organic compounds
4,4′-Bipyridinium bis(2-carboxypyridine-3-carboxylate)
aDepartment of Chemistry, Ilam University, Ilam, Iran, bFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, cDepartment of Chemistry, School of Sciences, Tarbiat Modarres University, PO Box 14155-4838, Tehran, Iran, dFaculty of Chemistry, Payame Noor University (PNU), Abhar, Iran, and eDepartment of Chemistry, Iran University of Science and Technology, Tehran, Iran
*Correspondence e-mail: janet_soleimannejad@yahoo.com
The title salt, C10H10N22+·2C7H4NO4− or (4,4′-bpyH2)(py-2,3-dcH)2, prepared by the reaction between pyridine-2,3-dicarboxylic acid (py-2,3-dcH2) and 4,4′-bipyridine (4,4′-bpy), consists of two anions and one centrosymmetric dication. In the crystal, there are two strong O—H⋯O hydrogen bonds involving the two carboxylate groups, with an O⋯O distance of 2.478 (1) Å, and an N—H⋯N hydrogen bond between the anion and cation, with an N⋯N distance of 2.743 (1) Å. These interactions, along with other O—H⋯O and C—H⋯O hydrogen bonds, π–π stacking [centroid–centroid distances 3.621 (7) and 3.612 (7) Å] and ion pairing, lead to the formation of the three-dimensional structure.
Related literature
For proton-transfer ion pairs, see: Seethalakshmi et al. (2007); Manteghi et al. (2007); Aghabozorg, Manteghi & Ghadermazi (2008). For the use of ion pairs for the formation of metal organic frameworks, see: Aghabozorg, Manteghi & Sheshmani (2008). For hydrogen bonding, see: Desiraju & Steiner (1999).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2007); cell SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536808042220/su2083sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808042220/su2083Isup2.hkl
An aqueous solution (10 ml) of 4,4'-bipyridine (156 mg, 1 mmol) and pyridine-2,3-dicarboxylic acid (167 mg, 1 mmol) was refluxed for two hours. Yellow crystals of the title compound were obtained from the solution after two hours at room temperature.
The H-atoms were included in calculated positions and treated as riding atoms: O-H = 0.85 Å, N-H = 0.85 Å, C-H = 0.95 Å with Uiso(H) =1.2Ueq(parent O, N or C-atom).
Data collection: SMART (Bruker, 2007); cell
SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound showing the displacement ellipsoids drawn at the 50% proability level. | |
Fig. 2. A view of the crystal packing diagram of the title compound with the hydrogen bonds shown as dashed lines. | |
Fig. 3. The π-π stacking in the title compound, between acid (N1/C1—C5) and base (N2/C8—C12) rings with symmetry codes: right-hand-side = -x, 1 - y, 1 - z; left-hand-side = 1 - x, 1 - y, 1 - z. | |
Fig. 4. The formation of the title compound. |
C10H10N22+·2C7H4NO4− | F(000) = 508 |
Mr = 490.42 | Dx = 1.594 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 7505 reflections |
a = 6.6675 (2) Å | θ = 2.4–27.5° |
b = 13.7755 (5) Å | µ = 0.12 mm−1 |
c = 11.5887 (4) Å | T = 120 K |
β = 106.310 (2)° | Block, yellow |
V = 1021.56 (6) Å3 | 0.33 × 0.25 × 0.10 mm |
Z = 2 |
Bruker SMART CCD area-detector diffractometer | 2327 independent reflections |
Radiation source: fine-focus sealed tube | 2053 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ϕ and ω scans | θmax = 27.5°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | h = −8→8 |
Tmin = 0.904, Tmax = 0.988 | k = −17→17 |
18931 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0592P)2 + 0.4079P] where P = (Fo2 + 2Fc2)/3 |
2327 reflections | (Δ/σ)max < 0.001 |
163 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.28 e Å−3 |
C10H10N22+·2C7H4NO4− | V = 1021.56 (6) Å3 |
Mr = 490.42 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 6.6675 (2) Å | µ = 0.12 mm−1 |
b = 13.7755 (5) Å | T = 120 K |
c = 11.5887 (4) Å | 0.33 × 0.25 × 0.10 mm |
β = 106.310 (2)° |
Bruker SMART CCD area-detector diffractometer | 2327 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2001) | 2053 reflections with I > 2σ(I) |
Tmin = 0.904, Tmax = 0.988 | Rint = 0.028 |
18931 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.105 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.31 e Å−3 |
2327 reflections | Δρmin = −0.28 e Å−3 |
163 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.27652 (15) | 0.50895 (8) | 0.56149 (9) | 0.0150 (2) | |
N2 | 0.15565 (15) | 0.51345 (8) | 0.31494 (9) | 0.0165 (2) | |
H2A | 0.1890 | 0.5153 | 0.3913 | 0.020* | |
O1 | 0.38783 (15) | 0.30360 (6) | 0.50820 (8) | 0.0223 (2) | |
O2 | 0.08964 (13) | 0.29549 (6) | 0.56245 (7) | 0.0182 (2) | |
O3 | 0.45903 (15) | 0.26665 (6) | 0.77965 (8) | 0.0227 (2) | |
O4 | 0.47246 (15) | 0.35410 (6) | 0.94390 (8) | 0.0224 (2) | |
H4A | 0.5120 | 0.2999 | 0.9777 | 0.027* | |
C1 | 0.31214 (17) | 0.42864 (8) | 0.63036 (10) | 0.0135 (2) | |
C2 | 0.38515 (17) | 0.43413 (8) | 0.75593 (10) | 0.0137 (2) | |
C3 | 0.41707 (18) | 0.52530 (9) | 0.80969 (11) | 0.0155 (3) | |
H3 | 0.4647 | 0.5310 | 0.8947 | 0.019* | |
C4 | 0.37892 (18) | 0.60781 (9) | 0.73843 (11) | 0.0166 (3) | |
H4 | 0.3994 | 0.6707 | 0.7735 | 0.020* | |
C5 | 0.31027 (18) | 0.59644 (9) | 0.61490 (11) | 0.0161 (3) | |
H5 | 0.2860 | 0.6528 | 0.5658 | 0.019* | |
C6 | 0.26464 (18) | 0.33299 (9) | 0.56194 (10) | 0.0151 (3) | |
C7 | 0.44097 (18) | 0.34292 (8) | 0.82870 (10) | 0.0148 (2) | |
C8 | 0.13421 (18) | 0.59568 (9) | 0.25032 (11) | 0.0177 (3) | |
H8 | 0.1612 | 0.6565 | 0.2904 | 0.021* | |
C9 | 0.07338 (19) | 0.59273 (9) | 0.12624 (11) | 0.0170 (3) | |
H9 | 0.0595 | 0.6512 | 0.0812 | 0.020* | |
C10 | 0.03217 (17) | 0.50302 (9) | 0.06698 (10) | 0.0148 (3) | |
C11 | 0.05390 (19) | 0.41949 (9) | 0.13730 (11) | 0.0180 (3) | |
H11 | 0.0250 | 0.3576 | 0.1002 | 0.022* | |
C12 | 0.11771 (19) | 0.42708 (9) | 0.26137 (11) | 0.0187 (3) | |
H12 | 0.1347 | 0.3699 | 0.3090 | 0.022* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0158 (5) | 0.0161 (5) | 0.0131 (5) | 0.0009 (4) | 0.0039 (4) | 0.0014 (4) |
N2 | 0.0177 (5) | 0.0207 (5) | 0.0106 (5) | −0.0012 (4) | 0.0032 (4) | 0.0010 (4) |
O1 | 0.0308 (5) | 0.0181 (5) | 0.0215 (5) | 0.0006 (4) | 0.0130 (4) | −0.0027 (3) |
O2 | 0.0197 (4) | 0.0178 (4) | 0.0156 (4) | −0.0025 (3) | 0.0026 (3) | −0.0045 (3) |
O3 | 0.0355 (5) | 0.0131 (4) | 0.0151 (4) | 0.0017 (4) | 0.0002 (4) | −0.0007 (3) |
O4 | 0.0375 (5) | 0.0165 (5) | 0.0118 (4) | 0.0072 (4) | 0.0045 (4) | 0.0034 (3) |
C1 | 0.0128 (5) | 0.0142 (5) | 0.0136 (5) | 0.0006 (4) | 0.0038 (4) | 0.0009 (4) |
C2 | 0.0137 (5) | 0.0143 (6) | 0.0129 (5) | 0.0005 (4) | 0.0036 (4) | 0.0002 (4) |
C3 | 0.0163 (5) | 0.0170 (6) | 0.0128 (5) | 0.0008 (4) | 0.0035 (4) | −0.0006 (4) |
C4 | 0.0183 (6) | 0.0137 (6) | 0.0174 (6) | 0.0001 (4) | 0.0045 (5) | −0.0016 (4) |
C5 | 0.0164 (6) | 0.0139 (6) | 0.0180 (6) | 0.0015 (4) | 0.0048 (4) | 0.0032 (4) |
C6 | 0.0207 (6) | 0.0143 (6) | 0.0084 (5) | 0.0023 (4) | 0.0012 (4) | 0.0020 (4) |
C7 | 0.0147 (5) | 0.0152 (6) | 0.0130 (5) | −0.0013 (4) | 0.0013 (4) | 0.0000 (4) |
C8 | 0.0200 (6) | 0.0170 (6) | 0.0163 (6) | −0.0001 (4) | 0.0052 (5) | −0.0002 (4) |
C9 | 0.0190 (6) | 0.0165 (6) | 0.0153 (6) | 0.0009 (4) | 0.0046 (4) | 0.0027 (4) |
C10 | 0.0120 (5) | 0.0187 (6) | 0.0135 (6) | −0.0009 (4) | 0.0034 (4) | 0.0016 (4) |
C11 | 0.0218 (6) | 0.0165 (6) | 0.0146 (6) | −0.0036 (5) | 0.0033 (5) | 0.0001 (4) |
C12 | 0.0213 (6) | 0.0184 (6) | 0.0156 (6) | −0.0028 (5) | 0.0037 (5) | 0.0035 (5) |
N1—C5 | 1.3446 (15) | C3—C4 | 1.3857 (16) |
N1—C1 | 1.3457 (15) | C3—H3 | 0.9500 |
N2—C12 | 1.3330 (16) | C4—C5 | 1.3840 (17) |
N2—C8 | 1.3432 (16) | C4—H4 | 0.9500 |
N2—H2A | 0.8501 | C5—H5 | 0.9500 |
O1—C6 | 1.2303 (15) | C8—C9 | 1.3807 (17) |
O2—C6 | 1.2775 (15) | C8—H8 | 0.9500 |
O3—C7 | 1.2165 (15) | C9—C10 | 1.4030 (17) |
O4—C7 | 1.3009 (14) | C9—H9 | 0.9500 |
O4—H4A | 0.8501 | C10—C11 | 1.3938 (17) |
C1—C2 | 1.4009 (16) | C10—C10i | 1.492 (2) |
C1—C6 | 1.5245 (16) | C11—C12 | 1.3841 (17) |
C2—C3 | 1.3915 (16) | C11—H11 | 0.9500 |
C2—C7 | 1.5007 (15) | C12—H12 | 0.9500 |
C5—N1—C1 | 119.02 (10) | O1—C6—C1 | 118.49 (11) |
C12—N2—C8 | 121.10 (10) | O2—C6—C1 | 113.81 (10) |
C12—N2—H2A | 118.2 | O3—C7—O4 | 124.97 (11) |
C8—N2—H2A | 120.7 | O3—C7—C2 | 120.13 (10) |
C7—O4—H4A | 108.0 | O4—C7—C2 | 114.88 (10) |
N1—C1—C2 | 121.58 (10) | N2—C8—C9 | 120.66 (11) |
N1—C1—C6 | 115.20 (10) | N2—C8—H8 | 119.7 |
C2—C1—C6 | 123.21 (10) | C9—C8—H8 | 119.7 |
C3—C2—C1 | 118.59 (10) | C8—C9—C10 | 119.71 (11) |
C3—C2—C7 | 121.43 (10) | C8—C9—H9 | 120.1 |
C1—C2—C7 | 119.84 (10) | C10—C9—H9 | 120.1 |
C4—C3—C2 | 119.61 (11) | C11—C10—C9 | 117.85 (11) |
C4—C3—H3 | 120.2 | C11—C10—C10i | 120.96 (13) |
C2—C3—H3 | 120.2 | C9—C10—C10i | 121.19 (13) |
C5—C4—C3 | 118.40 (11) | C12—C11—C10 | 119.75 (11) |
C5—C4—H4 | 120.8 | C12—C11—H11 | 120.1 |
C3—C4—H4 | 120.8 | C10—C11—H11 | 120.1 |
N1—C5—C4 | 122.79 (11) | N2—C12—C11 | 120.93 (11) |
N1—C5—H5 | 118.6 | N2—C12—H12 | 119.5 |
C4—C5—H5 | 118.6 | C11—C12—H12 | 119.5 |
O1—C6—O2 | 127.57 (11) | ||
C5—N1—C1—C2 | −0.59 (17) | C2—C1—C6—O2 | 78.49 (14) |
C5—N1—C1—C6 | 178.63 (10) | C3—C2—C7—O3 | −162.59 (11) |
N1—C1—C2—C3 | 1.26 (17) | C1—C2—C7—O3 | 13.12 (17) |
C6—C1—C2—C3 | −177.90 (10) | C3—C2—C7—O4 | 15.52 (16) |
N1—C1—C2—C7 | −174.57 (10) | C1—C2—C7—O4 | −168.77 (11) |
C6—C1—C2—C7 | 6.27 (17) | C12—N2—C8—C9 | −0.43 (18) |
C1—C2—C3—C4 | −0.83 (17) | N2—C8—C9—C10 | 0.43 (18) |
C7—C2—C3—C4 | 174.93 (11) | C8—C9—C10—C11 | 0.31 (18) |
C2—C3—C4—C5 | −0.21 (17) | C8—C9—C10—C10i | −179.48 (13) |
C1—N1—C5—C4 | −0.53 (18) | C9—C10—C11—C12 | −1.05 (18) |
C3—C4—C5—N1 | 0.93 (18) | C10i—C10—C11—C12 | 178.75 (13) |
N1—C1—C6—O1 | 75.36 (14) | C8—N2—C12—C11 | −0.34 (18) |
C2—C1—C6—O1 | −105.43 (13) | C10—C11—C12—N2 | 1.09 (19) |
N1—C1—C6—O2 | −100.72 (12) |
Symmetry code: (i) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···N1 | 0.85 | 1.90 | 2.7430 (14) | 175 |
O4—H4A···O2ii | 0.85 | 1.64 | 2.4782 (12) | 171 |
C3—H3···O4iii | 0.95 | 2.40 | 3.2055 (15) | 143 |
C4—H4···O2iv | 0.95 | 2.55 | 3.4324 (15) | 155 |
C9—H9···O1v | 0.95 | 2.41 | 3.3405 (15) | 166 |
C11—H11···O1vi | 0.95 | 2.52 | 3.4610 (15) | 170 |
C12—H12···O3vi | 0.95 | 2.19 | 2.9004 (15) | 131 |
Symmetry codes: (ii) x+1/2, −y+1/2, z+1/2; (iii) −x+1, −y+1, −z+2; (iv) −x+1/2, y+1/2, −z+3/2; (v) −x+1/2, y+1/2, −z+1/2; (vi) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C10H10N22+·2C7H4NO4− |
Mr | 490.42 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 6.6675 (2), 13.7755 (5), 11.5887 (4) |
β (°) | 106.310 (2) |
V (Å3) | 1021.56 (6) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.12 |
Crystal size (mm) | 0.33 × 0.25 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2001) |
Tmin, Tmax | 0.904, 0.988 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18931, 2327, 2053 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.105, 1.05 |
No. of reflections | 2327 |
No. of parameters | 163 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.28 |
Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···N1 | 0.85 | 1.90 | 2.7430 (14) | 174.9 |
O4—H4A···O2i | 0.85 | 1.64 | 2.4782 (12) | 170.9 |
C3—H3···O4ii | 0.95 | 2.40 | 3.2055 (15) | 143.0 |
C4—H4···O2iii | 0.95 | 2.55 | 3.4324 (15) | 155.0 |
C9—H9···O1iv | 0.95 | 2.41 | 3.3405 (15) | 166.0 |
C11—H11···O1v | 0.95 | 2.52 | 3.4610 (15) | 170.0 |
C12—H12···O3v | 0.95 | 2.19 | 2.9004 (15) | 131.0 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z+2; (iii) −x+1/2, y+1/2, −z+3/2; (iv) −x+1/2, y+1/2, −z+1/2; (v) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
The authors are grateful to Ilam University for financial support of this work.
References
Aghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008). Acta Cryst. E64, o230. Web of Science CSD CrossRef IUCr Journals Google Scholar
Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran Chem. Soc. 5, 184–227. CrossRef CAS Google Scholar
Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2007). SAINT and SMART . Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc. Google Scholar
Manteghi, F., Ghadermazi, M. & Aghabozorg, H. (2007). Acta Cryst. E63, o2809. Web of Science CSD CrossRef IUCr Journals Google Scholar
Seethalakshmi, P. G., Ramadevi, P., Kumaresan, S. & Harrison, W. T. A. (2007). Acta Cryst. E63, o4837. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Up to now, pyridine-2,3-dicarboxylic acid has been used to synthesize a numer of proton transfer ion pairs, such as 1,4-Diazoniabicyclo[2.2.2]octane bis(3-carboxypyridine-2-carboxylate) 2.17-hydrate (Seethalakshmi et al., 2007), propane-1,3-diaminium pyridine-2,3-dicarboxylate monohydrate (Manteghi et al., 2007) and piperazinediium bis(2-carboxypyridine-3-carboxylate) (Aghabozorg, Manteghi & Ghadermazi, 2008). The last two have been used to synthesize some metal organic frameworks (Aghabozorg, Manteghi, Sheshmani, 2008) in which the acid acts as a mono- or dianionic fragment. In the title ion pair, (4,4'-bpyH2)(py-2,3-dcH)2, the centrosymmetric dicationic moiety is balanced by two acid moieties in the monoanionic form, as shown in Fig. 1.
In the crystal structure various O—H···O, N—H···N and C—H···O hydrogen bonds are present (Table 1 and Fig. 2). The N2—H2A···N1 hydrogen bond, classified as very strong (Desiraju & Steiner, 1999), links directly the cation and anion of the centrosymmetric unit, with a 5° deviation from linearity and a distance of 2.743 (4) Å.
There is also π-π stacking (Fig. 3) between the acid (N1/C1—C5) and the base (N2/C8—C12) rings with different symmetry codes (-x, 1 - y, 1 - z and 1 - x, 1 - y, 1 - z) at distances of 3.621 (7) and 3.612 (7) Å, respectively. As shown by the torsion angles, C2-C1-C6-O2 and C2-C1-C6-O1 [78.49 (14)° and -105.43 (3)°, respectively], it can be concluded that the carboxylate group, involving atoms O1 and O2, is almost perpendicular to the π-ring of the acid. However, torsion angles, C3-C2-C7-O4 and C3-C2-C7-O3 [15.5 (2)° and -162.6 (1)°, respectively], indicate that the carboxylate groups, involving atoms O3 and O4, are nearly coplanar with the ring.