organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o156-o157

Morpholinium 2,4,6-tri­nitro­phenolate

aDepartment of Chemistry, Urumu Dhanalakshmi College, Tiruchirappalli 620 019, India, and bDepartment of Chemistry, Louisiana State University, Baton Rouge, LA 70803-1804, USA
*Correspondence e-mail: vembu57@yahoo.com

(Received 11 December 2008; accepted 15 December 2008; online 20 December 2008)

There are two independent formula units in the asymmetric unit of the title compound, C4H10NO+·C6H2N3O7. The morpholinium cations in both mol­ecules are puckered and adopt a chair conformation. Intermolecular N—H⋯O and C—H⋯O inter­actions generate rings of motifs R21(5) and R12(6). The supra­molecular aggregation is completed by the presence of two co-operative hydrogen-bonded networks of further N—H⋯O inter­actions, which generate an infinite one-dimensional chain along the base vector [100]. Two C—H⋯π interactions are also seen.

Related literature

For a detailed account of the design of organic polar crystals, see: Pecaut & Bagieu-Beucher (1993[Pecaut, J. & Bagieu-Beucher, M. (1993). Acta Cryst. C49, 834-837.]). For hydrogen bonding in nitro­phenol complexes, see: In et al. (1997[In, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367-369.]); Zadrenko et al. (1997[Zaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961-967.]); Mizutani et al. (1998[Mizutani, T., Takagi, H., Ueno, Y., Honiguchi, T., Yamamura, K. & Ogoshi, H. (1998). J. Phys. Org. Chem. 11, 737-742.]). For the supra­molecular architecture of mol­ecular complexes of trinitro­phenols, see: Botoshansky et al. (1994[Botoshansky, M., Herbstein, F. H. & Kapon, M. (1994). Acta Cryst. B50, 191-200.]); Vembu et al. (2003[Vembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003). Acta Cryst. E59, o913-o916.]). For puckering paramaters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bonding criteria, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.]); Desiraju (1989[Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.]); Jeffrey (1997[Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C4H10NO+·C6H2N3O7

  • Mr = 316.24

  • Triclinic, [P \overline 1]

  • a = 8.3179 (5) Å

  • b = 9.5733 (5) Å

  • c = 16.8451 (10) Å

  • α = 91.292 (4)°

  • β = 98.604 (4)°

  • γ = 107.589 (4)°

  • V = 1261.00 (13) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.28 mm−1

  • T = 90.0 (5) K

  • 0.25 × 0.22 × 0.13 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2006[Sheldrick, G. M. (2006). SADABS. University of Göttingen, Germany.]) Tmin = 0.745, Tmax = 0.851

  • 14930 measured reflections

  • 4520 independent reflections

  • 4172 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.075

  • S = 1.04

  • 4520 reflections

  • 494 parameters

  • All H-atom parameters refined

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N20A—H20A⋯O17B 0.905 (18) 1.938 (18) 2.8011 (14) 158.9 (15)
C21A—H21B⋯O13B 0.976 (17) 2.485 (16) 3.1491 (16) 125.1 (12)
C22B—H22C⋯O12B 0.985 (17) 2.531 (17) 3.3427 (16) 139.6 (12)
N20A—H20B⋯O7Bi 0.930 (19) 1.885 (19) 2.6838 (14) 142.6 (15)
N20A—H20B⋯O15Bi 0.930 (19) 2.225 (18) 2.9229 (15) 131.2 (14)
C18B—H18C⋯O9Bi 0.954 (17) 2.559 (16) 3.3078 (17) 135.5 (12)
N20B—H20C⋯O7Aii 0.888 (18) 1.930 (18) 2.6911 (14) 142.8 (15)
N20B—H20C⋯O9Aii 0.888 (18) 2.255 (18) 2.9248 (15) 132.1 (14)
N20B—H20D⋯O12Aiii 0.930 (19) 2.528 (17) 2.8693 (14) 102.0 (12)
C18B—H18D⋯O10Biii 0.967 (17) 2.571 (17) 3.1533 (16) 118.8 (12)
C21B—H21C⋯O12Aiii 0.956 (16) 2.514 (16) 3.1210 (16) 121.4 (12)
N20B—H20D⋯O17Aiv 0.930 (19) 1.946 (19) 2.8182 (14) 155.4 (15)
C3B—H3B⋯O16Bv 0.958 (17) 2.495 (18) 3.4394 (17) 168.5 (13)
C5A—H5A⋯O10Av 0.968 (17) 2.492 (17) 3.4436 (16) 167.7 (13)
C18A—H18A⋯O15Avi 0.956 (17) 2.474 (17) 3.2628 (17) 139.7 (13)
C21B—H21D⋯O15Avi 0.965 (17) 2.461 (17) 3.3679 (16) 156.6 (12)
C21A—H21A⋯O9Bvii 0.972 (16) 2.499 (16) 3.4139 (16) 156.8 (12)
C21A—H21B⋯O16Aviii 0.976 (17) 2.473 (16) 3.1274 (16) 124.2 (12)
C22A—H22B⋯O13Aix 0.952 (17) 2.595 (17) 3.3916 (16) 141.3 (13)
C18A—H18ACg4ix 0.958 (18) 2.906 3.718 140.37
C22B—H22CCg3x 0.991 (18) 3.152 3.896 133.06
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+2, -y, -z; (iii) x, y-1, z; (iv) x+1, y, z; (v) x-1, y, z; (vi) -x+1, -y, -z; (vii) -x+1, -y+1, -z+1; (viii) -x+1, -y+1, -z; (ix) x-1, y-1, z; (x) -x+2, -y+1, -z. Cg3 and Cg4 are the centroids of the C1A–C6A and C1B–C6B rings, respectively.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design of organic polar crystals for quadratic non-linear optical applications is supported by the observation that the organic molecules containing π-electron systems asymmetrized by electron donor and acceptor groups are highly polarizable entities in which problems of transparency and crystal growth may arise from their molecular crystal packing (Pecaut & Bagieu-Beucher, 1993). It is known that nitrophenols act not only as π-acceptor to form various π-stacking complexes with other aromatic molecules, but also as an acidic ligand to form salts through specific electrostatic or H-bonding interactions (In et al., 1997). The bonding of electron-donor acceptor complexes strongly depends on the nature of the partners. The linkage could involve not only electrostatic interactions, but also the formation of molecular complexes (Zadrenko et al., 1997). It has been reported that proton transferred thermochromic complexes were formed between phenols and amines in apolar solvents at low temperature if an appropriate H-bonding network between phenols and amines were present to stabilize it (Mizutani et al., 1998). Pyridinium picrate has been reported in two crystalline phases and it appears in both phases as an internally linked H-bonded ion pair. These two phases are termed as molecular crystals rather than salts based on their structural arrangements (Botoshansky et al., 1994). A similar structural arrangement has also been reported for 4-dimethylaminopyridinium picrate (Vembu et al., 2003). In continuation of our investigations on the supramolecular architecture of picrates, the X-ray diffraction study on the title compound is carried out.

The asymmetric unit of (I) contains two morpholinium cations and and two 2,4,6-trinitrophenolate anions. (Fig.1). The morpholinium cation is puckered in both the molecules with the Cremer and Pople puckering parameters Q, θ and ϕ (Cremer & Pople, 1975) in the two molecules being, 0.590 (1)Å & 0.588 (1) Å, 179.7 (2)° & 0.7 (1)°, 285 (13)° & 63 (11)°, respectively. The morpolinium cation in both the molecules adopt a chair conformation as discerned from the respective torsion angles.

The crystal structure of (I) is stabilized by N—H···O and C—H···O interactions. The range of H···O distances (Table 1) found in (I) agrees with those found for N—H···O (Jeffrey, 1997) and C—H···O hydrogen bonds (Desiraju & Steiner, 1999). The N20A—H20B···O7Bi and N20A—H20B···O15Bi interactions form a pair of bifurcated donor bonds that form a motif of graph set (Bernstein et al., 1995; Etter, 1990) R12(6). Another pair of bifurcated donor bonds consists of the N20B—H20C···O7Aii and N20B—H20C···O9Aii interactions that also generate a R12(6) motif. The N20B—H20D···O12Aiii and C21B—H21C···O12Aiii interactions constitute a pair of bifurcated acceptor bonds that generate a ring motif of graph set R21(5). The N20A—H20A···O17B, N20A—H20B···O7Bi and N20A—H20B···O15Bi interactions generate a cooperative H-bonded network. Another cooperative H-bonded network is formed by the interactions, N20B—H20C···O7Aii, N20B—H20C···O9Aii, N20B—H20D···O12Aiii and N20B—H20D···O17Aiv. These two networks generate an infinite one dimensional chain along the base vector [100]. The C18A—H18A···Cg4viii interaction (Table 2) is classified as an offset face to face interaction with γ = 4.45° and perpendicular distance 2.897Å whereas the C22B—H22C···Cg3ix is termed as edge to face interaction with γ = 20.34° with a perpendicular distance 2.956Å where Cg4 is the centroid of the ring formed by the atoms C1B—C6B and Cg3 is the centroid of the ring formed by the atoms C1A—C6A. There are two face to face π···π interactions in the title compound with coordinates Cg3···Cg3 (2 - x, 1 - y, -z) with α = 0.00°, β & γ = 19.38°, with perpendicular distance 3.449Å and Cg4···Cg4 (2 - x, 1 - y, 1 - z) with α = 0.02°, β & γ = 18.71°, and perpendicular distance 3.461 Å.

The interplay of strong N—H···O and weak C—H···O, C—H···π and π···π interactions with different strengths, directional preferences and distances presents a complex mosaic of interactions. The three dimensional arrangement of 2,4,6-trinitrophenolate and morpholinium moieties in the unit cell, shows that the title compound is an internally linked hydrogen bonded ion pair and hence can be regarded as a molecular crystal rather than a salt.

Related literature top

For a detailed account of the design of organic polar crystals, see: Pecaut & Bagieu-Beucher (1993). For hydrogen bonding in nitrophenol complexes, see: In et al. (1997); Zadrenko et al. (1997); Mizutani et al. (1998). For the supramolecular architecture of molecular complexes of trinitrophenols, see: Botoshansky et al. (1994); Vembu et al. (2003). For puckering paramaters, see: Cremer & Pople (1975). For hydrogen-bonding criteria, see: Desiraju & Steiner (1999); Desiraju (1989); Jeffrey (1997). For graph-set notation, see: Bernstein et al. (1995); Etter (1990).

Experimental top

2,4,6-Trinitrophenol (5.2 mmol) dissolved in aqueous ethanol (25 ml) was added dropwise to morpholine (5.7 mmol) in aqueous ethanol (25 ml). The above solution was constantly stirred at room temperature for 2 hrs. The precipitated product was filtered and recrystallized from aqueous ethanol. Yield 75% (3.9 mmol).

Refinement top

All H-atoms were located in difference maps and their positions and isotropic displacement parameters were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atoms labelled and displacement ellipsoids depicted at the 50% probability level for all non-H atoms. H-atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. The molecular packing viewed down the a-axis. Dashed lines represent the N—H···O and C—H···O interactions within the lattice.
Morpholinium 2,4,6-trinitrophenolate top
Crystal data top
C4H10NO+·C6H2N3O7Z = 4
Mr = 316.24F(000) = 656
Triclinic, P1Dx = 1.666 Mg m3
Hall symbol: -P 1Melting point: 418 K
a = 8.3179 (5) ÅCu Kα radiation, λ = 1.54178 Å
b = 9.5733 (5) ÅCell parameters from 9038 reflections
c = 16.8451 (10) Åθ = 2.6–70.3°
α = 91.292 (4)°µ = 1.28 mm1
β = 98.604 (4)°T = 90 K
γ = 107.589 (4)°Needle, yellow
V = 1261.00 (13) Å30.25 × 0.22 × 0.13 mm
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4520 independent reflections
Radiation source: fine-focus sealed tube4172 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 70.4°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2006)
h = 98
Tmin = 0.745, Tmax = 0.851k = 1111
14930 measured reflectionsl = 2020
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029All H-atom parameters refined
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.0404P)2 + 0.5962P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4520 reflectionsΔρmax = 0.25 e Å3
494 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (2)
Crystal data top
C4H10NO+·C6H2N3O7γ = 107.589 (4)°
Mr = 316.24V = 1261.00 (13) Å3
Triclinic, P1Z = 4
a = 8.3179 (5) ÅCu Kα radiation
b = 9.5733 (5) ŵ = 1.28 mm1
c = 16.8451 (10) ÅT = 90 K
α = 91.292 (4)°0.25 × 0.22 × 0.13 mm
β = 98.604 (4)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4520 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2006)
4172 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.851Rint = 0.025
14930 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.075All H-atom parameters refined
S = 1.04Δρmax = 0.25 e Å3
4520 reflectionsΔρmin = 0.21 e Å3
494 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1A1.09611 (17)0.49974 (13)0.12320 (7)0.0127 (3)
C2A1.25008 (16)0.60126 (14)0.07769 (7)0.0132 (3)
C3A1.25234 (17)0.72107 (14)0.03028 (7)0.0136 (3)
C4A1.10041 (17)0.74600 (14)0.02152 (7)0.0133 (3)
C5A0.94390 (17)0.65574 (14)0.06295 (7)0.0132 (3)
C6A0.94588 (16)0.53913 (14)0.11109 (7)0.0130 (3)
O7A1.09018 (12)0.39624 (10)0.17139 (5)0.0155 (2)
N8A1.41454 (14)0.58076 (12)0.08198 (6)0.0147 (2)
O9A1.42204 (12)0.45459 (10)0.09063 (6)0.0192 (2)
O10A1.54125 (12)0.69100 (10)0.07467 (6)0.0212 (2)
N11A1.10530 (14)0.86621 (12)0.03319 (6)0.0143 (2)
O12A0.96928 (12)0.87274 (10)0.05109 (5)0.0179 (2)
O13A1.24520 (12)0.95709 (10)0.05934 (6)0.0194 (2)
N14A0.78244 (14)0.44885 (12)0.15723 (6)0.0134 (2)
O15A0.74323 (12)0.31494 (10)0.15316 (6)0.0189 (2)
O16A0.69331 (12)0.51112 (11)0.19769 (6)0.0199 (2)
O17A0.10539 (11)0.00176 (10)0.25016 (6)0.0168 (2)
C18A0.20658 (18)0.08501 (15)0.28608 (9)0.0184 (3)
C19A0.32219 (18)0.00503 (15)0.36195 (8)0.0171 (3)
N20A0.43482 (14)0.13842 (12)0.34067 (7)0.0133 (2)
C21A0.32929 (17)0.22701 (14)0.30180 (8)0.0145 (3)
C22A0.21200 (17)0.13892 (15)0.22823 (8)0.0162 (3)
C1B1.20643 (17)0.72087 (13)0.48672 (7)0.0131 (3)
C2B1.02460 (17)0.69732 (14)0.46441 (7)0.0136 (3)
C3B0.91624 (17)0.59563 (14)0.40640 (7)0.0133 (3)
C4B0.98544 (17)0.50853 (14)0.36284 (7)0.0133 (3)
C5B1.15875 (17)0.52696 (14)0.37604 (7)0.0134 (3)
C6B1.26371 (16)0.62652 (14)0.43659 (8)0.0134 (3)
O7B1.30043 (12)0.81736 (10)0.53895 (5)0.0166 (2)
N8B0.95032 (14)0.79251 (12)0.50610 (6)0.0141 (2)
O9B0.97719 (12)0.80272 (10)0.57994 (5)0.0181 (2)
O10B0.86456 (13)0.85646 (11)0.46437 (6)0.0208 (2)
N11B0.87435 (14)0.39640 (12)0.30331 (6)0.0143 (2)
O12B0.93987 (12)0.32440 (10)0.26417 (5)0.0172 (2)
O13B0.71918 (12)0.37736 (11)0.29419 (6)0.0204 (2)
N14B1.44400 (14)0.63651 (12)0.44848 (6)0.0152 (2)
O15B1.52754 (12)0.66652 (11)0.51713 (6)0.0196 (2)
O16B1.50511 (12)0.61178 (11)0.38943 (6)0.0214 (2)
O17B0.59893 (12)0.00091 (10)0.24493 (5)0.0160 (2)
C18B0.71842 (18)0.05139 (15)0.29696 (8)0.0170 (3)
C19B0.72407 (18)0.19629 (15)0.26204 (8)0.0160 (3)
N20B0.77466 (14)0.17515 (12)0.18046 (6)0.0132 (2)
C21B0.65320 (17)0.11684 (14)0.12743 (8)0.0144 (3)
C22B0.64834 (18)0.02484 (15)0.16719 (8)0.0157 (3)
H3A1.360 (2)0.7844 (18)0.0031 (10)0.017 (4)*
H5A0.838 (2)0.6748 (17)0.0584 (9)0.016 (4)*
H18A0.271 (2)0.1092 (17)0.2483 (10)0.018 (4)*
H18B0.126 (2)0.1764 (19)0.2992 (10)0.023 (4)*
H19A0.396 (2)0.0592 (18)0.3852 (10)0.018 (4)*
H19B0.261 (2)0.0171 (17)0.4011 (10)0.017 (4)*
H20A0.500 (2)0.1174 (18)0.3066 (10)0.019 (4)*
H20B0.508 (2)0.1873 (19)0.3868 (11)0.025 (4)*
H21A0.263 (2)0.2475 (16)0.3409 (9)0.012 (4)*
H21B0.405 (2)0.3182 (18)0.2864 (9)0.018 (4)*
H22A0.135 (2)0.1928 (17)0.2053 (9)0.015 (4)*
H22B0.276 (2)0.1212 (17)0.1890 (10)0.017 (4)*
H3B0.797 (2)0.5873 (17)0.3967 (10)0.017 (4)*
H5B1.207 (2)0.4711 (17)0.3456 (10)0.014 (4)*
H18C0.827 (2)0.0221 (17)0.3037 (9)0.014 (4)*
H18D0.680 (2)0.0648 (18)0.3484 (10)0.020 (4)*
H19C0.809 (2)0.2287 (17)0.2940 (10)0.017 (4)*
H19D0.616 (2)0.2714 (18)0.2553 (10)0.019 (4)*
H20C0.780 (2)0.260 (2)0.1599 (10)0.022 (4)*
H20D0.885 (2)0.109 (2)0.1881 (10)0.024 (4)*
H21C0.689 (2)0.1002 (17)0.0762 (10)0.015 (4)*
H21D0.543 (2)0.1912 (17)0.1218 (9)0.014 (4)*
H22C0.760 (2)0.1022 (18)0.1722 (9)0.018 (4)*
H22D0.560 (2)0.0609 (17)0.1341 (10)0.016 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1A0.0151 (7)0.0122 (6)0.0111 (6)0.0043 (5)0.0024 (5)0.0033 (5)
C2A0.0119 (7)0.0151 (6)0.0135 (6)0.0050 (5)0.0031 (5)0.0029 (5)
C3A0.0138 (7)0.0142 (6)0.0116 (6)0.0027 (5)0.0018 (5)0.0023 (5)
C4A0.0165 (7)0.0122 (6)0.0114 (6)0.0045 (5)0.0029 (5)0.0006 (5)
C5A0.0133 (7)0.0150 (6)0.0123 (6)0.0050 (5)0.0040 (5)0.0036 (5)
C6A0.0118 (7)0.0143 (6)0.0117 (6)0.0022 (5)0.0017 (5)0.0024 (5)
O7A0.0157 (5)0.0145 (4)0.0162 (4)0.0054 (4)0.0012 (4)0.0020 (3)
N8A0.0128 (6)0.0155 (5)0.0153 (5)0.0042 (4)0.0013 (4)0.0010 (4)
O9A0.0166 (5)0.0165 (5)0.0254 (5)0.0081 (4)0.0005 (4)0.0028 (4)
O10A0.0123 (5)0.0175 (5)0.0313 (5)0.0006 (4)0.0049 (4)0.0021 (4)
N11A0.0162 (6)0.0144 (5)0.0129 (5)0.0053 (4)0.0027 (4)0.0010 (4)
O12A0.0177 (5)0.0205 (5)0.0184 (5)0.0081 (4)0.0075 (4)0.0000 (4)
O13A0.0166 (5)0.0169 (5)0.0210 (5)0.0016 (4)0.0003 (4)0.0051 (4)
N14A0.0122 (6)0.0152 (5)0.0127 (5)0.0035 (4)0.0031 (4)0.0003 (4)
O15A0.0174 (5)0.0138 (5)0.0227 (5)0.0013 (4)0.0027 (4)0.0010 (4)
O16A0.0151 (5)0.0239 (5)0.0201 (5)0.0073 (4)0.0019 (4)0.0037 (4)
O17A0.0115 (5)0.0159 (5)0.0202 (5)0.0018 (4)0.0005 (4)0.0002 (4)
C18A0.0145 (7)0.0140 (6)0.0254 (7)0.0033 (5)0.0014 (6)0.0002 (5)
C19A0.0150 (7)0.0168 (6)0.0193 (7)0.0043 (5)0.0027 (6)0.0043 (5)
N20A0.0124 (6)0.0141 (5)0.0130 (5)0.0041 (4)0.0014 (5)0.0013 (4)
C21A0.0126 (7)0.0139 (6)0.0173 (6)0.0051 (5)0.0020 (5)0.0001 (5)
C22A0.0138 (7)0.0186 (7)0.0156 (6)0.0044 (5)0.0015 (5)0.0019 (5)
C1B0.0146 (7)0.0130 (6)0.0117 (6)0.0041 (5)0.0021 (5)0.0031 (5)
C2B0.0150 (7)0.0142 (6)0.0127 (6)0.0056 (5)0.0039 (5)0.0024 (5)
C3B0.0132 (7)0.0151 (6)0.0120 (6)0.0046 (5)0.0027 (5)0.0042 (5)
C4B0.0129 (7)0.0130 (6)0.0120 (6)0.0016 (5)0.0013 (5)0.0009 (5)
C5B0.0162 (7)0.0133 (6)0.0122 (6)0.0054 (5)0.0044 (5)0.0021 (5)
C6B0.0117 (7)0.0145 (6)0.0142 (6)0.0037 (5)0.0030 (5)0.0032 (5)
O7B0.0156 (5)0.0167 (5)0.0160 (4)0.0048 (4)0.0013 (4)0.0037 (4)
N8B0.0123 (6)0.0140 (5)0.0154 (5)0.0034 (4)0.0022 (4)0.0004 (4)
O9B0.0205 (5)0.0218 (5)0.0126 (4)0.0068 (4)0.0041 (4)0.0011 (4)
O10B0.0216 (5)0.0218 (5)0.0216 (5)0.0128 (4)0.0010 (4)0.0004 (4)
N11B0.0143 (6)0.0143 (5)0.0131 (5)0.0021 (4)0.0031 (4)0.0020 (4)
O12B0.0206 (5)0.0164 (5)0.0148 (4)0.0062 (4)0.0032 (4)0.0021 (3)
O13B0.0117 (5)0.0231 (5)0.0226 (5)0.0006 (4)0.0018 (4)0.0030 (4)
N14B0.0140 (6)0.0161 (5)0.0154 (5)0.0046 (4)0.0020 (4)0.0006 (4)
O15B0.0161 (5)0.0258 (5)0.0164 (5)0.0091 (4)0.0037 (4)0.0045 (4)
O16B0.0155 (5)0.0316 (6)0.0183 (5)0.0077 (4)0.0060 (4)0.0025 (4)
O17B0.0165 (5)0.0209 (5)0.0137 (4)0.0101 (4)0.0030 (4)0.0005 (3)
C18B0.0163 (7)0.0227 (7)0.0136 (6)0.0092 (6)0.0008 (5)0.0006 (5)
C19B0.0155 (7)0.0190 (7)0.0152 (6)0.0074 (6)0.0035 (5)0.0030 (5)
N20B0.0120 (6)0.0127 (5)0.0147 (5)0.0037 (5)0.0025 (4)0.0015 (4)
C21B0.0115 (7)0.0180 (6)0.0129 (6)0.0040 (5)0.0010 (5)0.0004 (5)
C22B0.0160 (7)0.0176 (6)0.0149 (6)0.0068 (6)0.0034 (5)0.0025 (5)
Geometric parameters (Å, º) top
C1A—O7A1.2511 (16)C1B—O7B1.2489 (16)
C1A—C2A1.4466 (19)C1B—C2B1.4490 (19)
C1A—C6A1.4502 (18)C1B—C6B1.4498 (18)
C2A—C3A1.3765 (18)C2B—C3B1.3705 (19)
C2A—N8A1.4513 (17)C2B—N8B1.4652 (16)
C3A—C4A1.3829 (19)C3B—C4B1.3978 (18)
C3A—H3A0.957 (17)C3B—H3B0.958 (17)
C4A—C5A1.3963 (19)C4B—C5B1.3811 (19)
C4A—N11A1.4449 (16)C4B—N11B1.4445 (17)
C5A—C6A1.3705 (18)C5B—C6B1.3777 (18)
C5A—H5A0.968 (17)C5B—H5B0.943 (16)
C6A—N14A1.4638 (17)C6B—N14B1.4563 (17)
N8A—O10A1.2340 (15)N8B—O9B1.2266 (14)
N8A—O9A1.2347 (14)N8B—O10B1.2292 (15)
N11A—O12A1.2324 (15)N11B—O13B1.2328 (15)
N11A—O13A1.2339 (15)N11B—O12B1.2333 (14)
N14A—O16A1.2262 (15)N14B—O16B1.2318 (15)
N14A—O15A1.2298 (14)N14B—O15B1.2356 (15)
O17A—C18A1.4343 (16)O17B—C22B1.4332 (15)
O17A—C22A1.4363 (16)O17B—C18B1.4376 (16)
C18A—C19A1.5126 (19)C18B—C19B1.5110 (18)
C18A—H18A0.956 (17)C18B—H18C0.954 (17)
C18A—H18B0.982 (18)C18B—H18D0.967 (17)
C19A—N20A1.4957 (17)C19B—N20B1.4968 (16)
C19A—H19A0.964 (17)C19B—H19C0.952 (17)
C19A—H19B0.949 (17)C19B—H19D0.957 (17)
N20A—C21A1.4905 (16)N20B—C21B1.4912 (17)
N20A—H20A0.905 (18)N20B—H20C0.888 (18)
N20A—H20B0.930 (19)N20B—H20D0.930 (19)
C21A—C22A1.5141 (18)C21B—C22B1.5134 (18)
C21A—H21A0.972 (16)C21B—H21C0.956 (16)
C21A—H21B0.976 (17)C21B—H21D0.965 (17)
C22A—H22A0.977 (16)C22B—H22C0.985 (17)
C22A—H22B0.952 (17)C22B—H22D1.003 (17)
O7A—C1A—C2A125.64 (12)O7B—C1B—C2B123.19 (12)
O7A—C1A—C6A122.87 (12)O7B—C1B—C6B125.55 (12)
C2A—C1A—C6A111.33 (11)C2B—C1B—C6B111.10 (11)
C3A—C2A—C1A123.85 (12)C3B—C2B—C1B125.69 (12)
C3A—C2A—N8A116.39 (11)C3B—C2B—N8B116.95 (12)
C1A—C2A—N8A119.75 (11)C1B—C2B—N8B117.34 (11)
C2A—C3A—C4A119.83 (12)C2B—C3B—C4B118.12 (12)
C2A—C3A—H3A118.7 (10)C2B—C3B—H3B119.4 (9)
C4A—C3A—H3A121.5 (10)C4B—C3B—H3B122.5 (10)
C3A—C4A—C5A121.30 (12)C5B—C4B—C3B121.14 (12)
C3A—C4A—N11A118.73 (12)C5B—C4B—N11B119.13 (11)
C5A—C4A—N11A119.96 (11)C3B—C4B—N11B119.72 (12)
C6A—C5A—C4A117.54 (12)C6B—C5B—C4B119.39 (12)
C6A—C5A—H5A120.9 (9)C6B—C5B—H5B118.8 (10)
C4A—C5A—H5A121.6 (9)C4B—C5B—H5B121.8 (10)
C5A—C6A—C1A126.08 (12)C5B—C6B—C1B124.41 (12)
C5A—C6A—N14A117.30 (11)C5B—C6B—N14B116.21 (11)
C1A—C6A—N14A116.57 (11)C1B—C6B—N14B119.37 (11)
O10A—N8A—O9A123.17 (11)O9B—N8B—O10B124.48 (11)
O10A—N8A—C2A117.99 (10)O9B—N8B—C2B118.06 (10)
O9A—N8A—C2A118.82 (10)O10B—N8B—C2B117.46 (10)
O12A—N11A—O13A123.45 (11)O13B—N11B—O12B123.32 (11)
O12A—N11A—C4A118.20 (11)O13B—N11B—C4B118.51 (11)
O13A—N11A—C4A118.35 (11)O12B—N11B—C4B118.17 (11)
O16A—N14A—O15A124.03 (11)O16B—N14B—O15B123.11 (11)
O16A—N14A—C6A118.12 (10)O16B—N14B—C6B118.08 (11)
O15A—N14A—C6A117.85 (10)O15B—N14B—C6B118.80 (10)
C18A—O17A—C22A110.98 (10)C22B—O17B—C18B111.02 (10)
O17A—C18A—C19A110.48 (11)O17B—C18B—C19B110.24 (11)
O17A—C18A—H18A110.1 (10)O17B—C18B—H18C108.1 (9)
C19A—C18A—H18A111.4 (10)C19B—C18B—H18C111.9 (9)
O17A—C18A—H18B106.4 (10)O17B—C18B—H18D107.6 (10)
C19A—C18A—H18B109.9 (10)C19B—C18B—H18D109.5 (10)
H18A—C18A—H18B108.4 (14)H18C—C18B—H18D109.4 (13)
N20A—C19A—C18A108.48 (11)N20B—C19B—C18B108.76 (11)
N20A—C19A—H19A107.1 (10)N20B—C19B—H19C106.8 (9)
C18A—C19A—H19A111.6 (10)C18B—C19B—H19C111.0 (9)
N20A—C19A—H19B106.8 (10)N20B—C19B—H19D107.1 (10)
C18A—C19A—H19B112.8 (10)C18B—C19B—H19D112.9 (10)
H19A—C19A—H19B109.8 (14)H19C—C19B—H19D110.0 (14)
C21A—N20A—C19A110.29 (10)C21B—N20B—C19B110.35 (10)
C21A—N20A—H20A110.8 (10)C21B—N20B—H20C112.0 (11)
C19A—N20A—H20A107.0 (10)C19B—N20B—H20C109.3 (11)
C21A—N20A—H20B112.2 (11)C21B—N20B—H20D111.0 (11)
C19A—N20A—H20B109.0 (11)C19B—N20B—H20D106.7 (11)
H20A—N20A—H20B107.4 (15)H20C—N20B—H20D107.3 (15)
N20A—C21A—C22A108.92 (10)N20B—C21B—C22B109.01 (10)
N20A—C21A—H21A107.5 (9)N20B—C21B—H21C109.5 (10)
C22A—C21A—H21A110.5 (9)C22B—C21B—H21C110.5 (9)
N20A—C21A—H21B109.1 (10)N20B—C21B—H21D106.1 (9)
C22A—C21A—H21B110.3 (9)C22B—C21B—H21D110.9 (9)
H21A—C21A—H21B110.6 (13)H21C—C21B—H21D110.7 (13)
O17A—C22A—C21A110.50 (11)O17B—C22B—C21B110.54 (10)
O17A—C22A—H22A106.6 (9)O17B—C22B—H22C109.9 (9)
C21A—C22A—H22A109.2 (9)C21B—C22B—H22C111.5 (9)
O17A—C22A—H22B109.8 (10)O17B—C22B—H22D107.0 (9)
C21A—C22A—H22B110.8 (10)C21B—C22B—H22D109.7 (9)
H22A—C22A—H22B109.8 (13)H22C—C22B—H22D108.1 (13)
O7A—C1A—C2A—C3A174.43 (12)O7B—C1B—C2B—C3B178.42 (12)
C6A—C1A—C2A—C3A1.07 (17)C6B—C1B—C2B—C3B2.76 (18)
O7A—C1A—C2A—N8A4.32 (19)O7B—C1B—C2B—N8B0.12 (18)
C6A—C1A—C2A—N8A179.83 (10)C6B—C1B—C2B—N8B175.78 (10)
C1A—C2A—C3A—C4A2.82 (19)C1B—C2B—C3B—C4B1.76 (19)
N8A—C2A—C3A—C4A178.39 (11)N8B—C2B—C3B—C4B176.79 (11)
C2A—C3A—C4A—C5A3.08 (19)C2B—C3B—C4B—C5B1.87 (18)
C2A—C3A—C4A—N11A175.50 (11)C2B—C3B—C4B—N11B177.69 (11)
C3A—C4A—C5A—C6A1.64 (18)C3B—C4B—C5B—C6B4.11 (19)
N11A—C4A—C5A—C6A176.93 (11)N11B—C4B—C5B—C6B175.46 (11)
C4A—C5A—C6A—C1A0.14 (19)C4B—C5B—C6B—C1B2.93 (19)
C4A—C5A—C6A—N14A177.27 (11)C4B—C5B—C6B—N14B178.15 (11)
O7A—C1A—C6A—C5A176.08 (12)O7B—C1B—C6B—C5B175.89 (12)
C2A—C1A—C6A—C5A0.42 (18)C2B—C1B—C6B—C5B0.36 (17)
O7A—C1A—C6A—N14A1.35 (18)O7B—C1B—C6B—N14B3.00 (19)
C2A—C1A—C6A—N14A177.01 (10)C2B—C1B—C6B—N14B178.53 (10)
C3A—C2A—N8A—O10A30.04 (16)C3B—C2B—N8B—O9B128.96 (12)
C1A—C2A—N8A—O10A148.81 (12)C1B—C2B—N8B—O9B52.38 (15)
C3A—C2A—N8A—O9A148.13 (12)C3B—C2B—N8B—O10B50.82 (16)
C1A—C2A—N8A—O9A33.03 (17)C1B—C2B—N8B—O10B127.85 (12)
C3A—C4A—N11A—O12A167.89 (11)C5B—C4B—N11B—O13B177.35 (11)
C5A—C4A—N11A—O12A10.72 (17)C3B—C4B—N11B—O13B2.22 (17)
C3A—C4A—N11A—O13A12.32 (17)C5B—C4B—N11B—O12B2.60 (17)
C5A—C4A—N11A—O13A169.08 (11)C3B—C4B—N11B—O12B177.83 (11)
C5A—C6A—N14A—O16A50.61 (16)C5B—C6B—N14B—O16B30.79 (16)
C1A—C6A—N14A—O16A127.06 (12)C1B—C6B—N14B—O16B148.19 (12)
C5A—C6A—N14A—O15A129.58 (12)C5B—C6B—N14B—O15B147.88 (12)
C1A—C6A—N14A—O15A52.76 (15)C1B—C6B—N14B—O15B33.14 (17)
C22A—O17A—C18A—C19A60.91 (14)C22B—O17B—C18B—C19B61.09 (14)
O17A—C18A—C19A—N20A58.84 (14)O17B—C18B—C19B—N20B58.66 (14)
C18A—C19A—N20A—C21A57.62 (14)C18B—C19B—N20B—C21B57.23 (14)
C19A—N20A—C21A—C22A57.29 (13)C19B—N20B—C21B—C22B56.75 (13)
C18A—O17A—C22A—C21A60.32 (14)C18B—O17B—C22B—C21B60.61 (14)
N20A—C21A—C22A—O17A57.97 (14)N20B—C21B—C22B—O17B57.89 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N20A—H20A···O17B0.905 (18)1.938 (18)2.8011 (14)158.9 (15)
C21A—H21B···O13B0.976 (17)2.485 (16)3.1491 (16)125.1 (12)
C22B—H22C···O12B0.985 (17)2.531 (17)3.3427 (16)139.6 (12)
N20A—H20B···O7Bi0.930 (19)1.885 (19)2.6838 (14)142.6 (15)
N20A—H20B···O15Bi0.930 (19)2.225 (18)2.9229 (15)131.2 (14)
C18B—H18C···O9Bi0.954 (17)2.559 (16)3.3078 (17)135.5 (12)
N20B—H20C···O7Aii0.888 (18)1.930 (18)2.6911 (14)142.8 (15)
N20B—H20C···O9Aii0.888 (18)2.255 (18)2.9248 (15)132.1 (14)
N20B—H20D···O12Aiii0.930 (19)2.528 (17)2.8693 (14)102.0 (12)
C18B—H18D···O10Biii0.967 (17)2.571 (17)3.1533 (16)118.8 (12)
C21B—H21C···O12Aiii0.956 (16)2.514 (16)3.1210 (16)121.4 (12)
N20B—H20D···O17Aiv0.930 (19)1.946 (19)2.8182 (14)155.4 (15)
C3B—H3B···O16Bv0.958 (17)2.495 (18)3.4394 (17)168.5 (13)
C5A—H5A···O10Av0.968 (17)2.492 (17)3.4436 (16)167.7 (13)
C18A—H18A···O15Avi0.956 (17)2.474 (17)3.2628 (17)139.7 (13)
C21B—H21D···O15Avi0.965 (17)2.461 (17)3.3679 (16)156.6 (12)
C21A—H21A···O9Bvii0.972 (16)2.499 (16)3.4139 (16)156.8 (12)
C21A—H21B···O16Aviii0.976 (17)2.473 (16)3.1274 (16)124.2 (12)
C22A—H22B···O13Aix0.952 (17)2.595 (17)3.3916 (16)141.3 (13)
C18A—H18A···Cg4ix0.958 (18)2.9063.718140.37
C22B—H22C···Cg3x0.991 (18)3.1523.896133.06
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z; (iii) x, y1, z; (iv) x+1, y, z; (v) x1, y, z; (vi) x+1, y, z; (vii) x+1, y+1, z+1; (viii) x+1, y+1, z; (ix) x1, y1, z; (x) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC4H10NO+·C6H2N3O7
Mr316.24
Crystal system, space groupTriclinic, P1
Temperature (K)90
a, b, c (Å)8.3179 (5), 9.5733 (5), 16.8451 (10)
α, β, γ (°)91.292 (4), 98.604 (4), 107.589 (4)
V3)1261.00 (13)
Z4
Radiation typeCu Kα
µ (mm1)1.28
Crystal size (mm)0.25 × 0.22 × 0.13
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2006)
Tmin, Tmax0.745, 0.851
No. of measured, independent and
observed [I > 2σ(I)] reflections
14930, 4520, 4172
Rint0.025
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.075, 1.04
No. of reflections4520
No. of parameters494
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.25, 0.21

Computer programs: APEX2 (Bruker, 2006), APEX2 and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N20A—H20A···O17B0.905 (18)1.938 (18)2.8011 (14)158.9 (15)
C21A—H21B···O13B0.976 (17)2.485 (16)3.1491 (16)125.1 (12)
C22B—H22C···O12B0.985 (17)2.531 (17)3.3427 (16)139.6 (12)
N20A—H20B···O7Bi0.930 (19)1.885 (19)2.6838 (14)142.6 (15)
N20A—H20B···O15Bi0.930 (19)2.225 (18)2.9229 (15)131.2 (14)
C18B—H18C···O9Bi0.954 (17)2.559 (16)3.3078 (17)135.5 (12)
N20B—H20C···O7Aii0.888 (18)1.930 (18)2.6911 (14)142.8 (15)
N20B—H20C···O9Aii0.888 (18)2.255 (18)2.9248 (15)132.1 (14)
N20B—H20D···O12Aiii0.930 (19)2.528 (17)2.8693 (14)102.0 (12)
C18B—H18D···O10Biii0.967 (17)2.571 (17)3.1533 (16)118.8 (12)
C21B—H21C···O12Aiii0.956 (16)2.514 (16)3.1210 (16)121.4 (12)
N20B—H20D···O17Aiv0.930 (19)1.946 (19)2.8182 (14)155.4 (15)
C3B—H3B···O16Bv0.958 (17)2.495 (18)3.4394 (17)168.5 (13)
C5A—H5A···O10Av0.968 (17)2.492 (17)3.4436 (16)167.7 (13)
C18A—H18A···O15Avi0.956 (17)2.474 (17)3.2628 (17)139.7 (13)
C21B—H21D···O15Avi0.965 (17)2.461 (17)3.3679 (16)156.6 (12)
C21A—H21A···O9Bvii0.972 (16)2.499 (16)3.4139 (16)156.8 (12)
C21A—H21B···O16Aviii0.976 (17)2.473 (16)3.1274 (16)124.2 (12)
C22A—H22B···O13Aix0.952 (17)2.595 (17)3.3916 (16)141.3 (13)
C18A—H18A···Cg4ix0.958 (18)2.9063.718140.37
C22B—H22C···Cg3x0.991 (18)3.1523.896133.06
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z; (iii) x, y1, z; (iv) x+1, y, z; (v) x1, y, z; (vi) x+1, y, z; (vii) x+1, y+1, z+1; (viii) x+1, y+1, z; (ix) x1, y1, z; (x) x+2, y+1, z.
 

Acknowledgements

NV thanks the University Grants Commission (UGC), Government of India, for a minor research project grant [MRP-2219/06(UGC-SERO)].

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBotoshansky, M., Herbstein, F. H. & Kapon, M. (1994). Acta Cryst. B50, 191–200.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationDesiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. Amsterdam: Elsevier.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationIn, Y., Nagata, H., Doi, M., Ishida, T. & Wakahara, A. (1997). Acta Cryst. C53, 367–369.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationJeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. New York: Oxford University Press.  Google Scholar
First citationMizutani, T., Takagi, H., Ueno, Y., Honiguchi, T., Yamamura, K. & Ogoshi, H. (1998). J. Phys. Org. Chem. 11, 737–742.  Web of Science CrossRef CAS Google Scholar
First citationPecaut, J. & Bagieu-Beucher, M. (1993). Acta Cryst. C49, 834–837.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2006). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVembu, N., Nallu, M., Garrison, J. & Youngs, W. J. (2003). Acta Cryst. E59, o913–o916.  CSD CrossRef IUCr Journals Google Scholar
First citationZaderenko, P., Gil, M. S., López, P., Ballesteros, P., Fonseca, I. & Albert, A. (1997). Acta Cryst. B53, 961–967.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o156-o157
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds