 3.0794 (18) 119.9 (13)
C4—H4⋯O21iii 0.924 (19) 2.466 (18) 3.1776 (16) 134.0 (14)
C14—H14⋯O19iv 0.941 (18) 2.564 (18) 3.4988 (16) 172.3 (14)
C9—H9C⋯O22v 0.997 (18) 2.502 (18) 3.3283 (16) 140.0 (13)
Symmetry codes: (i) x, y+1, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design of organic polar crystals for quadratic non-linear optical applications is supported by the observation that the organic molecules containing π-electron systems asymmetrized by electron donor and acceptor groups are highly polarizable entities in which problems of transparency and crystal growth may arise from their molecular crystal packing (Pecaut & Bagieu-Beucher, 1993). It is known that nitrophenols act not only as π-acceptors to form various π-stacking complexes with other aromatic molecules, but also as acidic ligands to form salts through specific electrostatic or H-bonding interactions (In et al., 1997). The bonding of electron-donor acceptor complexes strongly depends on the nature of the partners. The linkage could involve not only electrostatic interactions, but also the formation of molecular complexes (Zadrenko et al., 1997). It has been reported that proton transferred thermochromic complexes were formed between phenols and amines in apolar solvents at low temperature if an appropriate H-bonding network between the phenols and amines was present to stabilize it (Mizutani et al., 1998). Pyridinium picrate has been reported in two crystalline phases and it appears in both phases as an internally linked H-bonded ion pair. These two phases are referred to as molecular crystals rather than salts based on their structural arrangements (Botoshansky et al., 1994). A similar structural arrangement has also been reported for 4-dimethylaminopyridinium picrate (Vembu et al., 2003). The monoclinic polymorph of the title compound (CSD Reference Code: REYDEE) has been reported previously (Takayanagi et al., 1996). We have structurally elucidated the orthorhombic polymorph of the title compound as a forerunner to assessing its optical properties and report its structure here.

The asymmetric unit of (I) contains one N,N-Dimethylanilinium cation, and one 2,4,6-trinitrophenolate anion. (Fig.1). The crystal structure of (I) is stabilized by N—H···O and C—H···O interactions. The range of H···O distances (Table 1) found in (I) agrees with those found for N—H···O (Jeffrey, 1997) and C—H···O hydrogen bonds (Desiraju & Steiner, 1999). The N7—H7···O16 and N7—H7···O19 interactions form a pair of bifurcated donor bonds that link the N,N-dimethylanilinium cation and 2,4,6-trinitrophenolate anion and also form a motif of graph set R21(6) (Bernstein et al., 1995; Etter, 1990). Another pair of bifurcated donor bonds consists of the C2—H2···O16 and C2—H2···O24 interactions that also link the cation and the anion and form a R21(6) motif. The C8—H8A···O19 and C9—H9C···O19 interactions constitute a pair of bifurcated bonds forming a R12(6) motif that link the cation and the anion. The N7—H7···O19 and C8—H8A···O19 interactions constitute a pair of bifurcated acceptor bonds that form a R12(5) motif. The above two motifs, R12(6) and R12(5), together form a R12(5) motif by the interplay of the trifurcated acceptor bonds formed by N7—H7···O19, C9—H8A···O19 and C9—H9C···O19 interactions. There are five intermolecular C—H···O interactions (Table 1) that contribute to the supramolecular aggregation of the title compound. The intramolecular N—H···O interactions mentioned above also contribute to the formation of cooperative H-bonded network (Fig. 2). There is an offset π···π stacking interaction, Cg1···Cg2 (x, -1+y, z) at 3.697Å with α = 3.19, β = 24.88 and γ = 24.00 and the two perpendicular distances being 3.377 and 3.354Å. There is also an edge to face π···π stacking interaction, Cg1···Cg2 (1.5-x, -0.5+y, 0.5+z) at 3.673Å with α=13.75, β=25.68 and γ=12.78 and the two perpendicular distances being 3.582 and 3.310Å. Cg1 and Cg2 are the centroids of the C1···C6 and C10···.C15 rings.

The interplay of strong N—H···O and weak C—H···O, π···π interactions with different strengths, directional preferences and distance presents a complex mosaic of interactions. The three dimensional arrangement of the 2,4,6-trinitrophenolate and N,N-dimethylanilinium moieties in the unit cell, shows that the title compound is an internally linked hydrogen bonded ion pair and hence can be regarded as a molecular crystal rather than a salt.

Related literature top

For a detailed account of the design of organic polar crystals, see: Pecaut & Bagieu-Beucher (1993). For hydrogen bonding in nitrophenol complexes, see: In et al. (1997); Zadrenko et al. (1997); Mizutani et al. (1998). For the supramolecular architecture of molecular complexes of trinitrophenols, see: Botoshansky et al. (1994); Vembu et al. (2003). For details of the monoclinic polymorph of the title compound, see : Takayanagi et al. (1996)?. For hydrogen-bonding criteria, see: Desiraju & Steiner (1999); Desiraju (1989); Jeffrey (1997). For graph-set notation, see: Bernstein et al. (1995); Etter (1990).

Experimental top

2,4,6-Trinitrophenol (5.2 mmol) dissolved in aqueous ethanol (25 ml) was added dropwise to N,N-dimethylaniline (5.7 mmol) in aqueous ethanol (25 ml). The above solution was constantly stirred at room temperature for 2 hrs. The precipitated product was filtered and recrystallized from aqueous ethanol. Yield 75% (3.9 mmol).

Refinement top

All H-atoms were located in difference maps and their positions and isotropic displacement parameters freely refined. The 1309 Friedel pairs (96.2% coverage) were not merged, and the absolute structure was determined by refinement of the Flack (1983) parameter.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing viewed down the b-axis. Dashed lines represent the N—H···O and C—H···O interactions within the lattice.
N,N-Dimethylanilinium 2,4,6-trinitrophenolate top
Crystal data top
C8H12N+·C6H2N3O7Dx = 1.530 Mg m3
Mr = 350.29Melting point: 401 K
Orthorhombic, Pna21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2c -2nCell parameters from 9564 reflections
a = 15.996 (1) Åθ = 5.5–70.2°
b = 9.1491 (6) ŵ = 1.08 mm1
c = 10.3899 (9) ÅT = 90 K
V = 1520.55 (19) Å3Plate, yellow
Z = 40.26 × 0.24 × 0.08 mm
F(000) = 728
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2823 independent reflections
Radiation source: fine-focus sealed tube2755 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 70.2°, θmin = 5.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.767, Tmax = 0.919k = 1010
16980 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.2146P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2823 reflectionsΔρmax = 0.14 e Å3
283 parametersΔρmin = 0.16 e Å3
1 restraintAbsolute structure: Flack (1983), 1309 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (12)
Crystal data top
C8H12N+·C6H2N3O7V = 1520.55 (19) Å3
Mr = 350.29Z = 4
Orthorhombic, Pna21Cu Kα radiation
a = 15.996 (1) ŵ = 1.08 mm1
b = 9.1491 (6) ÅT = 90 K
c = 10.3899 (9) Å0.26 × 0.24 × 0.08 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
2823 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2755 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 0.919Rint = 0.033
16980 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.023H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.060Δρmax = 0.14 e Å3
S = 1.03Δρmin = 0.16 e Å3
2823 reflectionsAbsolute structure: Flack (1983), 1309 Friedel pairs
283 parametersAbsolute structure parameter: 0.07 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.37023 (8)1.31731 (14)0.30638 (13)0.0151 (3)
C20.28455 (9)1.29778 (15)0.30264 (13)0.0165 (3)
C30.23581 (8)1.40616 (15)0.24585 (13)0.0178 (3)
C40.27257 (10)1.53064 (15)0.19438 (13)0.0195 (3)
C50.35871 (9)1.54844 (15)0.20120 (14)0.0200 (3)
C60.40878 (9)1.44179 (15)0.25752 (13)0.0180 (3)
N70.42143 (7)1.20264 (12)0.37028 (12)0.0150 (2)
C80.49639 (9)1.15827 (16)0.29319 (15)0.0212 (3)
C90.44558 (8)1.25020 (15)0.50295 (14)0.0200 (3)
C100.28722 (8)0.85997 (14)0.41862 (13)0.0141 (3)
C110.34012 (7)0.75029 (14)0.47878 (12)0.0142 (2)
C120.31105 (8)0.62014 (14)0.52863 (12)0.0141 (3)
C130.22695 (8)0.58924 (13)0.52313 (13)0.0149 (3)
C140.17059 (8)0.68496 (14)0.46412 (12)0.0146 (3)
C150.20036 (8)0.81337 (13)0.41512 (13)0.0145 (3)
O160.31146 (5)0.97691 (10)0.36915 (10)0.0183 (2)
N170.42940 (7)0.77360 (12)0.48867 (11)0.0160 (2)
O180.47489 (6)0.66722 (10)0.50973 (10)0.0207 (2)
O190.45735 (6)0.89878 (10)0.47807 (11)0.0247 (2)
N200.19719 (7)0.45202 (12)0.57365 (11)0.0167 (2)
O210.24919 (6)0.36384 (10)0.61486 (10)0.0194 (2)
O220.12141 (6)0.42767 (12)0.57227 (11)0.0267 (2)
N230.13932 (7)0.90790 (12)0.35088 (11)0.0162 (2)
O240.14260 (6)1.04028 (10)0.36928 (12)0.0240 (2)
O250.08701 (6)0.84815 (11)0.28202 (9)0.0207 (2)
H20.2611 (10)1.2148 (19)0.3398 (17)0.017 (4)*
H30.1778 (12)1.3963 (19)0.2403 (18)0.023 (4)*
H40.2380 (11)1.600 (2)0.1572 (16)0.016 (4)*
H50.3856 (11)1.633 (2)0.1698 (17)0.023 (4)*
H60.4678 (11)1.4531 (17)0.2608 (17)0.017 (4)*
H70.3883 (10)1.1243 (18)0.3740 (17)0.018 (4)*
H8A0.5236 (11)1.0734 (18)0.3373 (18)0.025 (4)*
H8B0.5363 (12)1.2445 (19)0.2860 (19)0.028 (5)*
H8C0.4773 (12)1.125 (2)0.208 (2)0.036 (5)*
H9A0.4780 (10)1.3372 (18)0.4959 (17)0.017 (4)*
H9B0.3966 (11)1.2756 (18)0.5538 (18)0.022 (4)*
H9C0.4760 (11)1.1692 (19)0.5467 (17)0.020 (4)*
H120.3479 (11)0.5528 (18)0.5656 (17)0.017 (4)*
H140.1134 (11)0.6615 (17)0.4590 (17)0.017 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0177 (6)0.0136 (6)0.0140 (6)0.0022 (5)0.0007 (5)0.0020 (5)
C20.0197 (6)0.0135 (6)0.0161 (6)0.0011 (5)0.0012 (5)0.0010 (5)
C30.0172 (6)0.0170 (6)0.0193 (7)0.0013 (5)0.0022 (5)0.0039 (5)
C40.0281 (7)0.0146 (6)0.0158 (6)0.0041 (6)0.0028 (5)0.0002 (5)
C50.0286 (7)0.0137 (7)0.0175 (7)0.0029 (5)0.0024 (6)0.0003 (5)
C60.0198 (7)0.0166 (7)0.0175 (7)0.0021 (5)0.0024 (5)0.0017 (5)
N70.0142 (5)0.0132 (5)0.0174 (5)0.0006 (4)0.0011 (4)0.0003 (5)
C80.0193 (6)0.0192 (7)0.0251 (7)0.0028 (5)0.0058 (6)0.0008 (6)
C90.0214 (6)0.0200 (7)0.0187 (7)0.0008 (6)0.0046 (6)0.0016 (6)
C100.0146 (6)0.0140 (6)0.0137 (6)0.0002 (5)0.0013 (5)0.0026 (5)
C110.0132 (6)0.0156 (6)0.0138 (6)0.0004 (5)0.0006 (5)0.0023 (5)
C120.0161 (6)0.0136 (6)0.0127 (6)0.0030 (5)0.0003 (5)0.0009 (5)
C130.0170 (6)0.0120 (6)0.0155 (6)0.0002 (5)0.0001 (5)0.0005 (5)
C140.0123 (6)0.0162 (6)0.0152 (6)0.0002 (5)0.0008 (5)0.0023 (5)
C150.0149 (6)0.0140 (6)0.0145 (6)0.0031 (5)0.0007 (5)0.0000 (5)
O160.0177 (4)0.0152 (5)0.0219 (5)0.0020 (3)0.0016 (4)0.0040 (4)
N170.0142 (5)0.0177 (5)0.0162 (5)0.0005 (4)0.0008 (4)0.0008 (5)
O180.0143 (4)0.0205 (5)0.0274 (5)0.0040 (4)0.0012 (4)0.0025 (4)
O190.0181 (5)0.0180 (5)0.0378 (6)0.0050 (4)0.0061 (4)0.0062 (5)
N200.0166 (5)0.0149 (6)0.0186 (6)0.0005 (4)0.0009 (5)0.0007 (4)
O210.0201 (4)0.0144 (5)0.0235 (5)0.0035 (4)0.0005 (4)0.0049 (4)
O220.0146 (5)0.0267 (5)0.0389 (6)0.0060 (4)0.0035 (4)0.0098 (5)
N230.0135 (5)0.0193 (6)0.0156 (5)0.0017 (4)0.0009 (4)0.0034 (5)
O240.0221 (5)0.0140 (5)0.0360 (6)0.0036 (4)0.0007 (5)0.0041 (4)
O250.0162 (4)0.0271 (5)0.0188 (5)0.0020 (4)0.0047 (4)0.0004 (4)
Geometric parameters (Å, º) top
C1—C21.3826 (19)C9—H9C0.997 (18)
C1—C61.3910 (19)C10—O161.2488 (17)
C1—N71.4874 (16)C10—C151.4537 (18)
C2—C31.3926 (19)C10—C111.4538 (18)
C2—H20.931 (18)C11—C121.3794 (19)
C3—C41.389 (2)C11—N171.4475 (16)
C3—H30.934 (18)C12—C131.3758 (18)
C4—C51.389 (2)C12—H120.935 (18)
C4—H40.924 (19)C13—C141.3985 (18)
C5—C61.391 (2)C13—N201.4417 (17)
C5—H50.942 (19)C14—C151.3661 (18)
C6—H60.951 (18)C14—H140.941 (18)
N7—C91.4962 (18)C15—N231.4652 (16)
N7—C81.4980 (18)N17—O191.2344 (14)
N7—H70.892 (17)N17—O181.2348 (14)
C8—H8A1.001 (18)N20—O221.2326 (15)
C8—H8B1.017 (18)N20—O211.2353 (15)
C8—H8C0.99 (2)N23—O241.2273 (15)
C9—H9A0.953 (17)N23—O251.2291 (15)
C9—H9B0.974 (19)
C2—C1—C6122.34 (12)H9A—C9—H9B106.3 (14)
C2—C1—N7117.85 (11)N7—C9—H9C109.3 (10)
C6—C1—N7119.76 (11)H9A—C9—H9C113.0 (14)
C1—C2—C3118.35 (12)H9B—C9—H9C108.9 (14)
C1—C2—H2119.5 (10)O16—C10—C15122.53 (12)
C3—C2—H2122.1 (10)O16—C10—C11125.98 (11)
C4—C3—C2120.66 (13)C15—C10—C11111.39 (11)
C4—C3—H3118.4 (11)C12—C11—N17115.67 (11)
C2—C3—H3120.9 (11)C12—C11—C10124.13 (11)
C3—C4—C5119.77 (13)N17—C11—C10120.21 (11)
C3—C4—H4117.9 (11)C13—C12—C11119.44 (12)
C5—C4—H4122.3 (11)C13—C12—H12119.8 (10)
C4—C5—C6120.67 (13)C11—C12—H12120.7 (10)
C4—C5—H5122.1 (11)C12—C13—C14121.33 (12)
C6—C5—H5117.2 (11)C12—C13—N20119.13 (11)
C1—C6—C5118.20 (13)C14—C13—N20119.47 (11)
C1—C6—H6121.1 (10)C15—C14—C13118.50 (11)
C5—C6—H6120.7 (10)C15—C14—H14121.0 (10)
C1—N7—C9110.38 (10)C13—C14—H14120.5 (10)
C1—N7—C8113.16 (11)C14—C15—C10125.18 (12)
C9—N7—C8111.39 (11)C14—C15—N23116.42 (11)
C1—N7—H7105.0 (10)C10—C15—N23118.37 (11)
C9—N7—H7110.3 (12)O19—N17—O18122.24 (10)
C8—N7—H7106.3 (11)O19—N17—C11119.19 (10)
N7—C8—H8A108.2 (10)O18—N17—C11118.55 (10)
N7—C8—H8B109.3 (11)O22—N20—O21123.25 (11)
H8A—C8—H8B111.3 (14)O22—N20—C13118.55 (11)
N7—C8—H8C108.4 (12)O21—N20—C13118.20 (10)
H8A—C8—H8C108.1 (15)O24—N23—O25123.96 (11)
H8B—C8—H8C111.3 (16)O24—N23—C15118.88 (11)
N7—C9—H9A108.2 (11)O25—N23—C15117.15 (11)
N7—C9—H9B111.2 (11)
C6—C1—C2—C31.1 (2)C12—C13—C14—C152.10 (19)
N7—C1—C2—C3178.45 (12)N20—C13—C14—C15178.99 (12)
C1—C2—C3—C40.0 (2)C13—C14—C15—C100.2 (2)
C2—C3—C4—C50.9 (2)C13—C14—C15—N23178.23 (11)
C3—C4—C5—C60.9 (2)O16—C10—C15—C14177.99 (13)
C2—C1—C6—C51.1 (2)C11—C10—C15—C141.40 (19)
N7—C1—C6—C5178.45 (12)O16—C10—C15—N230.00 (19)
C4—C5—C6—C10.1 (2)C11—C10—C15—N23176.58 (11)
C2—C1—N7—C9100.90 (13)C12—C11—N17—O19161.31 (13)
C6—C1—N7—C976.55 (15)C10—C11—N17—O1919.03 (18)
C2—C1—N7—C8133.51 (13)C12—C11—N17—O1817.45 (17)
C6—C1—N7—C849.04 (16)C10—C11—N17—O18162.20 (12)
O16—C10—C11—C12177.78 (13)C12—C13—N20—O22177.52 (12)
C15—C10—C11—C121.34 (18)C14—C13—N20—O225.53 (19)
O16—C10—C11—N171.8 (2)C12—C13—N20—O213.32 (18)
C15—C10—C11—N17178.28 (11)C14—C13—N20—O21173.63 (12)
N17—C11—C12—C13179.98 (11)C14—C15—N23—O24138.87 (13)
C10—C11—C12—C130.3 (2)C10—C15—N23—O2442.97 (17)
C11—C12—C13—C142.17 (19)C14—C15—N23—O2540.50 (17)
C11—C12—C13—N20179.06 (12)C10—C15—N23—O25137.66 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O160.892 (17)1.825 (18)2.7128 (14)172.8 (16)
N7—H7···O190.892 (17)2.578 (16)3.0517 (15)114.0 (12)
C2—H2···O160.931 (18)2.341 (17)3.0464 (16)132.4 (13)
C2—H2···O240.931 (18)2.498 (17)3.3444 (17)151.4 (14)
C8—H8A···O191.001 (18)2.411 (18)3.1171 (18)126.9 (13)
C9—H9C···O190.997 (18)2.592 (17)3.2311 (17)121.9 (12)
C9—H9B···O21i0.974 (19)2.571 (19)3.5074 (17)161.3 (14)
C9—H9B···O25ii0.974 (19)2.476 (18)3.0794 (18)119.9 (13)
C4—H4···O21iii0.924 (19)2.466 (18)3.1776 (16)134.0 (14)
C14—H14···O19iv0.941 (18)2.564 (18)3.4988 (16)172.3 (14)
C9—H9C···O22v0.997 (18)2.502 (18)3.3283 (16)140.0 (13)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x1/2, y+3/2, z; (v) x+1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC8H12N+·C6H2N3O7
Mr350.29
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)90
a, b, c (Å)15.996 (1), 9.1491 (6), 10.3899 (9)
V3)1520.55 (19)
Z4
Radiation typeCu Kα
µ (mm1)1.08
Crystal size (mm)0.26 × 0.24 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.767, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
16980, 2823, 2755
Rint0.033
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 1.03
No. of reflections2823
No. of parameters283
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.16
Absolute structureFlack (1983), 1309 Friedel pairs
Absolute structure parameter0.07 (12)

Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N7—H7···O160.892 (17)1.825 (18)2.7128 (14)172.8 (16)
N7—H7···O190.892 (17)2.578 (16)3.0517 (15)114.0 (12)
C2—H2···O160.931 (18)2.341 (17)3.0464 (16)132.4 (13)
C2—H2···O240.931 (18)2.498 (17)3.3444 (17)151.4 (14)
C8—H8A···O191.001 (18)2.411 (18)3.1171 (18)126.9 (13)
C9—H9C···O190.997 (18)2.592 (17)3.2311 (17)121.9 (12)
C9—H9B···O21i0.974 (19)2.571 (19)3.5074 (17)161.3 (14)
C9—H9B···O25ii0.974 (19)2.476 (18)3.0794 (18)119.9 (13)
C4—H4···O21iii0.924 (19)2.466 (18)3.1776 (16)134.0 (14)
C14—H14···O19iv0.941 (18)2.564 (18)3.4988 (16)172.3 (14)
C9—H9C···O22v0.997 (18)2.502 (18)3.3283 (16)140.0 (13)
Symmetry codes: (i) x, y+1, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y+3/2, z1/2; (iv) x1/2, y+3/2, z; (v) x+1/2, y+3/2, z.
 

Acknowledgements

NV thanks the University Grants Commission (UGC), Government of India, for a minor research project grant [MRP-2219/06(UGC-SERO)].

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBotoshansky, M., Herbstein, F. H. & Kapon, M. (1994). Acta Cryst. B50, 191–200.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York, Oxford University Press.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationIn, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367–369.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York, Oxford University Press.  Google Scholar
First citationMizutani, T., Takagi, H., Ueno, Y., Honiguchi, T., Yamamura, K. & Ogoshi, H. (1998). J. Phys. Org. Chem. 11, 737–742.  Web of Science CrossRef CAS Google Scholar
First citationPecaut, J. & Bagieu-Beucher, M. (1993). Acta Cryst. C49, 834–837.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Gottingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakayanagi, H., Kai, T., Yamaguchi, S.-I., Takeda, K. & Goto, M. (1996). Chem. Pharm. Bull. 44, 2199–2204.   CrossRef Google Scholar
First citationVembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003). Acta Cryst. E59, o913–o916.  CSD CrossRef IUCr Journals Google Scholar
First citationZaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961–967.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o111-o112
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds