metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m119-m120

A binuclear cobalt(II) complex of an NO3-donor Schiff base derived from 3-carboxyl­salicylaldehyde and 2-nitro­aniline

aInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China
*Correspondence e-mail: zhw@henu.edu.cn

(Received 30 October 2008; accepted 13 December 2008; online 20 December 2008)

In the crystal structure of the centrosymmetric title complex, bis­{μ-3-[(2-nitro­phen­yl)imino­meth­yl]-2-oxidobenzoato}dicobalt(II), [Co2(C14H8N2O5)2], in which the ligand is 3-[(2-nitro­phen­yl)imino­meth­yl]-2-oxidobenzoate, a Schiff base synthesized from 2-nitro­aniline with 3-carboxyl­salicyl­aldehyde, the two cobalt(II) ions in the mol­ecular unit are bridged by two phenolate O atoms of the ligands. Each metal centre has a distorted square-planar geometry. In the crystal structure, mol­ecules are linked by Co⋯O inter­actions involving the nitro O atoms, forming a two-dimensional network. There are also C—H⋯O and ππ stacking inter­actions [centroid–centroid distances of 3.5004 (2), 3.6671 (2) and 3.6677 (2) Å] between adjacent benzene rings of the two-dimensional networks, leading to the formation of a three-dimensional framework.

Related literature

For binuclear cobalt(II) complexes of Schiff base ligands, see: Adams et al. (2002[Adams, H., Clunas, S., Fenton, D. E., Handley, G. & McHugh, P. E. (2002). Inorg. Chem. Commun. 5, 1044-1047.]); Tone et al. (2007[Tone, K., Sakiyama, H., Mikuriya, M., Yamasaki, M. & Nishida, Y. (2007). Inorg. Chem. Commun. 10, 944-947.]). For the design of mol­ecular solids, see: Zheng et al. (2003[Zheng, X.-J., Jin, L.-P., Lu, S.-Z. & Zheng, Y.-Q. (2003). Z. Anorg. Allg. Chem. 629, 2577-2584.]). For bond-valence parameters, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]). For luminescence emission, see: Li et al. (2008[Li, W.-Q., Feng, X., Feng, Y.-L. & Wen, Y.-H. (2008). Chin. J. Inorg. Chem. 24, 873-879.]).

[Scheme 1]

Experimental

Crystal data
  • [Co2(C14H8N2O5)2]

  • Mr = 686.31

  • Monoclinic, P 21 /c

  • a = 8.3398 (6) Å

  • b = 11.0454 (8) Å

  • c = 13.3681 (9) Å

  • β = 99.6040 (10)°

  • V = 1214.16 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.44 mm−1

  • T = 296 (2) K

  • 0.21 × 0.16 × 0.11 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.752, Tmax = 0.858

  • 6134 measured reflections

  • 2132 independent reflections

  • 1536 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.123

  • S = 1.00

  • 2132 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected geometric parameters (Å, °)

Co1—O3 1.936 (3)
Co1—N1 1.947 (4)
Co1—O2i 1.874 (3)
Co1—O3i 1.929 (3)
Co1⋯O4 2.807 (4)
Co1⋯O5ii 2.867 (5)
O3—Co1—N1 92.51 (14)
O2i—Co1—O3 171.54 (13)
O3—Co1—O3i 78.42 (11)
O2i—Co1—N1 95.83 (14)
O3i—Co1—N1 170.41 (14)
O2i—Co1—O3i 93.33 (12)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O5iii 0.93 2.55 3.295 (6) 138
C12—H12⋯O1iv 0.93 2.58 3.230 (7) 128
Symmetry codes: (iii) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) x, y, z-1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Weak intermolecular forces, such as hydrogen bonding, ππ stacking, dipole—dipole attractions, and van der Waals interactions, have been studied in depth and can be used in the design of molecular solids with specific supramolecular structures and functions (Zheng et al., 2003). Numerous binuclear cobalt(II) complexes of Schiff bases have been studied (Tone et al., 2007). To the best of our knowledge, 2-NA (2-nitroaniline) Schiff bases have not been reported up to now. As a result of our interest in the design of organic systems suitable for the assembly of supramolecular compounds, we have synthesized the Schiff base ligand H2CSNA, from the condensation reaction of 3-carboxylsalicylaldehyde with 2-nitroaniline, and its binuclear cobalt(II) complex, [Co2(CSNA)2], (I) [where CSNA2- = 3-[(2-nitrophenyl)iminomethyl]-2-oxidobenzoate dianion].

Complex (I), a 2-NA Schiff base cobalt(II) complex, consists of centrosymmetric binuclear molecular units of [Co2(CSNA)2], as shown in Fig. 1. Selected bond distances and angles are given in Table 1. Each molecular unit contains two CSNA2- anions and two Co2+ ions. The two CSNA2- anions act as N1,O2,O3 tridentate ligands to chelate two Co2+ ions with the phenolate O-atoms (O3 and O3i: (i) = -x + 2, -y, -z + 1) as bridging atoms. The distance between the two metal centres is found to be 2.9950 (11) Å. These coordination bonds, forming a basal plane, are of normal strength with average bond length of Co—O 1.914 (3) Å, and Co—N 1.947 (4) Å.

The distances of the nitro group O-atoms O4 and O5i [symmetry code: (i) -x + 2, -y, -z + 1] to atom Co1 are 2.8066 (44) Å and 2.8667 (44) Å, respectively. Calculated by the formula of s = exp[(ro-r)/B], (r = bond length, s = bond value) (Brown & Altermatt, 1985), the two bond values are 0.049 and 0.042. Hence, only weak interactions exist between atoms O4 and Co1, and Co1 and O5i (Tabel 1). Thus every binuclear cobalt unit interacts with four adjacent ones through four nitro groups, forming a two-dimensional network (Fig. 2). The conformation of the ligand has changed obviously after coordination. It can be deduced that the free ligand might be a planar molecule because all the nonhydrogen atoms are in a conjugated system. In order to fulfil the intramolecular axial interaction of the nitro group, distortion has occurred between the two benzene rings of the ligand. In the binuclear molecular unit, the dihedral angle between the two benzene rings is 64.31 (13)°.

In the crystal structure there are C—H···O(nitro) interactions (Table 2), and relatively strong π···π stacking interactions [the distances between the centroids of the adjacent benzene rings are 3.5004 (2) Å, 3.6671 (2) Å and 3.6677 (2) Å] leading to the formation of a three-dimensional framework (Fig. 3).

The emission spectra of ethanol solutions of H2CSNA and complex (I) were measured at rt. As seen in Fig. 4, the results show that H2CSNA, exhibits two emissions at 394 nm and 466 nm (νex = 351 nm). Measurement of the complex revealed two emissions at 394 nm and 468 nm (νex = 351 nm). The similarity of the emissions bands of complex (I) and H2CSNA indicates that the luminescence emission of complex (I) may be assigned to the intraligand emission of the H2CSNA ligand (Li et al., 2008).

In summary, an unprecedented 2-nitroaniline Schiff base complex, [Co2(CSNA)2], has been synthesized and structurally characterized. This successful synthesis provides a feasible and effective synthetic method for searching and exploring other novel 2-nitroaniline Schiff base complexes.

Related literature top

For binuclear cobalt(II) complexes of Schiff base ligands, see: Adams et al. (2002); Tone et al. (2007). For the design of molecular solids, see: Zheng et al. (2003). For bond-valence parameters, see: Brown & Altermatt (1985). For luminescence emmission, see: Li et al. (2008).

Experimental top

0.166 g (1.0 mmol) of 3-carboxylsalicylaldehyde and 0.138 g (1.0 mmol) of 2-nitroaniline were dissolved in 10 ml of methanol. The mixture was stirred at 60°C, and gradually a yellow precipitate (H2CSNA) was formed. 1 h later, 10 ml of a methanol solution of 0.08 g (2.0 mmol) NaOH, and 10 ml of a methanol solution of 0.285 g (1.2 mmol) CoCl2.6H2O were added to the H2CSNA solution, sequentially. After sirring for 1 h at 60°C the solution was allowed to cool to rt and then filtered. The filtrate was left to slowly evaporate at rt. After 10 d, blue crystals, suitable for X-ray structural analysis, were formed. FT/IR data for compound (I): 1634 cm-1(s, C=N), 1601 cm-1 (s, benzene ring), 1579 cm-1 (s, νas(COO)), 1549 cm-1 (s, νas(NO2)), 1360 cm-1 (s, νs(COO)), 1299 cm-1 (s, νs(NO2)).

Refinement top

All the H-atoms were included in calculated positions, with C—H distances constrained to 0.93 Å, and refined in the riding-model approximation, with Uiso(H) = 1.2 Ueq(parent C-atom).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of compound (I), showing the atom-labeling scheme. Atoms labeled (') are generated by the symmetry code -x + 2, -y, -z + 1.
[Figure 2] Fig. 2. View along the a-axis of the two-dimensional network of complex (I).
[Figure 3] Fig. 3. A view down the c axis of the ππ stacking interactions between the two-dimensional networks in compound (I).
[Figure 4] Fig. 4. Emission spectra of the ligand and complex (I) in ethanol solution, λex = 351 nm.
bis{µ-3-[(2-nitrophenyl)iminomethyl]-2-oxidobenzoato}dicopper(II) top
Crystal data top
[Co2(C14H8N2O5)2]F(000) = 692
Mr = 686.31Dx = 1.877 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1063 reflections
a = 8.3398 (6) Åθ = 3.1–22.1°
b = 11.0454 (8) ŵ = 1.44 mm1
c = 13.3681 (9) ÅT = 296 K
β = 99.604 (1)°Block, colourless
V = 1214.16 (15) Å30.21 × 0.16 × 0.11 mm
Z = 2
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2132 independent reflections
Radiation source: fine-focus sealed tube1536 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.752, Tmax = 0.858k = 1113
6134 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0704P)2]
where P = (Fo2 + 2Fc2)/3
2132 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.63 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Co2(C14H8N2O5)2]V = 1214.16 (15) Å3
Mr = 686.31Z = 2
Monoclinic, P21/cMo Kα radiation
a = 8.3398 (6) ŵ = 1.44 mm1
b = 11.0454 (8) ÅT = 296 K
c = 13.3681 (9) Å0.21 × 0.16 × 0.11 mm
β = 99.604 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2132 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1536 reflections with I > 2σ(I)
Tmin = 0.752, Tmax = 0.858Rint = 0.045
6134 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.00Δρmax = 0.63 e Å3
2132 reflectionsΔρmin = 0.34 e Å3
199 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.98614 (6)0.01580 (5)0.38763 (4)0.0353 (2)
O10.6445 (5)0.0607 (5)0.7562 (3)0.0940 (18)
O20.8752 (4)0.0241 (3)0.7042 (2)0.0581 (11)
O30.8641 (3)0.0427 (3)0.4968 (2)0.0452 (10)
O41.0672 (5)0.2394 (4)0.3097 (3)0.0765 (17)
O51.1737 (5)0.2946 (4)0.1830 (4)0.101 (2)
N10.8176 (4)0.0891 (3)0.2876 (3)0.0456 (12)
N21.0763 (5)0.2359 (4)0.2183 (3)0.0615 (17)
C10.7269 (6)0.0597 (5)0.6879 (4)0.0515 (17)
C20.6501 (5)0.1047 (4)0.5856 (3)0.0430 (16)
C30.7180 (5)0.0937 (3)0.4962 (3)0.0390 (14)
C40.6304 (5)0.1389 (4)0.4043 (3)0.0433 (16)
C50.6823 (6)0.1325 (4)0.3083 (4)0.0501 (17)
C60.4790 (5)0.1957 (4)0.4036 (4)0.0541 (19)
C70.4134 (6)0.2066 (4)0.4893 (4)0.0529 (19)
C80.4995 (5)0.1602 (4)0.5784 (4)0.0502 (17)
C90.8350 (6)0.0974 (4)0.1838 (4)0.0529 (17)
C100.7265 (7)0.0345 (5)0.1114 (4)0.0668 (19)
C110.7394 (7)0.0423 (5)0.0094 (4)0.069 (2)
C120.8596 (7)0.1094 (5)0.0233 (4)0.065 (2)
C130.9691 (7)0.1698 (5)0.0476 (4)0.071 (2)
C140.9579 (6)0.1648 (4)0.1501 (4)0.0540 (17)
H50.610300.163300.253500.0600*
H60.422900.226500.342900.0650*
H70.313400.244300.488200.0640*
H80.453700.166600.637000.0600*
H100.645300.012700.131500.0800*
H110.664800.001100.038100.0830*
H120.866700.113800.091900.0780*
H131.051800.214700.026700.0850*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0287 (3)0.0470 (4)0.0303 (3)0.0063 (3)0.0052 (2)0.0036 (3)
O10.062 (3)0.174 (4)0.049 (2)0.029 (3)0.018 (2)0.001 (3)
O20.048 (2)0.083 (2)0.0446 (19)0.0159 (17)0.0113 (15)0.0061 (17)
O30.0358 (17)0.0562 (18)0.0441 (18)0.0091 (14)0.0080 (13)0.0063 (15)
O40.072 (3)0.091 (3)0.065 (3)0.014 (2)0.007 (2)0.004 (2)
O50.084 (3)0.125 (4)0.107 (4)0.035 (3)0.052 (3)0.003 (3)
N10.040 (2)0.059 (2)0.038 (2)0.0039 (18)0.0074 (16)0.0094 (18)
N20.055 (3)0.075 (3)0.056 (3)0.000 (2)0.014 (2)0.009 (2)
C10.046 (3)0.067 (3)0.043 (3)0.005 (2)0.012 (2)0.006 (2)
C20.035 (2)0.047 (3)0.048 (3)0.002 (2)0.010 (2)0.005 (2)
C30.030 (2)0.038 (2)0.048 (3)0.0018 (18)0.0033 (19)0.001 (2)
C40.036 (2)0.046 (3)0.049 (3)0.004 (2)0.010 (2)0.000 (2)
C50.040 (3)0.060 (3)0.049 (3)0.003 (2)0.004 (2)0.010 (2)
C60.037 (3)0.053 (3)0.070 (4)0.004 (2)0.002 (2)0.012 (3)
C70.033 (3)0.059 (3)0.067 (4)0.006 (2)0.009 (2)0.002 (3)
C80.037 (3)0.057 (3)0.058 (3)0.002 (2)0.012 (2)0.012 (2)
C90.043 (3)0.063 (3)0.051 (3)0.006 (2)0.003 (2)0.007 (2)
C100.060 (3)0.076 (4)0.060 (3)0.001 (3)0.003 (3)0.001 (3)
C110.067 (4)0.084 (4)0.050 (3)0.014 (3)0.005 (3)0.003 (3)
C120.066 (4)0.083 (4)0.045 (3)0.022 (3)0.004 (3)0.001 (3)
C130.071 (4)0.083 (4)0.064 (4)0.023 (3)0.027 (3)0.016 (3)
C140.054 (3)0.059 (3)0.048 (3)0.011 (2)0.006 (2)0.006 (2)
Geometric parameters (Å, º) top
Co1—O31.936 (3)C4—C61.409 (6)
Co1—N11.947 (4)C6—C71.355 (7)
Co1—O2i1.874 (3)C7—C81.383 (7)
Co1—O3i1.929 (3)C9—C101.395 (7)
O1—C11.231 (7)C9—C141.401 (7)
O2—C11.281 (6)C10—C111.388 (8)
O3—C31.341 (5)C11—C121.375 (8)
O4—N21.237 (6)C12—C131.374 (8)
O5—N21.196 (6)C13—C141.390 (7)
N1—C51.298 (6)C5—H50.9300
N1—C91.422 (7)C6—H60.9300
N2—C141.457 (6)C7—H70.9300
C1—C21.495 (7)C8—H80.9300
C2—C31.411 (6)C10—H100.9300
C2—C81.386 (6)C11—H110.9300
C3—C41.412 (6)C12—H120.9300
C4—C51.423 (7)C13—H130.9300
Co1···O42.807 (4)C3···C8ix3.398 (6)
Co1···N23.488 (4)C3···C13iv3.347 (7)
Co1···O5ii2.867 (5)C4···C8ix3.496 (6)
Co1···N2ii3.404 (4)C4···C2ix3.583 (6)
Co1···C13ii3.923 (6)C4···C12iv3.421 (7)
O1···C11iii3.351 (7)C5···O43.417 (7)
O1···C12iii3.230 (7)C6···C2ix3.499 (6)
O2···N2i3.057 (5)C6···C1ix3.421 (7)
O2···C9i2.946 (6)C7···C2ix3.596 (6)
O2···C14i3.030 (6)C7···C3ix3.509 (6)
O2···O32.766 (4)C8···C3ix3.398 (6)
O2···N2iv3.126 (5)C8···O5x3.295 (6)
O2···O4i2.961 (6)C8···C4ix3.496 (6)
O2···N1i2.836 (5)C11···C13xi3.549 (8)
O3···O22.766 (4)C11···O1xii3.351 (7)
O3···O3i2.444 (4)C12···C4viii3.421 (7)
O3···N12.806 (5)C12···O1xii3.230 (7)
O3···C13iv3.334 (6)C12···C3viii3.510 (7)
O3···C52.891 (6)C12···C13xi3.437 (8)
O4···Co12.807 (4)C12···C12xi3.351 (8)
O4···N12.640 (5)C13···C11xi3.549 (8)
O4···C53.417 (7)C13···Co1vi3.923 (6)
O4···O2i2.961 (6)C13···C3viii3.347 (7)
O5···C8v3.295 (6)C13···C12xi3.437 (8)
O5···Co1vi2.867 (5)C13···O3viii3.334 (6)
O1···H11iii2.8100C14···O2i3.030 (6)
O1···H82.3700C1···H12iii3.0400
O1···H12iii2.5800C5···H102.8300
O2···H12iii2.9100C8···H5iv3.0700
O4···H7vii2.8800C10···H52.6800
O4···H12iv2.8100H5···C102.6800
O5···H132.3400H5···H62.2300
O5···H6vii2.8200H5···H102.5900
O5···H8v2.5500H5···C8viii3.0700
N1···O32.806 (5)H6···O5xiii2.8200
N1···O42.640 (5)H6···H52.2300
N1···N22.968 (5)H7···O4xiii2.8800
N1···C33.040 (6)H7···H13x2.3700
N1···O2i2.836 (5)H8···O12.3700
N2···Co13.488 (4)H8···O5x2.5500
N2···N12.968 (5)H10···C52.8300
N2···Co1vi3.404 (4)H10···H52.5900
N2···O2i3.057 (5)H11···O1xii2.8100
N2···O2viii3.126 (5)H12···O1xii2.5800
C1···C6ix3.421 (7)H12···O2xii2.9100
C2···C6ix3.499 (6)H12···C1xii3.0400
C2···C4ix3.583 (6)H12···O4viii2.8100
C2···C7ix3.596 (6)H13···O52.3400
C3···C12iv3.510 (7)H13···H7v2.3700
C3···C7ix3.509 (6)
O3—Co1—N192.51 (14)C4—C6—C7121.5 (5)
O2i—Co1—O3171.54 (13)C6—C7—C8118.1 (4)
O3—Co1—O3i78.42 (11)C2—C8—C7123.9 (5)
O2i—Co1—N195.83 (14)N1—C9—C10119.0 (4)
O3i—Co1—N1170.41 (14)N1—C9—C14123.2 (4)
O2i—Co1—O3i93.33 (12)C10—C9—C14117.8 (5)
Co1i—O2—C1130.1 (3)C9—C10—C11120.2 (5)
Co1—O3—C3130.6 (2)C10—C11—C12121.7 (5)
Co1—O3—Co1i101.58 (12)C11—C12—C13118.6 (5)
Co1i—O3—C3127.7 (2)C12—C13—C14121.0 (5)
Co1—N1—C5124.1 (3)N2—C14—C9122.8 (5)
Co1—N1—C9121.2 (3)N2—C14—C13116.5 (4)
C5—N1—C9114.7 (4)C9—C14—C13120.8 (5)
O4—N2—O5122.0 (5)N1—C5—H5116.00
O4—N2—C14119.2 (4)C4—C5—H5116.00
O5—N2—C14118.6 (4)C4—C6—H6119.00
O1—C1—O2121.3 (5)C7—C6—H6119.00
O1—C1—C2117.9 (5)C6—C7—H7121.00
O2—C1—C2120.8 (4)C8—C7—H7121.00
C1—C2—C3125.1 (4)C2—C8—H8118.00
C1—C2—C8117.1 (4)C7—C8—H8118.00
C3—C2—C8117.8 (4)C9—C10—H10120.00
O3—C3—C2121.6 (4)C11—C10—H10120.00
O3—C3—C4119.4 (4)C10—C11—H11119.00
C2—C3—C4119.0 (4)C12—C11—H11119.00
C3—C4—C5125.2 (4)C11—C12—H12121.00
C3—C4—C6119.8 (4)C13—C12—H12121.00
C5—C4—C6115.1 (4)C12—C13—H13120.00
N1—C5—C4128.1 (5)C14—C13—H13120.00
N1—Co1—O3—C30.1 (3)O2—C1—C2—C311.4 (7)
N1—Co1—O3—Co1i176.86 (15)O2—C1—C2—C8169.5 (4)
O3i—Co1—O3—C3176.9 (4)C1—C2—C3—O31.7 (6)
O3i—Co1—O3—Co1i0.02 (14)C1—C2—C3—C4179.0 (4)
O3—Co1—N1—C50.5 (4)C8—C2—C3—O3179.1 (4)
O3—Co1—N1—C9179.7 (3)C8—C2—C3—C40.2 (6)
O2i—Co1—N1—C5178.1 (4)C1—C2—C8—C7179.9 (4)
O2i—Co1—N1—C91.2 (3)C3—C2—C8—C70.9 (7)
N1—Co1—O2i—C1i168.2 (4)O3—C3—C4—C51.8 (6)
O3—Co1—O3i—Co1i0.02 (14)O3—C3—C4—C6178.2 (4)
O3—Co1—O3i—C3i177.1 (3)C2—C3—C4—C5179.0 (4)
Co1i—O2—C1—O1166.4 (4)C2—C3—C4—C61.1 (6)
Co1i—O2—C1—C215.3 (7)C3—C4—C5—N12.4 (8)
Co1—O3—C3—C2179.9 (3)C6—C4—C5—N1177.6 (4)
Co1—O3—C3—C40.7 (5)C3—C4—C6—C71.0 (7)
Co1i—O3—C3—C23.7 (5)C5—C4—C6—C7179.0 (4)
Co1i—O3—C3—C4175.5 (3)C4—C6—C7—C80.0 (7)
Co1—N1—C5—C41.6 (7)C6—C7—C8—C21.0 (7)
C9—N1—C5—C4179.1 (4)N1—C9—C10—C11179.2 (5)
Co1—N1—C9—C10116.1 (4)C14—C9—C10—C111.7 (8)
Co1—N1—C9—C1463.1 (5)N1—C9—C14—N22.0 (7)
C5—N1—C9—C1063.3 (6)N1—C9—C14—C13180.0 (4)
C5—N1—C9—C14117.6 (5)C10—C9—C14—N2178.8 (5)
O4—N2—C14—C91.4 (7)C10—C9—C14—C130.9 (7)
O4—N2—C14—C13176.6 (5)C9—C10—C11—C121.2 (9)
O5—N2—C14—C9177.2 (5)C10—C11—C12—C130.0 (9)
O5—N2—C14—C130.8 (7)C11—C12—C13—C140.8 (8)
O1—C1—C2—C3170.3 (5)C12—C13—C14—N2177.7 (5)
O1—C1—C2—C88.9 (7)C12—C13—C14—C90.4 (8)
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y1/2, z+1/2; (iii) x, y, z+1; (iv) x, y+1/2, z+1/2; (v) x+1, y+1/2, z1/2; (vi) x+2, y+1/2, z+1/2; (vii) x+1, y, z; (viii) x, y+1/2, z1/2; (ix) x+1, y, z+1; (x) x1, y+1/2, z+1/2; (xi) x+2, y, z; (xii) x, y, z1; (xiii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O10.932.372.713 (7)102
C8—H8···O5x0.932.553.295 (6)138
C12—H12···O1xii0.932.583.230 (7)128
C13—H13···O50.932.342.657 (7)100
Symmetry codes: (x) x1, y+1/2, z+1/2; (xii) x, y, z1.

Experimental details

Crystal data
Chemical formula[Co2(C14H8N2O5)2]
Mr686.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.3398 (6), 11.0454 (8), 13.3681 (9)
β (°) 99.604 (1)
V3)1214.16 (15)
Z2
Radiation typeMo Kα
µ (mm1)1.44
Crystal size (mm)0.21 × 0.16 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.752, 0.858
No. of measured, independent and
observed [I > 2σ(I)] reflections
6134, 2132, 1536
Rint0.045
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.123, 1.00
No. of reflections2132
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.34

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Co1—O31.936 (3)Co1—O2i1.874 (3)
Co1—N11.947 (4)Co1—O3i1.929 (3)
Co1···O42.807 (4)Co1···O5ii2.867 (5)
O3—Co1—N192.51 (14)O2i—Co1—N195.83 (14)
O2i—Co1—O3171.54 (13)O3i—Co1—N1170.41 (14)
O3—Co1—O3i78.42 (11)O2i—Co1—O3i93.33 (12)
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O5iii0.932.553.295 (6)138
C12—H12···O1iv0.932.583.230 (7)128
Symmetry codes: (iii) x1, y+1/2, z+1/2; (iv) x, y, z1.
 

Acknowledgements

The authors are grateful for financial support from the Henan Administration of Science and Technology (grant No. 0111030700).

References

First citationAdams, H., Clunas, S., Fenton, D. E., Handley, G. & McHugh, P. E. (2002). Inorg. Chem. Commun. 5, 1044–1047.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTone, K., Sakiyama, H., Mikuriya, M., Yamasaki, M. & Nishida, Y. (2007). Inorg. Chem. Commun. 10, 944–947.  Web of Science CSD CrossRef CAS Google Scholar
First citationLi, W.-Q., Feng, X., Feng, Y.-L. & Wen, Y.-H. (2008). Chin. J. Inorg. Chem. 24, 873–879.  CAS Google Scholar
First citationZheng, X.-J., Jin, L.-P., Lu, S.-Z. & Zheng, Y.-Q. (2003). Z. Anorg. Allg. Chem. 629, 2577–2584.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m119-m120
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds