metal-organic compounds
catena-Poly[[[(2,2′-bipyridyl)copper(II)]-μ-L-alaninato] perchlorate monohydrate]
aFacultatea de Chimie si Inginerie Chimica, Universitatea Babes Bolyai, Str. Arany Janos nr. 11, RO-400028 Cluj-Napoca, Romania, and bInstitut für Chemie und Mineralogie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
*Correspondence e-mail: mircea_braban@yahoo.com
In the structure of the polymeric title complex, {[Cu(C3H6NO2)(C10H8N2)]ClO4·H2O}n, the carboxylate group of the chelating amino acid is further linked to a neighbouring Cu centre, generating a supramolecular single-stranded chain parallel to [010]. The structure displays intermolecular N—H⋯O and O—H⋯O hydrogen bonding, which consolidates the crystal packing.
Related literature
For related structures, see: Antolini et al. (1983); Masuda et al. (1991); Sgarabotto et al. (1999); Solans et al. (1992).
Experimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536808040725/tk2300sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808040725/tk2300Isup2.hkl
The synthesis of (I) was realized by using an intermediate complex, i.e. tris(2,2'-bipyridyl)copper(II), as shown in Fig. 4. The cation in (I) was prepared according to the following procedure: Two ethanolic solutions, one containing 2,2'-bipyridyl (0.31 g, 2 mmol/5 mL) and another containing Cu(ClO4)2.2H2O (0.6 g, 2 mmol/5 mL) were mixed with stirring. To the resulting suspension of a blue powder, an alkaline solution of L-alanine (0.18 g alanine + 0.08 g NaOH 2 mmol/10 mL water) was added dropwise (see also Scheme 2). The suspension cleared and changed colour to dark-blue. The mixture was heated to 50°C and Na2ClO4 (1 mmol) was added. After 10 mins, the solution was cooled and filtered. The filtrate was allowed to stand at room temperature for several days when dark-blue crystals, suitable for X-ray analysis, separated, collected and washed with a methanolic solution.
The H atoms were refined freely: O-H = 0.69 (5) - 0.79 (3) Å, N-H = 0.73 (4) - 0.83 (3) Å, and C-H = 0.89 (3) - 1.16 (4) Å.
Data collection: SMART (Bruker, 1998); cell
SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The asymmetric unit in (I) showing the crystallographic numbering scheme. Displacement ellipsoids are shown at the 50% probability level. | |
Fig. 2. Single strand supramolecular assembly mediated by further coordination of the carboxylato group of the aminoacid. Colour code: cyan = Cu, green = Cl, red = O, blue = N, grey = C. Hydrogen atoms have been omitted for clarity. | |
Fig. 3. Supramolecular assembly at the secondary level formed by H-bond formation. The single strand chain is represented with thick bonds whereas the H-bonds are represented by blue dashed lines. For clarity only hydrogens (shown in white) involved in intermolecular associations are represented. | |
Fig. 4. The formation of the title compound. |
[Cu(C3H6NO2)(C10H8N2)]ClO4·H2O | F(000) = 868 |
Mr = 425.28 | Dx = 1.718 Mg m−3 |
Monoclinic, P21/c | Melting point: 253 K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 13.1807 (10) Å | Cell parameters from 4860 reflections |
b = 8.2656 (6) Å | θ = 2.7–28.3° |
c = 16.1195 (13) Å | µ = 1.53 mm−1 |
β = 110.606 (2)° | T = 220 K |
V = 1643.8 (2) Å3 | Prism, dark blue |
Z = 4 | 0.60 × 0.30 × 0.30 mm |
Bruker SMART CCD area-detector diffractometer | 3939 independent reflections |
Radiation source: fine-focus sealed tube | 3611 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
Detector resolution: 81.92 pixels mm-1 | θmax = 28.3°, θmin = 2.6° |
ϕ scans | h = −17→17 |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | k = −11→11 |
Tmin = 0.460, Tmax = 0.656 | l = −20→21 |
13671 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.033 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.078 | All H-atom parameters refined |
S = 1.11 | w = 1/[σ2(Fo2) + (0.0317P)2 + 1.4344P] where P = (Fo2 + 2Fc2)/3 |
3939 reflections | (Δ/σ)max = 0.001 |
290 parameters | Δρmax = 0.89 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
[Cu(C3H6NO2)(C10H8N2)]ClO4·H2O | V = 1643.8 (2) Å3 |
Mr = 425.28 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 13.1807 (10) Å | µ = 1.53 mm−1 |
b = 8.2656 (6) Å | T = 220 K |
c = 16.1195 (13) Å | 0.60 × 0.30 × 0.30 mm |
β = 110.606 (2)° |
Bruker SMART CCD area-detector diffractometer | 3939 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | 3611 reflections with I > 2σ(I) |
Tmin = 0.460, Tmax = 0.656 | Rint = 0.020 |
13671 measured reflections |
R[F2 > 2σ(F2)] = 0.033 | 0 restraints |
wR(F2) = 0.078 | All H-atom parameters refined |
S = 1.11 | Δρmax = 0.89 e Å−3 |
3939 reflections | Δρmin = −0.43 e Å−3 |
290 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.364703 (18) | 0.28840 (3) | 0.167573 (16) | 0.02538 (8) | |
Cl1 | 0.17905 (4) | 0.19812 (6) | −0.06197 (3) | 0.02952 (11) | |
O1 | 0.43017 (11) | 0.07522 (17) | 0.20438 (10) | 0.0300 (3) | |
O2 | 0.55154 (13) | −0.09670 (18) | 0.18782 (10) | 0.0365 (3) | |
O3 | 0.28355 (13) | 0.1556 (3) | 0.00253 (12) | 0.0505 (4) | |
O4 | 0.16505 (15) | 0.1197 (2) | −0.14439 (11) | 0.0450 (4) | |
O5 | 0.17426 (19) | 0.3705 (2) | −0.07423 (13) | 0.0605 (5) | |
O6 | 0.09645 (14) | 0.1466 (3) | −0.02883 (12) | 0.0510 (4) | |
N1 | 0.28664 (13) | 0.4972 (2) | 0.12453 (11) | 0.0275 (3) | |
N2 | 0.22426 (13) | 0.2334 (2) | 0.18192 (11) | 0.0259 (3) | |
N3 | 0.49264 (17) | 0.3247 (2) | 0.13184 (19) | 0.0391 (5) | |
C1 | 0.32627 (18) | 0.6292 (3) | 0.09841 (16) | 0.0358 (5) | |
C2 | 0.2644 (2) | 0.7669 (3) | 0.06765 (17) | 0.0398 (5) | |
C3 | 0.1579 (2) | 0.7682 (3) | 0.06305 (16) | 0.0382 (5) | |
C4 | 0.11629 (18) | 0.6331 (3) | 0.09049 (15) | 0.0350 (5) | |
C5 | 0.18218 (15) | 0.4985 (2) | 0.12098 (12) | 0.0264 (4) | |
C6 | 0.19879 (18) | 0.0907 (3) | 0.20930 (14) | 0.0330 (4) | |
C7 | 0.0946 (2) | 0.0558 (3) | 0.20633 (16) | 0.0391 (5) | |
C8 | 0.01505 (19) | 0.1715 (3) | 0.17510 (16) | 0.0391 (5) | |
C9 | 0.04044 (17) | 0.3198 (3) | 0.14800 (14) | 0.0340 (4) | |
C10 | 0.14634 (15) | 0.3474 (2) | 0.15143 (12) | 0.0264 (4) | |
C11 | 0.50804 (16) | 0.0390 (2) | 0.17798 (13) | 0.0288 (4) | |
C12 | 0.5466 (2) | 0.1693 (3) | 0.12787 (19) | 0.0429 (5) | |
C13 | 0.6666 (2) | 0.1814 (4) | 0.1552 (3) | 0.0605 (8) | |
H2N3 | 0.482 (4) | 0.357 (6) | 0.087 (3) | 0.098 (16)* | |
H1N3 | 0.536 (3) | 0.384 (5) | 0.170 (3) | 0.083 (13)* | |
H1 | 0.398 (2) | 0.628 (3) | 0.1013 (17) | 0.042 (7)* | |
H2 | 0.293 (2) | 0.844 (4) | 0.0488 (19) | 0.048 (8)* | |
H3 | 0.116 (2) | 0.855 (4) | 0.0419 (17) | 0.044 (7)* | |
H4 | 0.049 (2) | 0.634 (4) | 0.0873 (19) | 0.054 (8)* | |
H6 | 0.257 (2) | 0.014 (3) | 0.2313 (16) | 0.037 (6)* | |
H7 | 0.082 (2) | −0.043 (4) | 0.2244 (18) | 0.045 (7)* | |
H8 | −0.057 (2) | 0.151 (4) | 0.1713 (18) | 0.052 (8)* | |
H9 | −0.014 (2) | 0.401 (4) | 0.1242 (18) | 0.046 (7)* | |
H12 | 0.539 (3) | 0.124 (5) | 0.059 (3) | 0.094 (12)* | |
H13A | 0.691 (3) | 0.261 (4) | 0.116 (2) | 0.073 (10)* | |
H13B | 0.699 (3) | 0.072 (5) | 0.145 (2) | 0.077 (11)* | |
H13C | 0.691 (4) | 0.225 (5) | 0.228 (3) | 0.105 (15)* | |
O7 | 0.4174 (2) | 0.1391 (3) | 0.41504 (15) | 0.0516 (5) | |
H1O7 | 0.418 (3) | 0.220 (4) | 0.389 (2) | 0.056 (10)* | |
H2O7 | 0.367 (4) | 0.142 (7) | 0.419 (3) | 0.110 (19)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.02196 (12) | 0.01912 (12) | 0.03468 (14) | 0.00188 (8) | 0.00948 (9) | 0.00357 (9) |
Cl1 | 0.0286 (2) | 0.0299 (2) | 0.0284 (2) | 0.00289 (17) | 0.00796 (18) | 0.00106 (18) |
O1 | 0.0300 (7) | 0.0218 (7) | 0.0391 (8) | 0.0031 (5) | 0.0133 (6) | 0.0050 (6) |
O2 | 0.0399 (8) | 0.0251 (7) | 0.0431 (8) | 0.0101 (6) | 0.0128 (7) | 0.0037 (6) |
O3 | 0.0284 (8) | 0.0680 (13) | 0.0458 (9) | 0.0050 (8) | 0.0016 (7) | 0.0056 (9) |
O4 | 0.0561 (10) | 0.0443 (10) | 0.0355 (8) | 0.0040 (8) | 0.0171 (7) | −0.0061 (7) |
O5 | 0.0954 (16) | 0.0274 (9) | 0.0515 (11) | 0.0022 (9) | 0.0167 (10) | 0.0023 (8) |
O6 | 0.0375 (9) | 0.0659 (13) | 0.0562 (11) | 0.0028 (8) | 0.0248 (8) | 0.0028 (9) |
N1 | 0.0251 (8) | 0.0227 (8) | 0.0333 (8) | 0.0019 (6) | 0.0082 (6) | 0.0011 (6) |
N2 | 0.0253 (8) | 0.0245 (8) | 0.0276 (8) | −0.0015 (6) | 0.0088 (6) | −0.0017 (6) |
N3 | 0.0310 (10) | 0.0249 (9) | 0.0666 (15) | 0.0059 (7) | 0.0237 (10) | 0.0115 (10) |
C1 | 0.0320 (11) | 0.0268 (10) | 0.0480 (12) | 0.0003 (8) | 0.0132 (9) | 0.0051 (9) |
C2 | 0.0467 (13) | 0.0245 (10) | 0.0470 (13) | 0.0005 (9) | 0.0149 (10) | 0.0051 (9) |
C3 | 0.0416 (12) | 0.0288 (11) | 0.0378 (11) | 0.0118 (9) | 0.0062 (9) | 0.0029 (9) |
C4 | 0.0287 (10) | 0.0347 (11) | 0.0372 (11) | 0.0091 (9) | 0.0060 (8) | −0.0004 (9) |
C5 | 0.0245 (9) | 0.0263 (9) | 0.0257 (9) | 0.0023 (7) | 0.0054 (7) | −0.0027 (7) |
C6 | 0.0356 (11) | 0.0284 (10) | 0.0353 (10) | −0.0028 (8) | 0.0131 (9) | −0.0010 (8) |
C7 | 0.0436 (12) | 0.0347 (12) | 0.0442 (12) | −0.0134 (10) | 0.0220 (10) | −0.0047 (10) |
C8 | 0.0299 (10) | 0.0483 (13) | 0.0425 (12) | −0.0106 (10) | 0.0168 (9) | −0.0093 (10) |
C9 | 0.0254 (9) | 0.0426 (12) | 0.0337 (10) | −0.0007 (9) | 0.0098 (8) | −0.0057 (9) |
C10 | 0.0248 (9) | 0.0289 (10) | 0.0245 (8) | −0.0008 (7) | 0.0074 (7) | −0.0049 (7) |
C11 | 0.0261 (9) | 0.0247 (9) | 0.0309 (9) | 0.0011 (7) | 0.0042 (7) | 0.0014 (8) |
C12 | 0.0388 (12) | 0.0332 (12) | 0.0623 (15) | 0.0089 (9) | 0.0249 (11) | 0.0115 (11) |
C13 | 0.0427 (14) | 0.0452 (15) | 0.105 (3) | 0.0125 (12) | 0.0408 (16) | 0.0190 (16) |
O7 | 0.0602 (13) | 0.0449 (11) | 0.0585 (12) | 0.0192 (9) | 0.0318 (10) | 0.0107 (9) |
Cu1—O1 | 1.9598 (14) | C2—H2 | 0.85 (3) |
Cu1—N3 | 1.987 (2) | C3—C4 | 1.384 (4) |
Cu1—N2 | 1.9970 (16) | C3—H3 | 0.90 (3) |
Cu1—N1 | 2.0043 (17) | C4—C5 | 1.390 (3) |
Cu1—O2i | 2.3965 (16) | C4—H4 | 0.86 (3) |
Cl1—O4 | 1.4307 (16) | C5—C10 | 1.479 (3) |
Cl1—O6 | 1.4358 (18) | C6—C7 | 1.387 (3) |
Cl1—O5 | 1.4365 (19) | C6—H6 | 0.96 (3) |
Cl1—O3 | 1.4469 (16) | C7—C8 | 1.377 (4) |
O1—C11 | 1.277 (2) | C7—H7 | 0.90 (3) |
O2—C11 | 1.244 (2) | C8—C9 | 1.381 (3) |
O2—Cu1ii | 2.3965 (16) | C8—H8 | 0.95 (3) |
N1—C1 | 1.340 (3) | C9—C10 | 1.396 (3) |
N1—C5 | 1.358 (2) | C9—H9 | 0.96 (3) |
N2—C6 | 1.343 (3) | C11—C12 | 1.536 (3) |
N2—C10 | 1.353 (3) | C12—C13 | 1.488 (4) |
N3—C12 | 1.481 (3) | C12—H12 | 1.15 (4) |
N3—H2N3 | 0.74 (4) | C13—H13A | 1.04 (4) |
N3—H1N3 | 0.83 (4) | C13—H13B | 1.04 (4) |
C1—C2 | 1.386 (3) | C13—H13C | 1.16 (5) |
C1—H1 | 0.92 (3) | O7—H1O7 | 0.79 (4) |
C2—C3 | 1.380 (4) | O7—H2O7 | 0.69 (5) |
O1—Cu1—N3 | 83.99 (7) | C4—C3—H3 | 120.4 (18) |
O1—Cu1—N2 | 95.03 (6) | C3—C4—C5 | 119.4 (2) |
N3—Cu1—N2 | 169.62 (10) | C3—C4—H4 | 119 (2) |
O1—Cu1—N1 | 175.41 (6) | C5—C4—H4 | 122 (2) |
N3—Cu1—N1 | 98.87 (7) | N1—C5—C4 | 121.28 (19) |
N2—Cu1—N1 | 81.51 (7) | N1—C5—C10 | 114.65 (16) |
O1—Cu1—O2i | 93.37 (6) | C4—C5—C10 | 124.07 (19) |
N3—Cu1—O2i | 94.28 (9) | N2—C6—C7 | 122.0 (2) |
N2—Cu1—O2i | 96.09 (6) | N2—C6—H6 | 116.2 (16) |
N1—Cu1—O2i | 90.00 (6) | C7—C6—H6 | 121.8 (16) |
O4—Cl1—O6 | 110.13 (11) | C8—C7—C6 | 119.0 (2) |
O4—Cl1—O5 | 109.66 (11) | C8—C7—H7 | 123.1 (18) |
O6—Cl1—O5 | 110.07 (13) | C6—C7—H7 | 117.9 (18) |
O4—Cl1—O3 | 109.65 (11) | C7—C8—C9 | 119.6 (2) |
O6—Cl1—O3 | 108.38 (11) | C7—C8—H8 | 121.0 (19) |
O5—Cl1—O3 | 108.93 (13) | C9—C8—H8 | 119.4 (19) |
C11—O1—Cu1 | 115.46 (12) | C8—C9—C10 | 118.9 (2) |
C11—O2—Cu1ii | 121.01 (14) | C8—C9—H9 | 120.8 (17) |
C1—N1—C5 | 118.82 (17) | C10—C9—H9 | 120.3 (17) |
C1—N1—Cu1 | 126.92 (14) | N2—C10—C9 | 121.42 (19) |
C5—N1—Cu1 | 114.25 (13) | N2—C10—C5 | 114.75 (16) |
C6—N2—C10 | 119.06 (18) | C9—C10—C5 | 123.82 (19) |
C6—N2—Cu1 | 125.95 (14) | O2—C11—O1 | 123.87 (19) |
C10—N2—Cu1 | 114.56 (13) | O2—C11—C12 | 118.42 (19) |
C12—N3—Cu1 | 110.57 (14) | O1—C11—C12 | 117.66 (18) |
C12—N3—H2N3 | 101 (4) | N3—C12—C13 | 113.9 (2) |
Cu1—N3—H2N3 | 117 (3) | N3—C12—C11 | 109.41 (19) |
C12—N3—H1N3 | 109 (3) | C13—C12—C11 | 113.9 (2) |
Cu1—N3—H1N3 | 108 (3) | N3—C12—H12 | 116 (2) |
H2N3—N3—H1N3 | 111 (4) | C13—C12—H12 | 91.9 (19) |
N1—C1—C2 | 122.4 (2) | C11—C12—H12 | 111 (2) |
N1—C1—H1 | 118.5 (18) | C12—C13—H13A | 113 (2) |
C2—C1—H1 | 119.1 (18) | C12—C13—H13B | 111 (2) |
C3—C2—C1 | 119.0 (2) | H13A—C13—H13B | 102 (3) |
C3—C2—H2 | 123 (2) | C12—C13—H13C | 102 (2) |
C1—C2—H2 | 118 (2) | H13A—C13—H13C | 113 (3) |
C2—C3—C4 | 119.1 (2) | H13B—C13—H13C | 117 (3) |
C2—C3—H3 | 120.5 (18) | H1O7—O7—H2O7 | 102 (5) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H2N3···O7iii | 0.74 (4) | 2.60 (4) | 3.293 (4) | 159 (5) |
N3—H1N3···O1i | 0.83 (4) | 2.48 (4) | 3.225 (3) | 149 (3) |
N3—H1N3···O2i | 0.83 (4) | 2.91 (4) | 3.225 (3) | 105 (3) |
N3—H1N3···O7i | 0.83 (4) | 2.70 (5) | 3.059 (3) | 108 (3) |
N3—H2N3···O7i | 0.74 (4) | 2.69 (5) | 3.059 (3) | 114 (4) |
O7—H1O7···O2i | 0.79 (4) | 2.08 (4) | 2.857 (3) | 166 (3) |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (iii) x, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C3H6NO2)(C10H8N2)]ClO4·H2O |
Mr | 425.28 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 220 |
a, b, c (Å) | 13.1807 (10), 8.2656 (6), 16.1195 (13) |
β (°) | 110.606 (2) |
V (Å3) | 1643.8 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.53 |
Crystal size (mm) | 0.60 × 0.30 × 0.30 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1997) |
Tmin, Tmax | 0.460, 0.656 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13671, 3939, 3611 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.033, 0.078, 1.11 |
No. of reflections | 3939 |
No. of parameters | 290 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.89, −0.43 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
N3—H2N3···O7i | 0.74 (4) | 2.60 (4) | 3.293 (4) | 159 (5) |
N3—H1N3···O1ii | 0.83 (4) | 2.48 (4) | 3.225 (3) | 149 (3) |
N3—H1N3···O2ii | 0.83 (4) | 2.91 (4) | 3.225 (3) | 105 (3) |
N3—H1N3···O7ii | 0.83 (4) | 2.70 (5) | 3.059 (3) | 108 (3) |
N3—H2N3···O7ii | 0.74 (4) | 2.69 (5) | 3.059 (3) | 114 (4) |
O7—H1O7···O2ii | 0.79 (4) | 2.08 (4) | 2.857 (3) | 166 (3) |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y+1/2, −z+1/2. |
Acknowledgements
The authors thank Professor Evamarie Hey-Hawkins for cooperation.
References
Antolini, L., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1983). Inorg. Chem. 22, 141–145. CSD CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Masuda, H., Sugimori, T., Odani, A. & Yamauchi, O. (1991). Inorg. Chim. Acta, 180, 73–79. CSD CrossRef CAS Web of Science Google Scholar
Sgarabotto, P., Bisceglie, P., Pelosi, G. & Adbel-Rahman, L. (1999). Polyhedron, 18, 2505–2510. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Solans, X., Ruíz-Ramírez, L., Martínez, A., Gasque, L. & Moreno-Esparza, R. (1992). Acta Cryst. C48, 1785–1788. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structure of the title complex, (I) and Fig. 1, is of interest with respect to the stereochemistry of the complexed aminoacid, the coordination geometry of the metal centre and the single-stranded supramolecular assembly created primarly by further coordination of the carboxylate group of the aminoacid, Fig. 2. The secondary association is by crosslinks realised through H-bonds between the created chains, Fig. 3. The supramolecular structure described for (I) is found in other (aminoacidato)(2,2'-bipyridyl)copper(II) complexes, such as in the tryptophanato (Masuda et al., 1991) and aspartato complexes (Antolini et al., 1983). The assembly has also been identified in the proline complex but not described as a supramolecular association (Sgarabotto et al., 1999). For the alaninate complex, see also Solans et al. (1992).