organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bipyridinium bis­­(2-carb­oxy­pyridine-3-carboxyl­ate)

aDepartment of Chemistry, Ilam University, Ilam, Iran, bFaculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, cDepartment of Chemistry, School of Sciences, Tarbiat Modarres University, PO Box 14155-4838, Tehran, Iran, dFaculty of Chemistry, Payame Noor University (PNU), Abhar, Iran, and eDepartment of Chemistry, Iran University of Science and Technology, Tehran, Iran
*Correspondence e-mail: janet_soleimannejad@yahoo.com

(Received 29 November 2008; accepted 11 December 2008; online 17 December 2008)

The title salt, C10H10N22+·2C7H4NO4 or (4,4′-bpyH2)(py-2,3-dcH)2, prepared by the reaction between pyridine-2,3-dicarboxylic acid (py-2,3-dcH2) and 4,4′-bipyridine (4,4′-bpy), consists of two anions and one centrosymmetric dication. In the crystal, there are two strong O—H⋯O hydrogen bonds involving the two carboxyl­ate groups, with an O⋯O distance of 2.478 (1) Å, and an N—H⋯N hydrogen bond between the anion and cation, with an N⋯N distance of 2.743 (1) Å. These inter­actions, along with other O—H⋯O and C—H⋯O hydrogen bonds, ππ stacking [centroid–centroid distances 3.621 (7) and 3.612 (7) Å] and ion pairing, lead to the formation of the three-dimensional structure.

Related literature

For proton-transfer ion pairs, see: Seethalakshmi et al. (2007[Seethalakshmi, P. G., Ramadevi, P., Kumaresan, S. & Harrison, W. T. A. (2007). Acta Cryst. E63, o4837.]); Manteghi et al. (2007[Manteghi, F., Ghadermazi, M. & Aghabozorg, H. (2007). Acta Cryst. E63, o2809.]); Aghabozorg, Manteghi & Ghadermazi (2008[Aghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008). Acta Cryst. E64, o230.]). For the use of ion pairs for the formation of metal organic frameworks, see: Aghabozorg, Manteghi & Sheshmani (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran Chem. Soc. 5, 184-227.]). For hydrogen bonding, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N22+·2C7H4NO4

  • Mr = 490.42

  • Monoclinic, P 21 /n

  • a = 6.6675 (2) Å

  • b = 13.7755 (5) Å

  • c = 11.5887 (4) Å

  • β = 106.310 (2)°

  • V = 1021.56 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 (2) K

  • 0.33 × 0.25 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.904, Tmax = 0.988

  • 18931 measured reflections

  • 2327 independent reflections

  • 2053 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.105

  • S = 1.05

  • 2327 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N1 0.85 1.90 2.7430 (14) 175
O4—H4A⋯O2i 0.85 1.64 2.4782 (12) 171
C3—H3⋯O4ii 0.95 2.40 3.2055 (15) 143
C4—H4⋯O2iii 0.95 2.55 3.4324 (15) 155
C9—H9⋯O1iv 0.95 2.41 3.3405 (15) 166
C11—H11⋯O1v 0.95 2.52 3.4610 (15) 170
C12—H12⋯O3v 0.95 2.19 2.9004 (15) 131
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SAINT and SMART . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SAINT and SMART . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Up to now, pyridine-2,3-dicarboxylic acid has been used to synthesize a numer of proton transfer ion pairs, such as 1,4-Diazoniabicyclo[2.2.2]octane bis(3-carboxypyridine-2-carboxylate) 2.17-hydrate (Seethalakshmi et al., 2007), propane-1,3-diaminium pyridine-2,3-dicarboxylate monohydrate (Manteghi et al., 2007) and piperazinediium bis(2-carboxypyridine-3-carboxylate) (Aghabozorg, Manteghi & Ghadermazi, 2008). The last two have been used to synthesize some metal organic frameworks (Aghabozorg, Manteghi, Sheshmani, 2008) in which the acid acts as a mono- or dianionic fragment. In the title ion pair, (4,4'-bpyH2)(py-2,3-dcH)2, the centrosymmetric dicationic moiety is balanced by two acid moieties in the monoanionic form, as shown in Fig. 1.

In the crystal structure various O—H···O, N—H···N and C—H···O hydrogen bonds are present (Table 1 and Fig. 2). The N2—H2A···N1 hydrogen bond, classified as very strong (Desiraju & Steiner, 1999), links directly the cation and anion of the centrosymmetric unit, with a 5° deviation from linearity and a distance of 2.743 (4) Å.

There is also π-π stacking (Fig. 3) between the acid (N1/C1—C5) and the base (N2/C8—C12) rings with different symmetry codes (-x, 1 - y, 1 - z and 1 - x, 1 - y, 1 - z) at distances of 3.621 (7) and 3.612 (7) Å, respectively. As shown by the torsion angles, C2-C1-C6-O2 and C2-C1-C6-O1 [78.49 (14)° and -105.43 (3)°, respectively], it can be concluded that the carboxylate group, involving atoms O1 and O2, is almost perpendicular to the π-ring of the acid. However, torsion angles, C3-C2-C7-O4 and C3-C2-C7-O3 [15.5 (2)° and -162.6 (1)°, respectively], indicate that the carboxylate groups, involving atoms O3 and O4, are nearly coplanar with the ring.

Related literature top

For proton-transfer ion pairs, see: Seethalakshmi et al. (2007); Manteghi et al. (2007); Aghabozorg, Manteghi & Ghadermazi (2008). For the use of ion pairs for the formation of metal organic frameworks, see: Aghabozorg, Manteghi & Sheshmani (2008). For hydrogen bonding, see: Desiraju & Steiner (1999).

Experimental top

An aqueous solution (10 ml) of 4,4'-bipyridine (156 mg, 1 mmol) and pyridine-2,3-dicarboxylic acid (167 mg, 1 mmol) was refluxed for two hours. Yellow crystals of the title compound were obtained from the solution after two hours at room temperature.

Refinement top

The H-atoms were included in calculated positions and treated as riding atoms: O-H = 0.85 Å, N-H = 0.85 Å, C-H = 0.95 Å with Uiso(H) =1.2Ueq(parent O, N or C-atom).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the displacement ellipsoids drawn at the 50% proability level.
[Figure 2] Fig. 2. A view of the crystal packing diagram of the title compound with the hydrogen bonds shown as dashed lines.
[Figure 3] Fig. 3. The π-π stacking in the title compound, between acid (N1/C1—C5) and base (N2/C8—C12) rings with symmetry codes: right-hand-side = -x, 1 - y, 1 - z; left-hand-side = 1 - x, 1 - y, 1 - z.
[Figure 4] Fig. 4. The formation of the title compound.
4,4'-Bipyridinium bis(2-carboxypyridine-3-carboxylate) top
Crystal data top
C10H10N22+·2C7H4NO4F(000) = 508
Mr = 490.42Dx = 1.594 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7505 reflections
a = 6.6675 (2) Åθ = 2.4–27.5°
b = 13.7755 (5) ŵ = 0.12 mm1
c = 11.5887 (4) ÅT = 120 K
β = 106.310 (2)°Block, yellow
V = 1021.56 (6) Å30.33 × 0.25 × 0.10 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2327 independent reflections
Radiation source: fine-focus sealed tube2053 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 27.5°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 88
Tmin = 0.904, Tmax = 0.988k = 1717
18931 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0592P)2 + 0.4079P]
where P = (Fo2 + 2Fc2)/3
2327 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C10H10N22+·2C7H4NO4V = 1021.56 (6) Å3
Mr = 490.42Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.6675 (2) ŵ = 0.12 mm1
b = 13.7755 (5) ÅT = 120 K
c = 11.5887 (4) Å0.33 × 0.25 × 0.10 mm
β = 106.310 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2327 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2053 reflections with I > 2σ(I)
Tmin = 0.904, Tmax = 0.988Rint = 0.028
18931 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.05Δρmax = 0.31 e Å3
2327 reflectionsΔρmin = 0.28 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.27652 (15)0.50895 (8)0.56149 (9)0.0150 (2)
N20.15565 (15)0.51345 (8)0.31494 (9)0.0165 (2)
H2A0.18900.51530.39130.020*
O10.38783 (15)0.30360 (6)0.50820 (8)0.0223 (2)
O20.08964 (13)0.29549 (6)0.56245 (7)0.0182 (2)
O30.45903 (15)0.26665 (6)0.77965 (8)0.0227 (2)
O40.47246 (15)0.35410 (6)0.94390 (8)0.0224 (2)
H4A0.51200.29990.97770.027*
C10.31214 (17)0.42864 (8)0.63036 (10)0.0135 (2)
C20.38515 (17)0.43413 (8)0.75593 (10)0.0137 (2)
C30.41707 (18)0.52530 (9)0.80969 (11)0.0155 (3)
H30.46470.53100.89470.019*
C40.37892 (18)0.60781 (9)0.73843 (11)0.0166 (3)
H40.39940.67070.77350.020*
C50.31027 (18)0.59644 (9)0.61490 (11)0.0161 (3)
H50.28600.65280.56580.019*
C60.26464 (18)0.33299 (9)0.56194 (10)0.0151 (3)
C70.44097 (18)0.34292 (8)0.82870 (10)0.0148 (2)
C80.13421 (18)0.59568 (9)0.25032 (11)0.0177 (3)
H80.16120.65650.29040.021*
C90.07338 (19)0.59273 (9)0.12624 (11)0.0170 (3)
H90.05950.65120.08120.020*
C100.03217 (17)0.50302 (9)0.06698 (10)0.0148 (3)
C110.05390 (19)0.41949 (9)0.13730 (11)0.0180 (3)
H110.02500.35760.10020.022*
C120.11771 (19)0.42708 (9)0.26137 (11)0.0187 (3)
H120.13470.36990.30900.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0158 (5)0.0161 (5)0.0131 (5)0.0009 (4)0.0039 (4)0.0014 (4)
N20.0177 (5)0.0207 (5)0.0106 (5)0.0012 (4)0.0032 (4)0.0010 (4)
O10.0308 (5)0.0181 (5)0.0215 (5)0.0006 (4)0.0130 (4)0.0027 (3)
O20.0197 (4)0.0178 (4)0.0156 (4)0.0025 (3)0.0026 (3)0.0045 (3)
O30.0355 (5)0.0131 (4)0.0151 (4)0.0017 (4)0.0002 (4)0.0007 (3)
O40.0375 (5)0.0165 (5)0.0118 (4)0.0072 (4)0.0045 (4)0.0034 (3)
C10.0128 (5)0.0142 (5)0.0136 (5)0.0006 (4)0.0038 (4)0.0009 (4)
C20.0137 (5)0.0143 (6)0.0129 (5)0.0005 (4)0.0036 (4)0.0002 (4)
C30.0163 (5)0.0170 (6)0.0128 (5)0.0008 (4)0.0035 (4)0.0006 (4)
C40.0183 (6)0.0137 (6)0.0174 (6)0.0001 (4)0.0045 (5)0.0016 (4)
C50.0164 (6)0.0139 (6)0.0180 (6)0.0015 (4)0.0048 (4)0.0032 (4)
C60.0207 (6)0.0143 (6)0.0084 (5)0.0023 (4)0.0012 (4)0.0020 (4)
C70.0147 (5)0.0152 (6)0.0130 (5)0.0013 (4)0.0013 (4)0.0000 (4)
C80.0200 (6)0.0170 (6)0.0163 (6)0.0001 (4)0.0052 (5)0.0002 (4)
C90.0190 (6)0.0165 (6)0.0153 (6)0.0009 (4)0.0046 (4)0.0027 (4)
C100.0120 (5)0.0187 (6)0.0135 (6)0.0009 (4)0.0034 (4)0.0016 (4)
C110.0218 (6)0.0165 (6)0.0146 (6)0.0036 (5)0.0033 (5)0.0001 (4)
C120.0213 (6)0.0184 (6)0.0156 (6)0.0028 (5)0.0037 (5)0.0035 (5)
Geometric parameters (Å, º) top
N1—C51.3446 (15)C3—C41.3857 (16)
N1—C11.3457 (15)C3—H30.9500
N2—C121.3330 (16)C4—C51.3840 (17)
N2—C81.3432 (16)C4—H40.9500
N2—H2A0.8501C5—H50.9500
O1—C61.2303 (15)C8—C91.3807 (17)
O2—C61.2775 (15)C8—H80.9500
O3—C71.2165 (15)C9—C101.4030 (17)
O4—C71.3009 (14)C9—H90.9500
O4—H4A0.8501C10—C111.3938 (17)
C1—C21.4009 (16)C10—C10i1.492 (2)
C1—C61.5245 (16)C11—C121.3841 (17)
C2—C31.3915 (16)C11—H110.9500
C2—C71.5007 (15)C12—H120.9500
C5—N1—C1119.02 (10)O1—C6—C1118.49 (11)
C12—N2—C8121.10 (10)O2—C6—C1113.81 (10)
C12—N2—H2A118.2O3—C7—O4124.97 (11)
C8—N2—H2A120.7O3—C7—C2120.13 (10)
C7—O4—H4A108.0O4—C7—C2114.88 (10)
N1—C1—C2121.58 (10)N2—C8—C9120.66 (11)
N1—C1—C6115.20 (10)N2—C8—H8119.7
C2—C1—C6123.21 (10)C9—C8—H8119.7
C3—C2—C1118.59 (10)C8—C9—C10119.71 (11)
C3—C2—C7121.43 (10)C8—C9—H9120.1
C1—C2—C7119.84 (10)C10—C9—H9120.1
C4—C3—C2119.61 (11)C11—C10—C9117.85 (11)
C4—C3—H3120.2C11—C10—C10i120.96 (13)
C2—C3—H3120.2C9—C10—C10i121.19 (13)
C5—C4—C3118.40 (11)C12—C11—C10119.75 (11)
C5—C4—H4120.8C12—C11—H11120.1
C3—C4—H4120.8C10—C11—H11120.1
N1—C5—C4122.79 (11)N2—C12—C11120.93 (11)
N1—C5—H5118.6N2—C12—H12119.5
C4—C5—H5118.6C11—C12—H12119.5
O1—C6—O2127.57 (11)
C5—N1—C1—C20.59 (17)C2—C1—C6—O278.49 (14)
C5—N1—C1—C6178.63 (10)C3—C2—C7—O3162.59 (11)
N1—C1—C2—C31.26 (17)C1—C2—C7—O313.12 (17)
C6—C1—C2—C3177.90 (10)C3—C2—C7—O415.52 (16)
N1—C1—C2—C7174.57 (10)C1—C2—C7—O4168.77 (11)
C6—C1—C2—C76.27 (17)C12—N2—C8—C90.43 (18)
C1—C2—C3—C40.83 (17)N2—C8—C9—C100.43 (18)
C7—C2—C3—C4174.93 (11)C8—C9—C10—C110.31 (18)
C2—C3—C4—C50.21 (17)C8—C9—C10—C10i179.48 (13)
C1—N1—C5—C40.53 (18)C9—C10—C11—C121.05 (18)
C3—C4—C5—N10.93 (18)C10i—C10—C11—C12178.75 (13)
N1—C1—C6—O175.36 (14)C8—N2—C12—C110.34 (18)
C2—C1—C6—O1105.43 (13)C10—C11—C12—N21.09 (19)
N1—C1—C6—O2100.72 (12)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N10.851.902.7430 (14)175
O4—H4A···O2ii0.851.642.4782 (12)171
C3—H3···O4iii0.952.403.2055 (15)143
C4—H4···O2iv0.952.553.4324 (15)155
C9—H9···O1v0.952.413.3405 (15)166
C11—H11···O1vi0.952.523.4610 (15)170
C12—H12···O3vi0.952.192.9004 (15)131
Symmetry codes: (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+2; (iv) x+1/2, y+1/2, z+3/2; (v) x+1/2, y+1/2, z+1/2; (vi) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC10H10N22+·2C7H4NO4
Mr490.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)6.6675 (2), 13.7755 (5), 11.5887 (4)
β (°) 106.310 (2)
V3)1021.56 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.33 × 0.25 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.904, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
18931, 2327, 2053
Rint0.028
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.105, 1.05
No. of reflections2327
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.28

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N10.851.902.7430 (14)174.9
O4—H4A···O2i0.851.642.4782 (12)170.9
C3—H3···O4ii0.952.403.2055 (15)143.0
C4—H4···O2iii0.952.553.4324 (15)155.0
C9—H9···O1iv0.952.413.3405 (15)166.0
C11—H11···O1v0.952.523.4610 (15)170.0
C12—H12···O3v0.952.192.9004 (15)131.0
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+2; (iii) x+1/2, y+1/2, z+3/2; (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors are grateful to Ilam University for financial support of this work.

References

First citationAghabozorg, H., Manteghi, F. & Ghadermazi, M. (2008). Acta Cryst. E64, o230.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SAINT and SMART . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. New York: Oxford University Press Inc.  Google Scholar
First citationManteghi, F., Ghadermazi, M. & Aghabozorg, H. (2007). Acta Cryst. E63, o2809.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSeethalakshmi, P. G., Ramadevi, P., Kumaresan, S. & Harrison, W. T. A. (2007). Acta Cryst. E63, o4837.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds