metal-organic compounds
A binuclear cobalt(II) complex of an NO3-donor Schiff base derived from 3-carboxylsalicylaldehyde and 2-nitroaniline
aInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China
*Correspondence e-mail: zhw@henu.edu.cn
In the μ-3-[(2-nitrophenyl)iminomethyl]-2-oxidobenzoato}dicobalt(II), [Co2(C14H8N2O5)2], in which the ligand is 3-[(2-nitrophenyl)iminomethyl]-2-oxidobenzoate, a Schiff base synthesized from 2-nitroaniline with 3-carboxylsalicylaldehyde, the two cobalt(II) ions in the molecular unit are bridged by two phenolate O atoms of the ligands. Each metal centre has a distorted square-planar geometry. In the molecules are linked by Co⋯O interactions involving the nitro O atoms, forming a two-dimensional network. There are also C—H⋯O and π–π stacking interactions [centroid–centroid distances of 3.5004 (2), 3.6671 (2) and 3.6677 (2) Å] between adjacent benzene rings of the two-dimensional networks, leading to the formation of a three-dimensional framework.
of the centrosymmetric title complex, bis{Related literature
For binuclear cobalt(II) complexes of Schiff base ligands, see: Adams et al. (2002); Tone et al. (2007). For the design of molecular solids, see: Zheng et al. (2003). For bond-valence parameters, see: Brown & Altermatt (1985). For luminescence emission, see: Li et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808042487/su2076sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808042487/su2076Isup2.hkl
0.166 g (1.0 mmol) of 3-carboxylsalicylaldehyde and 0.138 g (1.0 mmol) of 2-nitroaniline were dissolved in 10 ml of methanol. The mixture was stirred at 60°C, and gradually a yellow precipitate (H2CSNA) was formed. 1 h later, 10 ml of a methanol solution of 0.08 g (2.0 mmol) NaOH, and 10 ml of a methanol solution of 0.285 g (1.2 mmol) CoCl2.6H2O were added to the H2CSNA solution, sequentially. After sirring for 1 h at 60°C the solution was allowed to cool to rt and then filtered. The filtrate was left to slowly evaporate at rt. After 10 d, blue crystals, suitable for X-ray structural analysis, were formed. FT/IR data for compound (I): 1634 cm-1(s, C=N), 1601 cm-1 (s, benzene ring), 1579 cm-1 (s, νas(COO)), 1549 cm-1 (s, νas(NO2)), 1360 cm-1 (s, νs(COO)), 1299 cm-1 (s, νs(NO2)).
All the H-atoms were included in calculated positions, with C—H distances constrained to 0.93 Å, and refined in the riding-model approximation, with Uiso(H) = 1.2 Ueq(parent C-atom).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).Fig. 1. A view of the molecular structure of compound (I), showing the atom-labeling scheme. Atoms labeled (') are generated by the symmetry code -x + 2, -y, -z + 1. | |
Fig. 2. View along the a-axis of the two-dimensional network of complex (I). | |
Fig. 3. A view down the c axis of the π—π stacking interactions between the two-dimensional networks in compound (I). | |
Fig. 4. Emission spectra of the ligand and complex (I) in ethanol solution, λex = 351 nm. |
[Co2(C14H8N2O5)2] | F(000) = 692 |
Mr = 686.31 | Dx = 1.877 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 1063 reflections |
a = 8.3398 (6) Å | θ = 3.1–22.1° |
b = 11.0454 (8) Å | µ = 1.44 mm−1 |
c = 13.3681 (9) Å | T = 296 K |
β = 99.604 (1)° | Block, colourless |
V = 1214.16 (15) Å3 | 0.21 × 0.16 × 0.11 mm |
Z = 2 |
Bruker SMART APEXII CCD area-detector diffractometer | 2132 independent reflections |
Radiation source: fine-focus sealed tube | 1536 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
ϕ and ω scans | θmax = 25.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −9→9 |
Tmin = 0.752, Tmax = 0.858 | k = −11→13 |
6134 measured reflections | l = −15→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0704P)2] where P = (Fo2 + 2Fc2)/3 |
2132 reflections | (Δ/σ)max < 0.001 |
199 parameters | Δρmax = 0.63 e Å−3 |
0 restraints | Δρmin = −0.34 e Å−3 |
[Co2(C14H8N2O5)2] | V = 1214.16 (15) Å3 |
Mr = 686.31 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.3398 (6) Å | µ = 1.44 mm−1 |
b = 11.0454 (8) Å | T = 296 K |
c = 13.3681 (9) Å | 0.21 × 0.16 × 0.11 mm |
β = 99.604 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 2132 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 1536 reflections with I > 2σ(I) |
Tmin = 0.752, Tmax = 0.858 | Rint = 0.045 |
6134 measured reflections |
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.123 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.63 e Å−3 |
2132 reflections | Δρmin = −0.34 e Å−3 |
199 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Co1 | 0.98614 (6) | 0.01580 (5) | 0.38763 (4) | 0.0353 (2) | |
O1 | 0.6445 (5) | 0.0607 (5) | 0.7562 (3) | 0.0940 (18) | |
O2 | 0.8752 (4) | 0.0241 (3) | 0.7042 (2) | 0.0581 (11) | |
O3 | 0.8641 (3) | 0.0427 (3) | 0.4968 (2) | 0.0452 (10) | |
O4 | 1.0672 (5) | 0.2394 (4) | 0.3097 (3) | 0.0765 (17) | |
O5 | 1.1737 (5) | 0.2946 (4) | 0.1830 (4) | 0.101 (2) | |
N1 | 0.8176 (4) | 0.0891 (3) | 0.2876 (3) | 0.0456 (12) | |
N2 | 1.0763 (5) | 0.2359 (4) | 0.2183 (3) | 0.0615 (17) | |
C1 | 0.7269 (6) | 0.0597 (5) | 0.6879 (4) | 0.0515 (17) | |
C2 | 0.6501 (5) | 0.1047 (4) | 0.5856 (3) | 0.0430 (16) | |
C3 | 0.7180 (5) | 0.0937 (3) | 0.4962 (3) | 0.0390 (14) | |
C4 | 0.6304 (5) | 0.1389 (4) | 0.4043 (3) | 0.0433 (16) | |
C5 | 0.6823 (6) | 0.1325 (4) | 0.3083 (4) | 0.0501 (17) | |
C6 | 0.4790 (5) | 0.1957 (4) | 0.4036 (4) | 0.0541 (19) | |
C7 | 0.4134 (6) | 0.2066 (4) | 0.4893 (4) | 0.0529 (19) | |
C8 | 0.4995 (5) | 0.1602 (4) | 0.5784 (4) | 0.0502 (17) | |
C9 | 0.8350 (6) | 0.0974 (4) | 0.1838 (4) | 0.0529 (17) | |
C10 | 0.7265 (7) | 0.0345 (5) | 0.1114 (4) | 0.0668 (19) | |
C11 | 0.7394 (7) | 0.0423 (5) | 0.0094 (4) | 0.069 (2) | |
C12 | 0.8596 (7) | 0.1094 (5) | −0.0233 (4) | 0.065 (2) | |
C13 | 0.9691 (7) | 0.1698 (5) | 0.0476 (4) | 0.071 (2) | |
C14 | 0.9579 (6) | 0.1648 (4) | 0.1501 (4) | 0.0540 (17) | |
H5 | 0.61030 | 0.16330 | 0.25350 | 0.0600* | |
H6 | 0.42290 | 0.22650 | 0.34290 | 0.0650* | |
H7 | 0.31340 | 0.24430 | 0.48820 | 0.0640* | |
H8 | 0.45370 | 0.16660 | 0.63700 | 0.0600* | |
H10 | 0.64530 | −0.01270 | 0.13150 | 0.0800* | |
H11 | 0.66480 | 0.00110 | −0.03810 | 0.0830* | |
H12 | 0.86670 | 0.11380 | −0.09190 | 0.0780* | |
H13 | 1.05180 | 0.21470 | 0.02670 | 0.0850* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Co1 | 0.0287 (3) | 0.0470 (4) | 0.0303 (3) | 0.0063 (3) | 0.0052 (2) | 0.0036 (3) |
O1 | 0.062 (3) | 0.174 (4) | 0.049 (2) | 0.029 (3) | 0.018 (2) | −0.001 (3) |
O2 | 0.048 (2) | 0.083 (2) | 0.0446 (19) | 0.0159 (17) | 0.0113 (15) | 0.0061 (17) |
O3 | 0.0358 (17) | 0.0562 (18) | 0.0441 (18) | 0.0091 (14) | 0.0080 (13) | 0.0063 (15) |
O4 | 0.072 (3) | 0.091 (3) | 0.065 (3) | −0.014 (2) | 0.007 (2) | −0.004 (2) |
O5 | 0.084 (3) | 0.125 (4) | 0.107 (4) | −0.035 (3) | 0.052 (3) | 0.003 (3) |
N1 | 0.040 (2) | 0.059 (2) | 0.038 (2) | 0.0039 (18) | 0.0074 (16) | 0.0094 (18) |
N2 | 0.055 (3) | 0.075 (3) | 0.056 (3) | 0.000 (2) | 0.014 (2) | 0.009 (2) |
C1 | 0.046 (3) | 0.067 (3) | 0.043 (3) | 0.005 (2) | 0.012 (2) | −0.006 (2) |
C2 | 0.035 (2) | 0.047 (3) | 0.048 (3) | −0.002 (2) | 0.010 (2) | −0.005 (2) |
C3 | 0.030 (2) | 0.038 (2) | 0.048 (3) | −0.0018 (18) | 0.0033 (19) | −0.001 (2) |
C4 | 0.036 (2) | 0.046 (3) | 0.049 (3) | −0.004 (2) | 0.010 (2) | 0.000 (2) |
C5 | 0.040 (3) | 0.060 (3) | 0.049 (3) | 0.003 (2) | 0.004 (2) | 0.010 (2) |
C6 | 0.037 (3) | 0.053 (3) | 0.070 (4) | 0.004 (2) | 0.002 (2) | 0.012 (3) |
C7 | 0.033 (3) | 0.059 (3) | 0.067 (4) | 0.006 (2) | 0.009 (2) | −0.002 (3) |
C8 | 0.037 (3) | 0.057 (3) | 0.058 (3) | −0.002 (2) | 0.012 (2) | −0.012 (2) |
C9 | 0.043 (3) | 0.063 (3) | 0.051 (3) | 0.006 (2) | 0.003 (2) | 0.007 (2) |
C10 | 0.060 (3) | 0.076 (4) | 0.060 (3) | 0.001 (3) | −0.003 (3) | 0.001 (3) |
C11 | 0.067 (4) | 0.084 (4) | 0.050 (3) | 0.014 (3) | −0.005 (3) | 0.003 (3) |
C12 | 0.066 (4) | 0.083 (4) | 0.045 (3) | 0.022 (3) | 0.004 (3) | −0.001 (3) |
C13 | 0.071 (4) | 0.083 (4) | 0.064 (4) | 0.023 (3) | 0.027 (3) | 0.016 (3) |
C14 | 0.054 (3) | 0.059 (3) | 0.048 (3) | 0.011 (2) | 0.006 (2) | 0.006 (2) |
Co1—O3 | 1.936 (3) | C4—C6 | 1.409 (6) |
Co1—N1 | 1.947 (4) | C6—C7 | 1.355 (7) |
Co1—O2i | 1.874 (3) | C7—C8 | 1.383 (7) |
Co1—O3i | 1.929 (3) | C9—C10 | 1.395 (7) |
O1—C1 | 1.231 (7) | C9—C14 | 1.401 (7) |
O2—C1 | 1.281 (6) | C10—C11 | 1.388 (8) |
O3—C3 | 1.341 (5) | C11—C12 | 1.375 (8) |
O4—N2 | 1.237 (6) | C12—C13 | 1.374 (8) |
O5—N2 | 1.196 (6) | C13—C14 | 1.390 (7) |
N1—C5 | 1.298 (6) | C5—H5 | 0.9300 |
N1—C9 | 1.422 (7) | C6—H6 | 0.9300 |
N2—C14 | 1.457 (6) | C7—H7 | 0.9300 |
C1—C2 | 1.495 (7) | C8—H8 | 0.9300 |
C2—C3 | 1.411 (6) | C10—H10 | 0.9300 |
C2—C8 | 1.386 (6) | C11—H11 | 0.9300 |
C3—C4 | 1.412 (6) | C12—H12 | 0.9300 |
C4—C5 | 1.423 (7) | C13—H13 | 0.9300 |
Co1···O4 | 2.807 (4) | C3···C8ix | 3.398 (6) |
Co1···N2 | 3.488 (4) | C3···C13iv | 3.347 (7) |
Co1···O5ii | 2.867 (5) | C4···C8ix | 3.496 (6) |
Co1···N2ii | 3.404 (4) | C4···C2ix | 3.583 (6) |
Co1···C13ii | 3.923 (6) | C4···C12iv | 3.421 (7) |
O1···C11iii | 3.351 (7) | C5···O4 | 3.417 (7) |
O1···C12iii | 3.230 (7) | C6···C2ix | 3.499 (6) |
O2···N2i | 3.057 (5) | C6···C1ix | 3.421 (7) |
O2···C9i | 2.946 (6) | C7···C2ix | 3.596 (6) |
O2···C14i | 3.030 (6) | C7···C3ix | 3.509 (6) |
O2···O3 | 2.766 (4) | C8···C3ix | 3.398 (6) |
O2···N2iv | 3.126 (5) | C8···O5x | 3.295 (6) |
O2···O4i | 2.961 (6) | C8···C4ix | 3.496 (6) |
O2···N1i | 2.836 (5) | C11···C13xi | 3.549 (8) |
O3···O2 | 2.766 (4) | C11···O1xii | 3.351 (7) |
O3···O3i | 2.444 (4) | C12···C4viii | 3.421 (7) |
O3···N1 | 2.806 (5) | C12···O1xii | 3.230 (7) |
O3···C13iv | 3.334 (6) | C12···C3viii | 3.510 (7) |
O3···C5 | 2.891 (6) | C12···C13xi | 3.437 (8) |
O4···Co1 | 2.807 (4) | C12···C12xi | 3.351 (8) |
O4···N1 | 2.640 (5) | C13···C11xi | 3.549 (8) |
O4···C5 | 3.417 (7) | C13···Co1vi | 3.923 (6) |
O4···O2i | 2.961 (6) | C13···C3viii | 3.347 (7) |
O5···C8v | 3.295 (6) | C13···C12xi | 3.437 (8) |
O5···Co1vi | 2.867 (5) | C13···O3viii | 3.334 (6) |
O1···H11iii | 2.8100 | C14···O2i | 3.030 (6) |
O1···H8 | 2.3700 | C1···H12iii | 3.0400 |
O1···H12iii | 2.5800 | C5···H10 | 2.8300 |
O2···H12iii | 2.9100 | C8···H5iv | 3.0700 |
O4···H7vii | 2.8800 | C10···H5 | 2.6800 |
O4···H12iv | 2.8100 | H5···C10 | 2.6800 |
O5···H13 | 2.3400 | H5···H6 | 2.2300 |
O5···H6vii | 2.8200 | H5···H10 | 2.5900 |
O5···H8v | 2.5500 | H5···C8viii | 3.0700 |
N1···O3 | 2.806 (5) | H6···O5xiii | 2.8200 |
N1···O4 | 2.640 (5) | H6···H5 | 2.2300 |
N1···N2 | 2.968 (5) | H7···O4xiii | 2.8800 |
N1···C3 | 3.040 (6) | H7···H13x | 2.3700 |
N1···O2i | 2.836 (5) | H8···O1 | 2.3700 |
N2···Co1 | 3.488 (4) | H8···O5x | 2.5500 |
N2···N1 | 2.968 (5) | H10···C5 | 2.8300 |
N2···Co1vi | 3.404 (4) | H10···H5 | 2.5900 |
N2···O2i | 3.057 (5) | H11···O1xii | 2.8100 |
N2···O2viii | 3.126 (5) | H12···O1xii | 2.5800 |
C1···C6ix | 3.421 (7) | H12···O2xii | 2.9100 |
C2···C6ix | 3.499 (6) | H12···C1xii | 3.0400 |
C2···C4ix | 3.583 (6) | H12···O4viii | 2.8100 |
C2···C7ix | 3.596 (6) | H13···O5 | 2.3400 |
C3···C12iv | 3.510 (7) | H13···H7v | 2.3700 |
C3···C7ix | 3.509 (6) | ||
O3—Co1—N1 | 92.51 (14) | C4—C6—C7 | 121.5 (5) |
O2i—Co1—O3 | 171.54 (13) | C6—C7—C8 | 118.1 (4) |
O3—Co1—O3i | 78.42 (11) | C2—C8—C7 | 123.9 (5) |
O2i—Co1—N1 | 95.83 (14) | N1—C9—C10 | 119.0 (4) |
O3i—Co1—N1 | 170.41 (14) | N1—C9—C14 | 123.2 (4) |
O2i—Co1—O3i | 93.33 (12) | C10—C9—C14 | 117.8 (5) |
Co1i—O2—C1 | 130.1 (3) | C9—C10—C11 | 120.2 (5) |
Co1—O3—C3 | 130.6 (2) | C10—C11—C12 | 121.7 (5) |
Co1—O3—Co1i | 101.58 (12) | C11—C12—C13 | 118.6 (5) |
Co1i—O3—C3 | 127.7 (2) | C12—C13—C14 | 121.0 (5) |
Co1—N1—C5 | 124.1 (3) | N2—C14—C9 | 122.8 (5) |
Co1—N1—C9 | 121.2 (3) | N2—C14—C13 | 116.5 (4) |
C5—N1—C9 | 114.7 (4) | C9—C14—C13 | 120.8 (5) |
O4—N2—O5 | 122.0 (5) | N1—C5—H5 | 116.00 |
O4—N2—C14 | 119.2 (4) | C4—C5—H5 | 116.00 |
O5—N2—C14 | 118.6 (4) | C4—C6—H6 | 119.00 |
O1—C1—O2 | 121.3 (5) | C7—C6—H6 | 119.00 |
O1—C1—C2 | 117.9 (5) | C6—C7—H7 | 121.00 |
O2—C1—C2 | 120.8 (4) | C8—C7—H7 | 121.00 |
C1—C2—C3 | 125.1 (4) | C2—C8—H8 | 118.00 |
C1—C2—C8 | 117.1 (4) | C7—C8—H8 | 118.00 |
C3—C2—C8 | 117.8 (4) | C9—C10—H10 | 120.00 |
O3—C3—C2 | 121.6 (4) | C11—C10—H10 | 120.00 |
O3—C3—C4 | 119.4 (4) | C10—C11—H11 | 119.00 |
C2—C3—C4 | 119.0 (4) | C12—C11—H11 | 119.00 |
C3—C4—C5 | 125.2 (4) | C11—C12—H12 | 121.00 |
C3—C4—C6 | 119.8 (4) | C13—C12—H12 | 121.00 |
C5—C4—C6 | 115.1 (4) | C12—C13—H13 | 120.00 |
N1—C5—C4 | 128.1 (5) | C14—C13—H13 | 120.00 |
N1—Co1—O3—C3 | 0.1 (3) | O2—C1—C2—C3 | 11.4 (7) |
N1—Co1—O3—Co1i | −176.86 (15) | O2—C1—C2—C8 | −169.5 (4) |
O3i—Co1—O3—C3 | 176.9 (4) | C1—C2—C3—O3 | −1.7 (6) |
O3i—Co1—O3—Co1i | −0.02 (14) | C1—C2—C3—C4 | 179.0 (4) |
O3—Co1—N1—C5 | −0.5 (4) | C8—C2—C3—O3 | 179.1 (4) |
O3—Co1—N1—C9 | −179.7 (3) | C8—C2—C3—C4 | −0.2 (6) |
O2i—Co1—N1—C5 | 178.1 (4) | C1—C2—C8—C7 | 179.9 (4) |
O2i—Co1—N1—C9 | −1.2 (3) | C3—C2—C8—C7 | −0.9 (7) |
N1—Co1—O2i—C1i | 168.2 (4) | O3—C3—C4—C5 | 1.8 (6) |
O3—Co1—O3i—Co1i | 0.02 (14) | O3—C3—C4—C6 | −178.2 (4) |
O3—Co1—O3i—C3i | 177.1 (3) | C2—C3—C4—C5 | −179.0 (4) |
Co1i—O2—C1—O1 | 166.4 (4) | C2—C3—C4—C6 | 1.1 (6) |
Co1i—O2—C1—C2 | −15.3 (7) | C3—C4—C5—N1 | −2.4 (8) |
Co1—O3—C3—C2 | −179.9 (3) | C6—C4—C5—N1 | 177.6 (4) |
Co1—O3—C3—C4 | −0.7 (5) | C3—C4—C6—C7 | −1.0 (7) |
Co1i—O3—C3—C2 | −3.7 (5) | C5—C4—C6—C7 | 179.0 (4) |
Co1i—O3—C3—C4 | 175.5 (3) | C4—C6—C7—C8 | 0.0 (7) |
Co1—N1—C5—C4 | 1.6 (7) | C6—C7—C8—C2 | 1.0 (7) |
C9—N1—C5—C4 | −179.1 (4) | N1—C9—C10—C11 | 179.2 (5) |
Co1—N1—C9—C10 | 116.1 (4) | C14—C9—C10—C11 | −1.7 (8) |
Co1—N1—C9—C14 | −63.1 (5) | N1—C9—C14—N2 | −2.0 (7) |
C5—N1—C9—C10 | −63.3 (6) | N1—C9—C14—C13 | −180.0 (4) |
C5—N1—C9—C14 | 117.6 (5) | C10—C9—C14—N2 | 178.8 (5) |
O4—N2—C14—C9 | −1.4 (7) | C10—C9—C14—C13 | 0.9 (7) |
O4—N2—C14—C13 | 176.6 (5) | C9—C10—C11—C12 | 1.2 (9) |
O5—N2—C14—C9 | −177.2 (5) | C10—C11—C12—C13 | 0.0 (9) |
O5—N2—C14—C13 | 0.8 (7) | C11—C12—C13—C14 | −0.8 (8) |
O1—C1—C2—C3 | −170.3 (5) | C12—C13—C14—N2 | −177.7 (5) |
O1—C1—C2—C8 | 8.9 (7) | C12—C13—C14—C9 | 0.4 (8) |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+2, y−1/2, −z+1/2; (iii) x, y, z+1; (iv) x, −y+1/2, z+1/2; (v) x+1, −y+1/2, z−1/2; (vi) −x+2, y+1/2, −z+1/2; (vii) x+1, y, z; (viii) x, −y+1/2, z−1/2; (ix) −x+1, −y, −z+1; (x) x−1, −y+1/2, z+1/2; (xi) −x+2, −y, −z; (xii) x, y, z−1; (xiii) x−1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O1 | 0.93 | 2.37 | 2.713 (7) | 102 |
C8—H8···O5x | 0.93 | 2.55 | 3.295 (6) | 138 |
C12—H12···O1xii | 0.93 | 2.58 | 3.230 (7) | 128 |
C13—H13···O5 | 0.93 | 2.34 | 2.657 (7) | 100 |
Symmetry codes: (x) x−1, −y+1/2, z+1/2; (xii) x, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | [Co2(C14H8N2O5)2] |
Mr | 686.31 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 8.3398 (6), 11.0454 (8), 13.3681 (9) |
β (°) | 99.604 (1) |
V (Å3) | 1214.16 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.44 |
Crystal size (mm) | 0.21 × 0.16 × 0.11 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.752, 0.858 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6134, 2132, 1536 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.123, 1.00 |
No. of reflections | 2132 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.63, −0.34 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
Co1—O3 | 1.936 (3) | Co1—O2i | 1.874 (3) |
Co1—N1 | 1.947 (4) | Co1—O3i | 1.929 (3) |
Co1···O4 | 2.807 (4) | Co1···O5ii | 2.867 (5) |
O3—Co1—N1 | 92.51 (14) | O2i—Co1—N1 | 95.83 (14) |
O2i—Co1—O3 | 171.54 (13) | O3i—Co1—N1 | 170.41 (14) |
O3—Co1—O3i | 78.42 (11) | O2i—Co1—O3i | 93.33 (12) |
Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+2, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
C8—H8···O5iii | 0.93 | 2.55 | 3.295 (6) | 138 |
C12—H12···O1iv | 0.93 | 2.58 | 3.230 (7) | 128 |
Symmetry codes: (iii) x−1, −y+1/2, z+1/2; (iv) x, y, z−1. |
Acknowledgements
The authors are grateful for financial support from the Henan Administration of Science and Technology (grant No. 0111030700).
References
Adams, H., Clunas, S., Fenton, D. E., Handley, G. & McHugh, P. E. (2002). Inorg. Chem. Commun. 5, 1044–1047. Web of Science CSD CrossRef CAS Google Scholar
Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247. CrossRef CAS Web of Science IUCr Journals Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tone, K., Sakiyama, H., Mikuriya, M., Yamasaki, M. & Nishida, Y. (2007). Inorg. Chem. Commun. 10, 944–947. Web of Science CSD CrossRef CAS Google Scholar
Li, W.-Q., Feng, X., Feng, Y.-L. & Wen, Y.-H. (2008). Chin. J. Inorg. Chem. 24, 873–879. CAS Google Scholar
Zheng, X.-J., Jin, L.-P., Lu, S.-Z. & Zheng, Y.-Q. (2003). Z. Anorg. Allg. Chem. 629, 2577–2584. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Weak intermolecular forces, such as hydrogen bonding, π—π stacking, dipole—dipole attractions, and van der Waals interactions, have been studied in depth and can be used in the design of molecular solids with specific supramolecular structures and functions (Zheng et al., 2003). Numerous binuclear cobalt(II) complexes of Schiff bases have been studied (Tone et al., 2007). To the best of our knowledge, 2-NA (2-nitroaniline) Schiff bases have not been reported up to now. As a result of our interest in the design of organic systems suitable for the assembly of supramolecular compounds, we have synthesized the Schiff base ligand H2CSNA, from the condensation reaction of 3-carboxylsalicylaldehyde with 2-nitroaniline, and its binuclear cobalt(II) complex, [Co2(CSNA)2], (I) [where CSNA2- = 3-[(2-nitrophenyl)iminomethyl]-2-oxidobenzoate dianion].
Complex (I), a 2-NA Schiff base cobalt(II) complex, consists of centrosymmetric binuclear molecular units of [Co2(CSNA)2], as shown in Fig. 1. Selected bond distances and angles are given in Table 1. Each molecular unit contains two CSNA2- anions and two Co2+ ions. The two CSNA2- anions act as N1,O2,O3 tridentate ligands to chelate two Co2+ ions with the phenolate O-atoms (O3 and O3i: (i) = -x + 2, -y, -z + 1) as bridging atoms. The distance between the two metal centres is found to be 2.9950 (11) Å. These coordination bonds, forming a basal plane, are of normal strength with average bond length of Co—O 1.914 (3) Å, and Co—N 1.947 (4) Å.
The distances of the nitro group O-atoms O4 and O5i [symmetry code: (i) -x + 2, -y, -z + 1] to atom Co1 are 2.8066 (44) Å and 2.8667 (44) Å, respectively. Calculated by the formula of s = exp[(ro-r)/B], (r = bond length, s = bond value) (Brown & Altermatt, 1985), the two bond values are 0.049 and 0.042. Hence, only weak interactions exist between atoms O4 and Co1, and Co1 and O5i (Tabel 1). Thus every binuclear cobalt unit interacts with four adjacent ones through four nitro groups, forming a two-dimensional network (Fig. 2). The conformation of the ligand has changed obviously after coordination. It can be deduced that the free ligand might be a planar molecule because all the nonhydrogen atoms are in a conjugated system. In order to fulfil the intramolecular axial interaction of the nitro group, distortion has occurred between the two benzene rings of the ligand. In the binuclear molecular unit, the dihedral angle between the two benzene rings is 64.31 (13)°.
In the crystal structure there are C—H···O(nitro) interactions (Table 2), and relatively strong π···π stacking interactions [the distances between the centroids of the adjacent benzene rings are 3.5004 (2) Å, 3.6671 (2) Å and 3.6677 (2) Å] leading to the formation of a three-dimensional framework (Fig. 3).
The emission spectra of ethanol solutions of H2CSNA and complex (I) were measured at rt. As seen in Fig. 4, the results show that H2CSNA, exhibits two emissions at 394 nm and 466 nm (νex = 351 nm). Measurement of the complex revealed two emissions at 394 nm and 468 nm (νex = 351 nm). The similarity of the emissions bands of complex (I) and H2CSNA indicates that the luminescence emission of complex (I) may be assigned to the intraligand emission of the H2CSNA ligand (Li et al., 2008).
In summary, an unprecedented 2-nitroaniline Schiff base complex, [Co2(CSNA)2], has been synthesized and structurally characterized. This successful synthesis provides a feasible and effective synthetic method for searching and exploring other novel 2-nitroaniline Schiff base complexes.