organic compounds
N,N-Dimethylanilinium 2,4,6-trinitrophenolate
aDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: vembu57@yahoo.com
In the title compound, C8H12N+·C6H2N3O7−, there are N—H⋯O and C—H⋯O interactions which generate R21(5), R21(6) and R12(6) ring motifs. The supramolecular aggregation is completed by the presence of edge-to-face and offset face-to-face π–π interactions with centroid–centroid distances of 3.673 and 3.697 Å, respectively.
Related literature
For a detailed account of the design of organic polar crystals, see: Pecaut & Bagieu-Beucher (1993). For hydrogen bonding in nitrophenol complexes, see: In et al. (1997); Zadrenko et al. (1997); Mizutani et al. (1998). For the supramolecular architecture of molecular complexes of trinitrophenols, see: Botoshansky et al. (1994); Vembu et al. (2003). For details of the monoclinic polymorph of the title compound, see: Takayanagi et al. (1996). For hydrogen-bonding criteria, see: Desiraju & Steiner (1999); Desiraju (1989); Jeffrey (1997). For graph-set notation, see: Bernstein et al. (1995); Etter (1990).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2006); cell APEX2 and SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536808041743/sj2565sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808041743/sj2565Isup2.hkl
2,4,6-Trinitrophenol (5.2 mmol) dissolved in aqueous ethanol (25 ml) was added dropwise to N,N-dimethylaniline (5.7 mmol) in aqueous ethanol (25 ml). The above solution was constantly stirred at room temperature for 2 hrs. The precipitated product was filtered and recrystallized from aqueous ethanol. Yield 75% (3.9 mmol).
All H-atoms were located in difference maps and their positions and isotropic displacement parameters freely refined. The 1309 Friedel pairs (96.2% coverage) were not merged, and the
was determined by of the Flack (1983) parameter.Data collection: APEX2 (Bruker, 2006); cell
APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius. | |
Fig. 2. The molecular packing viewed down the b-axis. Dashed lines represent the N—H···O and C—H···O interactions within the lattice. |
C8H12N+·C6H2N3O7− | Dx = 1.530 Mg m−3 |
Mr = 350.29 | Melting point: 401 K |
Orthorhombic, Pna21 | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: P 2c -2n | Cell parameters from 9564 reflections |
a = 15.996 (1) Å | θ = 5.5–70.2° |
b = 9.1491 (6) Å | µ = 1.08 mm−1 |
c = 10.3899 (9) Å | T = 90 K |
V = 1520.55 (19) Å3 | Plate, yellow |
Z = 4 | 0.26 × 0.24 × 0.08 mm |
F(000) = 728 |
Bruker Kappa APEXII CCD area-detector diffractometer | 2823 independent reflections |
Radiation source: fine-focus sealed tube | 2755 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
ϕ and ω scans | θmax = 70.2°, θmin = 5.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −19→19 |
Tmin = 0.767, Tmax = 0.919 | k = −10→10 |
16980 measured reflections | l = −12→12 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.023 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.060 | w = 1/[σ2(Fo2) + (0.0386P)2 + 0.2146P] where P = (Fo2 + 2Fc2)/3 |
S = 1.03 | (Δ/σ)max < 0.001 |
2823 reflections | Δρmax = 0.14 e Å−3 |
283 parameters | Δρmin = −0.16 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1309 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.07 (12) |
C8H12N+·C6H2N3O7− | V = 1520.55 (19) Å3 |
Mr = 350.29 | Z = 4 |
Orthorhombic, Pna21 | Cu Kα radiation |
a = 15.996 (1) Å | µ = 1.08 mm−1 |
b = 9.1491 (6) Å | T = 90 K |
c = 10.3899 (9) Å | 0.26 × 0.24 × 0.08 mm |
Bruker Kappa APEXII CCD area-detector diffractometer | 2823 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2755 reflections with I > 2σ(I) |
Tmin = 0.767, Tmax = 0.919 | Rint = 0.033 |
16980 measured reflections |
R[F2 > 2σ(F2)] = 0.023 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.060 | Δρmax = 0.14 e Å−3 |
S = 1.03 | Δρmin = −0.16 e Å−3 |
2823 reflections | Absolute structure: Flack (1983), 1309 Friedel pairs |
283 parameters | Absolute structure parameter: 0.07 (12) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.37023 (8) | 1.31731 (14) | 0.30638 (13) | 0.0151 (3) | |
C2 | 0.28455 (9) | 1.29778 (15) | 0.30264 (13) | 0.0165 (3) | |
C3 | 0.23581 (8) | 1.40616 (15) | 0.24585 (13) | 0.0178 (3) | |
C4 | 0.27257 (10) | 1.53064 (15) | 0.19438 (13) | 0.0195 (3) | |
C5 | 0.35871 (9) | 1.54844 (15) | 0.20120 (14) | 0.0200 (3) | |
C6 | 0.40878 (9) | 1.44179 (15) | 0.25752 (13) | 0.0180 (3) | |
N7 | 0.42143 (7) | 1.20264 (12) | 0.37028 (12) | 0.0150 (2) | |
C8 | 0.49639 (9) | 1.15827 (16) | 0.29319 (15) | 0.0212 (3) | |
C9 | 0.44558 (8) | 1.25020 (15) | 0.50295 (14) | 0.0200 (3) | |
C10 | 0.28722 (8) | 0.85997 (14) | 0.41862 (13) | 0.0141 (3) | |
C11 | 0.34012 (7) | 0.75029 (14) | 0.47878 (12) | 0.0142 (2) | |
C12 | 0.31105 (8) | 0.62014 (14) | 0.52863 (12) | 0.0141 (3) | |
C13 | 0.22695 (8) | 0.58924 (13) | 0.52313 (13) | 0.0149 (3) | |
C14 | 0.17059 (8) | 0.68496 (14) | 0.46412 (12) | 0.0146 (3) | |
C15 | 0.20036 (8) | 0.81337 (13) | 0.41512 (13) | 0.0145 (3) | |
O16 | 0.31146 (5) | 0.97691 (10) | 0.36915 (10) | 0.0183 (2) | |
N17 | 0.42940 (7) | 0.77360 (12) | 0.48867 (11) | 0.0160 (2) | |
O18 | 0.47489 (6) | 0.66722 (10) | 0.50973 (10) | 0.0207 (2) | |
O19 | 0.45735 (6) | 0.89878 (10) | 0.47807 (11) | 0.0247 (2) | |
N20 | 0.19719 (7) | 0.45202 (12) | 0.57365 (11) | 0.0167 (2) | |
O21 | 0.24919 (6) | 0.36384 (10) | 0.61486 (10) | 0.0194 (2) | |
O22 | 0.12141 (6) | 0.42767 (12) | 0.57227 (11) | 0.0267 (2) | |
N23 | 0.13932 (7) | 0.90790 (12) | 0.35088 (11) | 0.0162 (2) | |
O24 | 0.14260 (6) | 1.04028 (10) | 0.36928 (12) | 0.0240 (2) | |
O25 | 0.08701 (6) | 0.84815 (11) | 0.28202 (9) | 0.0207 (2) | |
H2 | 0.2611 (10) | 1.2148 (19) | 0.3398 (17) | 0.017 (4)* | |
H3 | 0.1778 (12) | 1.3963 (19) | 0.2403 (18) | 0.023 (4)* | |
H4 | 0.2380 (11) | 1.600 (2) | 0.1572 (16) | 0.016 (4)* | |
H5 | 0.3856 (11) | 1.633 (2) | 0.1698 (17) | 0.023 (4)* | |
H6 | 0.4678 (11) | 1.4531 (17) | 0.2608 (17) | 0.017 (4)* | |
H7 | 0.3883 (10) | 1.1243 (18) | 0.3740 (17) | 0.018 (4)* | |
H8A | 0.5236 (11) | 1.0734 (18) | 0.3373 (18) | 0.025 (4)* | |
H8B | 0.5363 (12) | 1.2445 (19) | 0.2860 (19) | 0.028 (5)* | |
H8C | 0.4773 (12) | 1.125 (2) | 0.208 (2) | 0.036 (5)* | |
H9A | 0.4780 (10) | 1.3372 (18) | 0.4959 (17) | 0.017 (4)* | |
H9B | 0.3966 (11) | 1.2756 (18) | 0.5538 (18) | 0.022 (4)* | |
H9C | 0.4760 (11) | 1.1692 (19) | 0.5467 (17) | 0.020 (4)* | |
H12 | 0.3479 (11) | 0.5528 (18) | 0.5656 (17) | 0.017 (4)* | |
H14 | 0.1134 (11) | 0.6615 (17) | 0.4590 (17) | 0.017 (4)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0177 (6) | 0.0136 (6) | 0.0140 (6) | 0.0022 (5) | −0.0007 (5) | −0.0020 (5) |
C2 | 0.0197 (6) | 0.0135 (6) | 0.0161 (6) | −0.0011 (5) | 0.0012 (5) | −0.0010 (5) |
C3 | 0.0172 (6) | 0.0170 (6) | 0.0193 (7) | 0.0013 (5) | −0.0022 (5) | −0.0039 (5) |
C4 | 0.0281 (7) | 0.0146 (6) | 0.0158 (6) | 0.0041 (6) | −0.0028 (5) | −0.0002 (5) |
C5 | 0.0286 (7) | 0.0137 (7) | 0.0175 (7) | −0.0029 (5) | 0.0024 (6) | −0.0003 (5) |
C6 | 0.0198 (7) | 0.0166 (7) | 0.0175 (7) | −0.0021 (5) | 0.0024 (5) | −0.0017 (5) |
N7 | 0.0142 (5) | 0.0132 (5) | 0.0174 (5) | −0.0006 (4) | 0.0011 (4) | −0.0003 (5) |
C8 | 0.0193 (6) | 0.0192 (7) | 0.0251 (7) | 0.0028 (5) | 0.0058 (6) | 0.0008 (6) |
C9 | 0.0214 (6) | 0.0200 (7) | 0.0187 (7) | 0.0008 (6) | −0.0046 (6) | −0.0016 (6) |
C10 | 0.0146 (6) | 0.0140 (6) | 0.0137 (6) | −0.0002 (5) | −0.0013 (5) | −0.0026 (5) |
C11 | 0.0132 (6) | 0.0156 (6) | 0.0138 (6) | 0.0004 (5) | 0.0006 (5) | −0.0023 (5) |
C12 | 0.0161 (6) | 0.0136 (6) | 0.0127 (6) | 0.0030 (5) | −0.0003 (5) | −0.0009 (5) |
C13 | 0.0170 (6) | 0.0120 (6) | 0.0155 (6) | 0.0002 (5) | 0.0001 (5) | 0.0005 (5) |
C14 | 0.0123 (6) | 0.0162 (6) | 0.0152 (6) | 0.0002 (5) | 0.0008 (5) | −0.0023 (5) |
C15 | 0.0149 (6) | 0.0140 (6) | 0.0145 (6) | 0.0031 (5) | −0.0007 (5) | 0.0000 (5) |
O16 | 0.0177 (4) | 0.0152 (5) | 0.0219 (5) | −0.0020 (3) | −0.0016 (4) | 0.0040 (4) |
N17 | 0.0142 (5) | 0.0177 (5) | 0.0162 (5) | −0.0005 (4) | −0.0008 (4) | 0.0008 (5) |
O18 | 0.0143 (4) | 0.0205 (5) | 0.0274 (5) | 0.0040 (4) | −0.0012 (4) | 0.0025 (4) |
O19 | 0.0181 (5) | 0.0180 (5) | 0.0378 (6) | −0.0050 (4) | −0.0061 (4) | 0.0062 (5) |
N20 | 0.0166 (5) | 0.0149 (6) | 0.0186 (6) | −0.0005 (4) | −0.0009 (5) | 0.0007 (4) |
O21 | 0.0201 (4) | 0.0144 (5) | 0.0235 (5) | 0.0035 (4) | −0.0005 (4) | 0.0049 (4) |
O22 | 0.0146 (5) | 0.0267 (5) | 0.0389 (6) | −0.0060 (4) | −0.0035 (4) | 0.0098 (5) |
N23 | 0.0135 (5) | 0.0193 (6) | 0.0156 (5) | 0.0017 (4) | 0.0009 (4) | 0.0034 (5) |
O24 | 0.0221 (5) | 0.0140 (5) | 0.0360 (6) | 0.0036 (4) | −0.0007 (5) | 0.0041 (4) |
O25 | 0.0162 (4) | 0.0271 (5) | 0.0188 (5) | 0.0020 (4) | −0.0047 (4) | 0.0004 (4) |
C1—C2 | 1.3826 (19) | C9—H9C | 0.997 (18) |
C1—C6 | 1.3910 (19) | C10—O16 | 1.2488 (17) |
C1—N7 | 1.4874 (16) | C10—C15 | 1.4537 (18) |
C2—C3 | 1.3926 (19) | C10—C11 | 1.4538 (18) |
C2—H2 | 0.931 (18) | C11—C12 | 1.3794 (19) |
C3—C4 | 1.389 (2) | C11—N17 | 1.4475 (16) |
C3—H3 | 0.934 (18) | C12—C13 | 1.3758 (18) |
C4—C5 | 1.389 (2) | C12—H12 | 0.935 (18) |
C4—H4 | 0.924 (19) | C13—C14 | 1.3985 (18) |
C5—C6 | 1.391 (2) | C13—N20 | 1.4417 (17) |
C5—H5 | 0.942 (19) | C14—C15 | 1.3661 (18) |
C6—H6 | 0.951 (18) | C14—H14 | 0.941 (18) |
N7—C9 | 1.4962 (18) | C15—N23 | 1.4652 (16) |
N7—C8 | 1.4980 (18) | N17—O19 | 1.2344 (14) |
N7—H7 | 0.892 (17) | N17—O18 | 1.2348 (14) |
C8—H8A | 1.001 (18) | N20—O22 | 1.2326 (15) |
C8—H8B | 1.017 (18) | N20—O21 | 1.2353 (15) |
C8—H8C | 0.99 (2) | N23—O24 | 1.2273 (15) |
C9—H9A | 0.953 (17) | N23—O25 | 1.2291 (15) |
C9—H9B | 0.974 (19) | ||
C2—C1—C6 | 122.34 (12) | H9A—C9—H9B | 106.3 (14) |
C2—C1—N7 | 117.85 (11) | N7—C9—H9C | 109.3 (10) |
C6—C1—N7 | 119.76 (11) | H9A—C9—H9C | 113.0 (14) |
C1—C2—C3 | 118.35 (12) | H9B—C9—H9C | 108.9 (14) |
C1—C2—H2 | 119.5 (10) | O16—C10—C15 | 122.53 (12) |
C3—C2—H2 | 122.1 (10) | O16—C10—C11 | 125.98 (11) |
C4—C3—C2 | 120.66 (13) | C15—C10—C11 | 111.39 (11) |
C4—C3—H3 | 118.4 (11) | C12—C11—N17 | 115.67 (11) |
C2—C3—H3 | 120.9 (11) | C12—C11—C10 | 124.13 (11) |
C3—C4—C5 | 119.77 (13) | N17—C11—C10 | 120.21 (11) |
C3—C4—H4 | 117.9 (11) | C13—C12—C11 | 119.44 (12) |
C5—C4—H4 | 122.3 (11) | C13—C12—H12 | 119.8 (10) |
C4—C5—C6 | 120.67 (13) | C11—C12—H12 | 120.7 (10) |
C4—C5—H5 | 122.1 (11) | C12—C13—C14 | 121.33 (12) |
C6—C5—H5 | 117.2 (11) | C12—C13—N20 | 119.13 (11) |
C1—C6—C5 | 118.20 (13) | C14—C13—N20 | 119.47 (11) |
C1—C6—H6 | 121.1 (10) | C15—C14—C13 | 118.50 (11) |
C5—C6—H6 | 120.7 (10) | C15—C14—H14 | 121.0 (10) |
C1—N7—C9 | 110.38 (10) | C13—C14—H14 | 120.5 (10) |
C1—N7—C8 | 113.16 (11) | C14—C15—C10 | 125.18 (12) |
C9—N7—C8 | 111.39 (11) | C14—C15—N23 | 116.42 (11) |
C1—N7—H7 | 105.0 (10) | C10—C15—N23 | 118.37 (11) |
C9—N7—H7 | 110.3 (12) | O19—N17—O18 | 122.24 (10) |
C8—N7—H7 | 106.3 (11) | O19—N17—C11 | 119.19 (10) |
N7—C8—H8A | 108.2 (10) | O18—N17—C11 | 118.55 (10) |
N7—C8—H8B | 109.3 (11) | O22—N20—O21 | 123.25 (11) |
H8A—C8—H8B | 111.3 (14) | O22—N20—C13 | 118.55 (11) |
N7—C8—H8C | 108.4 (12) | O21—N20—C13 | 118.20 (10) |
H8A—C8—H8C | 108.1 (15) | O24—N23—O25 | 123.96 (11) |
H8B—C8—H8C | 111.3 (16) | O24—N23—C15 | 118.88 (11) |
N7—C9—H9A | 108.2 (11) | O25—N23—C15 | 117.15 (11) |
N7—C9—H9B | 111.2 (11) | ||
C6—C1—C2—C3 | 1.1 (2) | C12—C13—C14—C15 | −2.10 (19) |
N7—C1—C2—C3 | 178.45 (12) | N20—C13—C14—C15 | −178.99 (12) |
C1—C2—C3—C4 | 0.0 (2) | C13—C14—C15—C10 | 0.2 (2) |
C2—C3—C4—C5 | −0.9 (2) | C13—C14—C15—N23 | 178.23 (11) |
C3—C4—C5—C6 | 0.9 (2) | O16—C10—C15—C14 | 177.99 (13) |
C2—C1—C6—C5 | −1.1 (2) | C11—C10—C15—C14 | 1.40 (19) |
N7—C1—C6—C5 | −178.45 (12) | O16—C10—C15—N23 | 0.00 (19) |
C4—C5—C6—C1 | 0.1 (2) | C11—C10—C15—N23 | −176.58 (11) |
C2—C1—N7—C9 | −100.90 (13) | C12—C11—N17—O19 | −161.31 (13) |
C6—C1—N7—C9 | 76.55 (15) | C10—C11—N17—O19 | 19.03 (18) |
C2—C1—N7—C8 | 133.51 (13) | C12—C11—N17—O18 | 17.45 (17) |
C6—C1—N7—C8 | −49.04 (16) | C10—C11—N17—O18 | −162.20 (12) |
O16—C10—C11—C12 | −177.78 (13) | C12—C13—N20—O22 | 177.52 (12) |
C15—C10—C11—C12 | −1.34 (18) | C14—C13—N20—O22 | −5.53 (19) |
O16—C10—C11—N17 | 1.8 (2) | C12—C13—N20—O21 | −3.32 (18) |
C15—C10—C11—N17 | 178.28 (11) | C14—C13—N20—O21 | 173.63 (12) |
N17—C11—C12—C13 | −179.98 (11) | C14—C15—N23—O24 | 138.87 (13) |
C10—C11—C12—C13 | −0.3 (2) | C10—C15—N23—O24 | −42.97 (17) |
C11—C12—C13—C14 | 2.17 (19) | C14—C15—N23—O25 | −40.50 (17) |
C11—C12—C13—N20 | 179.06 (12) | C10—C15—N23—O25 | 137.66 (12) |
D—H···A | D—H | H···A | D···A | D—H···A |
N7—H7···O16 | 0.892 (17) | 1.825 (18) | 2.7128 (14) | 172.8 (16) |
N7—H7···O19 | 0.892 (17) | 2.578 (16) | 3.0517 (15) | 114.0 (12) |
C2—H2···O16 | 0.931 (18) | 2.341 (17) | 3.0464 (16) | 132.4 (13) |
C2—H2···O24 | 0.931 (18) | 2.498 (17) | 3.3444 (17) | 151.4 (14) |
C8—H8A···O19 | 1.001 (18) | 2.411 (18) | 3.1171 (18) | 126.9 (13) |
C9—H9C···O19 | 0.997 (18) | 2.592 (17) | 3.2311 (17) | 121.9 (12) |
C9—H9B···O21i | 0.974 (19) | 2.571 (19) | 3.5074 (17) | 161.3 (14) |
C9—H9B···O25ii | 0.974 (19) | 2.476 (18) | 3.0794 (18) | 119.9 (13) |
C4—H4···O21iii | 0.924 (19) | 2.466 (18) | 3.1776 (16) | 134.0 (14) |
C14—H14···O19iv | 0.941 (18) | 2.564 (18) | 3.4988 (16) | 172.3 (14) |
C9—H9C···O22v | 0.997 (18) | 2.502 (18) | 3.3283 (16) | 140.0 (13) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y+1/2, z+1/2; (iii) −x+1/2, y+3/2, z−1/2; (iv) x−1/2, −y+3/2, z; (v) x+1/2, −y+3/2, z. |
Experimental details
Crystal data | |
Chemical formula | C8H12N+·C6H2N3O7− |
Mr | 350.29 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 90 |
a, b, c (Å) | 15.996 (1), 9.1491 (6), 10.3899 (9) |
V (Å3) | 1520.55 (19) |
Z | 4 |
Radiation type | Cu Kα |
µ (mm−1) | 1.08 |
Crystal size (mm) | 0.26 × 0.24 × 0.08 |
Data collection | |
Diffractometer | Bruker Kappa APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.767, 0.919 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 16980, 2823, 2755 |
Rint | 0.033 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.060, 1.03 |
No. of reflections | 2823 |
No. of parameters | 283 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.14, −0.16 |
Absolute structure | Flack (1983), 1309 Friedel pairs |
Absolute structure parameter | 0.07 (12) |
Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N7—H7···O16 | 0.892 (17) | 1.825 (18) | 2.7128 (14) | 172.8 (16) |
N7—H7···O19 | 0.892 (17) | 2.578 (16) | 3.0517 (15) | 114.0 (12) |
C2—H2···O16 | 0.931 (18) | 2.341 (17) | 3.0464 (16) | 132.4 (13) |
C2—H2···O24 | 0.931 (18) | 2.498 (17) | 3.3444 (17) | 151.4 (14) |
C8—H8A···O19 | 1.001 (18) | 2.411 (18) | 3.1171 (18) | 126.9 (13) |
C9—H9C···O19 | 0.997 (18) | 2.592 (17) | 3.2311 (17) | 121.9 (12) |
C9—H9B···O21i | 0.974 (19) | 2.571 (19) | 3.5074 (17) | 161.3 (14) |
C9—H9B···O25ii | 0.974 (19) | 2.476 (18) | 3.0794 (18) | 119.9 (13) |
C4—H4···O21iii | 0.924 (19) | 2.466 (18) | 3.1776 (16) | 134.0 (14) |
C14—H14···O19iv | 0.941 (18) | 2.564 (18) | 3.4988 (16) | 172.3 (14) |
C9—H9C···O22v | 0.997 (18) | 2.502 (18) | 3.3283 (16) | 140.0 (13) |
Symmetry codes: (i) x, y+1, z; (ii) −x+1/2, y+1/2, z+1/2; (iii) −x+1/2, y+3/2, z−1/2; (iv) x−1/2, −y+3/2, z; (v) x+1/2, −y+3/2, z. |
Acknowledgements
NV thanks the University Grants Commission (UGC), Government of India, for a minor research project grant [MRP-2219/06(UGC-SERO)].
References
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Botoshansky, M., Herbstein, F. H. & Kapon, M. (1994). Acta Cryst. B50, 191–200. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier. Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York, Oxford University Press. Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
In, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367–369. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York, Oxford University Press. Google Scholar
Mizutani, T., Takagi, H., Ueno, Y., Honiguchi, T., Yamamura, K. & Ogoshi, H. (1998). J. Phys. Org. Chem. 11, 737–742. Web of Science CrossRef CAS Google Scholar
Pecaut, J. & Bagieu-Beucher, M. (1993). Acta Cryst. C49, 834–837. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Gottingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Takayanagi, H., Kai, T., Yamaguchi, S.-I., Takeda, K. & Goto, M. (1996). Chem. Pharm. Bull. 44, 2199–2204. CrossRef Google Scholar
Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003). Acta Cryst. E59, o913–o916. CSD CrossRef IUCr Journals Google Scholar
Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961–967. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The design of organic polar crystals for quadratic non-linear optical applications is supported by the observation that the organic molecules containing π-electron systems asymmetrized by electron donor and acceptor groups are highly polarizable entities in which problems of transparency and crystal growth may arise from their molecular crystal packing (Pecaut & Bagieu-Beucher, 1993). It is known that nitrophenols act not only as π-acceptors to form various π-stacking complexes with other aromatic molecules, but also as acidic ligands to form salts through specific electrostatic or H-bonding interactions (In et al., 1997). The bonding of electron-donor acceptor complexes strongly depends on the nature of the partners. The linkage could involve not only electrostatic interactions, but also the formation of molecular complexes (Zadrenko et al., 1997). It has been reported that proton transferred thermochromic complexes were formed between phenols and amines in apolar solvents at low temperature if an appropriate H-bonding network between the phenols and amines was present to stabilize it (Mizutani et al., 1998). Pyridinium picrate has been reported in two crystalline phases and it appears in both phases as an internally linked H-bonded ion pair. These two phases are referred to as molecular crystals rather than salts based on their structural arrangements (Botoshansky et al., 1994). A similar structural arrangement has also been reported for 4-dimethylaminopyridinium picrate (Vembu et al., 2003). The monoclinic polymorph of the title compound (CSD Reference Code: REYDEE) has been reported previously (Takayanagi et al., 1996). We have structurally elucidated the orthorhombic polymorph of the title compound as a forerunner to assessing its optical properties and report its structure here.
The asymmetric unit of (I) contains one N,N-Dimethylanilinium cation, and one 2,4,6-trinitrophenolate anion. (Fig.1). The crystal structure of (I) is stabilized by N—H···O and C—H···O interactions. The range of H···O distances (Table 1) found in (I) agrees with those found for N—H···O (Jeffrey, 1997) and C—H···O hydrogen bonds (Desiraju & Steiner, 1999). The N7—H7···O16 and N7—H7···O19 interactions form a pair of bifurcated donor bonds that link the N,N-dimethylanilinium cation and 2,4,6-trinitrophenolate anion and also form a motif of graph set R21(6) (Bernstein et al., 1995; Etter, 1990). Another pair of bifurcated donor bonds consists of the C2—H2···O16 and C2—H2···O24 interactions that also link the cation and the anion and form a R21(6) motif. The C8—H8A···O19 and C9—H9C···O19 interactions constitute a pair of bifurcated bonds forming a R12(6) motif that link the cation and the anion. The N7—H7···O19 and C8—H8A···O19 interactions constitute a pair of bifurcated acceptor bonds that form a R12(5) motif. The above two motifs, R12(6) and R12(5), together form a R12(5) motif by the interplay of the trifurcated acceptor bonds formed by N7—H7···O19, C9—H8A···O19 and C9—H9C···O19 interactions. There are five intermolecular C—H···O interactions (Table 1) that contribute to the supramolecular aggregation of the title compound. The intramolecular N—H···O interactions mentioned above also contribute to the formation of cooperative H-bonded network (Fig. 2). There is an offset π···π stacking interaction, Cg1···Cg2 (x, -1+y, z) at 3.697Å with α = 3.19, β = 24.88 and γ = 24.00 and the two perpendicular distances being 3.377 and 3.354Å. There is also an edge to face π···π stacking interaction, Cg1···Cg2 (1.5-x, -0.5+y, 0.5+z) at 3.673Å with α=13.75, β=25.68 and γ=12.78 and the two perpendicular distances being 3.582 and 3.310Å. Cg1 and Cg2 are the centroids of the C1···C6 and C10···.C15 rings.
The interplay of strong N—H···O and weak C—H···O, π···π interactions with different strengths, directional preferences and distance presents a complex mosaic of interactions. The three dimensional arrangement of the 2,4,6-trinitrophenolate and N,N-dimethylanilinium moieties in the unit cell, shows that the title compound is an internally linked hydrogen bonded ion pair and hence can be regarded as a molecular crystal rather than a salt.