metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[(2,2′-bipyrid­yl)copper(II)]-μ-L-alaninato] perchlorate monohydrate]

aFacultatea de Chimie si Inginerie Chimica, Universitatea Babes Bolyai, Str. Arany Janos nr. 11, RO-400028 Cluj-Napoca, Romania, and bInstitut für Chemie und Mineralogie, Universität Leipzig, Johannisallee 29, D-04103 Leipzig, Germany
*Correspondence e-mail: mircea_braban@yahoo.com

(Received 26 August 2008; accepted 3 December 2008; online 13 December 2008)

In the structure of the polymeric title complex, {[Cu(C3H6NO2)(C10H8N2)]ClO4·H2O}n, the carboxyl­ate group of the chelating amino acid is further linked to a neighbouring Cu centre, generating a supra­molecular single-stranded chain parallel to [010]. The structure displays inter­molecular N—H⋯O and O—H⋯O hydrogen bonding, which consolidates the crystal packing.

Related literature

For related structures, see: Antolini et al. (1983[Antolini, L., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1983). Inorg. Chem. 22, 141-145.]); Masuda et al. (1991[Masuda, H., Sugimori, T., Odani, A. & Yamauchi, O. (1991). Inorg. Chim. Acta, 180, 73-79.]); Sgarabotto et al. (1999[Sgarabotto, P., Bisceglie, P., Pelosi, G. & Adbel-Rahman, L. (1999). Polyhedron, 18, 2505-2510.]); Solans et al. (1992[Solans, X., Ruíz-Ramírez, L., Martínez, A., Gasque, L. & Moreno-Esparza, R. (1992). Acta Cryst. C48, 1785-1788.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C3H6NO2)(C10H8N2)]ClO4·H2O

  • Mr = 425.28

  • Monoclinic, P 21 /c

  • a = 13.1807 (10) Å

  • b = 8.2656 (6) Å

  • c = 16.1195 (13) Å

  • β = 110.606 (2)°

  • V = 1643.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 220 (2) K

  • 0.60 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.460, Tmax = 0.656

  • 13671 measured reflections

  • 3939 independent reflections

  • 3611 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.078

  • S = 1.11

  • 3939 reflections

  • 290 parameters

  • All H-atom parameters refined

  • Δρmax = 0.89 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H2N3⋯O7i 0.74 (4) 2.60 (4) 3.293 (4) 159 (5)
N3—H1N3⋯O1ii 0.83 (4) 2.48 (4) 3.225 (3) 149 (3)
N3—H1N3⋯O2ii 0.83 (4) 2.91 (4) 3.225 (3) 105 (3)
N3—H1N3⋯O7ii 0.83 (4) 2.70 (5) 3.059 (3) 108 (3)
N3—H2N3⋯O7ii 0.74 (4) 2.69 (5) 3.059 (3) 114 (4)
O7—H1O7⋯O2ii 0.79 (4) 2.08 (4) 2.857 (3) 166 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The structure of the title complex, (I) and Fig. 1, is of interest with respect to the stereochemistry of the complexed aminoacid, the coordination geometry of the metal centre and the single-stranded supramolecular assembly created primarly by further coordination of the carboxylate group of the aminoacid, Fig. 2. The secondary association is by crosslinks realised through H-bonds between the created chains, Fig. 3. The supramolecular structure described for (I) is found in other (aminoacidato)(2,2'-bipyridyl)copper(II) complexes, such as in the tryptophanato (Masuda et al., 1991) and aspartato complexes (Antolini et al., 1983). The assembly has also been identified in the proline complex but not described as a supramolecular association (Sgarabotto et al., 1999). For the alaninate complex, see also Solans et al. (1992).

Related literature top

For related structures, see: Antolini et al. (1983); Masuda et al. (1991); Sgarabotto et al. (1999); Solans et al. (1992).

Experimental top

The synthesis of (I) was realized by using an intermediate complex, i.e. tris(2,2'-bipyridyl)copper(II), as shown in Fig. 4. The cation in (I) was prepared according to the following procedure: Two ethanolic solutions, one containing 2,2'-bipyridyl (0.31 g, 2 mmol/5 mL) and another containing Cu(ClO4)2.2H2O (0.6 g, 2 mmol/5 mL) were mixed with stirring. To the resulting suspension of a blue powder, an alkaline solution of L-alanine (0.18 g alanine + 0.08 g NaOH 2 mmol/10 mL water) was added dropwise (see also Scheme 2). The suspension cleared and changed colour to dark-blue. The mixture was heated to 50°C and Na2ClO4 (1 mmol) was added. After 10 mins, the solution was cooled and filtered. The filtrate was allowed to stand at room temperature for several days when dark-blue crystals, suitable for X-ray analysis, separated, collected and washed with a methanolic solution.

Refinement top

The H atoms were refined freely: O-H = 0.69 (5) - 0.79 (3) Å, N-H = 0.73 (4) - 0.83 (3) Å, and C-H = 0.89 (3) - 1.16 (4) Å.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit in (I) showing the crystallographic numbering scheme. Displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Single strand supramolecular assembly mediated by further coordination of the carboxylato group of the aminoacid. Colour code: cyan = Cu, green = Cl, red = O, blue = N, grey = C. Hydrogen atoms have been omitted for clarity.
[Figure 3] Fig. 3. Supramolecular assembly at the secondary level formed by H-bond formation. The single strand chain is represented with thick bonds whereas the H-bonds are represented by blue dashed lines. For clarity only hydrogens (shown in white) involved in intermolecular associations are represented.
[Figure 4] Fig. 4. The formation of the title compound.
catena-Poly[[[(2,2'-bipyridyl)copper(II)]-µ-L-alaninato] perchlorate monohydrate] top
Crystal data top
[Cu(C3H6NO2)(C10H8N2)]ClO4·H2OF(000) = 868
Mr = 425.28Dx = 1.718 Mg m3
Monoclinic, P21/cMelting point: 253 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.1807 (10) ÅCell parameters from 4860 reflections
b = 8.2656 (6) Åθ = 2.7–28.3°
c = 16.1195 (13) ŵ = 1.53 mm1
β = 110.606 (2)°T = 220 K
V = 1643.8 (2) Å3Prism, dark blue
Z = 40.60 × 0.30 × 0.30 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3939 independent reflections
Radiation source: fine-focus sealed tube3611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 81.92 pixels mm-1θmax = 28.3°, θmin = 2.6°
ϕ scansh = 1717
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
k = 1111
Tmin = 0.460, Tmax = 0.656l = 2021
13671 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.078All H-atom parameters refined
S = 1.11 w = 1/[σ2(Fo2) + (0.0317P)2 + 1.4344P]
where P = (Fo2 + 2Fc2)/3
3939 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 0.89 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Cu(C3H6NO2)(C10H8N2)]ClO4·H2OV = 1643.8 (2) Å3
Mr = 425.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1807 (10) ŵ = 1.53 mm1
b = 8.2656 (6) ÅT = 220 K
c = 16.1195 (13) Å0.60 × 0.30 × 0.30 mm
β = 110.606 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3939 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
3611 reflections with I > 2σ(I)
Tmin = 0.460, Tmax = 0.656Rint = 0.020
13671 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.078All H-atom parameters refined
S = 1.11Δρmax = 0.89 e Å3
3939 reflectionsΔρmin = 0.43 e Å3
290 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.364703 (18)0.28840 (3)0.167573 (16)0.02538 (8)
Cl10.17905 (4)0.19812 (6)0.06197 (3)0.02952 (11)
O10.43017 (11)0.07522 (17)0.20438 (10)0.0300 (3)
O20.55154 (13)0.09670 (18)0.18782 (10)0.0365 (3)
O30.28355 (13)0.1556 (3)0.00253 (12)0.0505 (4)
O40.16505 (15)0.1197 (2)0.14439 (11)0.0450 (4)
O50.17426 (19)0.3705 (2)0.07423 (13)0.0605 (5)
O60.09645 (14)0.1466 (3)0.02883 (12)0.0510 (4)
N10.28664 (13)0.4972 (2)0.12453 (11)0.0275 (3)
N20.22426 (13)0.2334 (2)0.18192 (11)0.0259 (3)
N30.49264 (17)0.3247 (2)0.13184 (19)0.0391 (5)
C10.32627 (18)0.6292 (3)0.09841 (16)0.0358 (5)
C20.2644 (2)0.7669 (3)0.06765 (17)0.0398 (5)
C30.1579 (2)0.7682 (3)0.06305 (16)0.0382 (5)
C40.11629 (18)0.6331 (3)0.09049 (15)0.0350 (5)
C50.18218 (15)0.4985 (2)0.12098 (12)0.0264 (4)
C60.19879 (18)0.0907 (3)0.20930 (14)0.0330 (4)
C70.0946 (2)0.0558 (3)0.20633 (16)0.0391 (5)
C80.01505 (19)0.1715 (3)0.17510 (16)0.0391 (5)
C90.04044 (17)0.3198 (3)0.14800 (14)0.0340 (4)
C100.14634 (15)0.3474 (2)0.15143 (12)0.0264 (4)
C110.50804 (16)0.0390 (2)0.17798 (13)0.0288 (4)
C120.5466 (2)0.1693 (3)0.12787 (19)0.0429 (5)
C130.6666 (2)0.1814 (4)0.1552 (3)0.0605 (8)
H2N30.482 (4)0.357 (6)0.087 (3)0.098 (16)*
H1N30.536 (3)0.384 (5)0.170 (3)0.083 (13)*
H10.398 (2)0.628 (3)0.1013 (17)0.042 (7)*
H20.293 (2)0.844 (4)0.0488 (19)0.048 (8)*
H30.116 (2)0.855 (4)0.0419 (17)0.044 (7)*
H40.049 (2)0.634 (4)0.0873 (19)0.054 (8)*
H60.257 (2)0.014 (3)0.2313 (16)0.037 (6)*
H70.082 (2)0.043 (4)0.2244 (18)0.045 (7)*
H80.057 (2)0.151 (4)0.1713 (18)0.052 (8)*
H90.014 (2)0.401 (4)0.1242 (18)0.046 (7)*
H120.539 (3)0.124 (5)0.059 (3)0.094 (12)*
H13A0.691 (3)0.261 (4)0.116 (2)0.073 (10)*
H13B0.699 (3)0.072 (5)0.145 (2)0.077 (11)*
H13C0.691 (4)0.225 (5)0.228 (3)0.105 (15)*
O70.4174 (2)0.1391 (3)0.41504 (15)0.0516 (5)
H1O70.418 (3)0.220 (4)0.389 (2)0.056 (10)*
H2O70.367 (4)0.142 (7)0.419 (3)0.110 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02196 (12)0.01912 (12)0.03468 (14)0.00188 (8)0.00948 (9)0.00357 (9)
Cl10.0286 (2)0.0299 (2)0.0284 (2)0.00289 (17)0.00796 (18)0.00106 (18)
O10.0300 (7)0.0218 (7)0.0391 (8)0.0031 (5)0.0133 (6)0.0050 (6)
O20.0399 (8)0.0251 (7)0.0431 (8)0.0101 (6)0.0128 (7)0.0037 (6)
O30.0284 (8)0.0680 (13)0.0458 (9)0.0050 (8)0.0016 (7)0.0056 (9)
O40.0561 (10)0.0443 (10)0.0355 (8)0.0040 (8)0.0171 (7)0.0061 (7)
O50.0954 (16)0.0274 (9)0.0515 (11)0.0022 (9)0.0167 (10)0.0023 (8)
O60.0375 (9)0.0659 (13)0.0562 (11)0.0028 (8)0.0248 (8)0.0028 (9)
N10.0251 (8)0.0227 (8)0.0333 (8)0.0019 (6)0.0082 (6)0.0011 (6)
N20.0253 (8)0.0245 (8)0.0276 (8)0.0015 (6)0.0088 (6)0.0017 (6)
N30.0310 (10)0.0249 (9)0.0666 (15)0.0059 (7)0.0237 (10)0.0115 (10)
C10.0320 (11)0.0268 (10)0.0480 (12)0.0003 (8)0.0132 (9)0.0051 (9)
C20.0467 (13)0.0245 (10)0.0470 (13)0.0005 (9)0.0149 (10)0.0051 (9)
C30.0416 (12)0.0288 (11)0.0378 (11)0.0118 (9)0.0062 (9)0.0029 (9)
C40.0287 (10)0.0347 (11)0.0372 (11)0.0091 (9)0.0060 (8)0.0004 (9)
C50.0245 (9)0.0263 (9)0.0257 (9)0.0023 (7)0.0054 (7)0.0027 (7)
C60.0356 (11)0.0284 (10)0.0353 (10)0.0028 (8)0.0131 (9)0.0010 (8)
C70.0436 (12)0.0347 (12)0.0442 (12)0.0134 (10)0.0220 (10)0.0047 (10)
C80.0299 (10)0.0483 (13)0.0425 (12)0.0106 (10)0.0168 (9)0.0093 (10)
C90.0254 (9)0.0426 (12)0.0337 (10)0.0007 (9)0.0098 (8)0.0057 (9)
C100.0248 (9)0.0289 (10)0.0245 (8)0.0008 (7)0.0074 (7)0.0049 (7)
C110.0261 (9)0.0247 (9)0.0309 (9)0.0011 (7)0.0042 (7)0.0014 (8)
C120.0388 (12)0.0332 (12)0.0623 (15)0.0089 (9)0.0249 (11)0.0115 (11)
C130.0427 (14)0.0452 (15)0.105 (3)0.0125 (12)0.0408 (16)0.0190 (16)
O70.0602 (13)0.0449 (11)0.0585 (12)0.0192 (9)0.0318 (10)0.0107 (9)
Geometric parameters (Å, º) top
Cu1—O11.9598 (14)C2—H20.85 (3)
Cu1—N31.987 (2)C3—C41.384 (4)
Cu1—N21.9970 (16)C3—H30.90 (3)
Cu1—N12.0043 (17)C4—C51.390 (3)
Cu1—O2i2.3965 (16)C4—H40.86 (3)
Cl1—O41.4307 (16)C5—C101.479 (3)
Cl1—O61.4358 (18)C6—C71.387 (3)
Cl1—O51.4365 (19)C6—H60.96 (3)
Cl1—O31.4469 (16)C7—C81.377 (4)
O1—C111.277 (2)C7—H70.90 (3)
O2—C111.244 (2)C8—C91.381 (3)
O2—Cu1ii2.3965 (16)C8—H80.95 (3)
N1—C11.340 (3)C9—C101.396 (3)
N1—C51.358 (2)C9—H90.96 (3)
N2—C61.343 (3)C11—C121.536 (3)
N2—C101.353 (3)C12—C131.488 (4)
N3—C121.481 (3)C12—H121.15 (4)
N3—H2N30.74 (4)C13—H13A1.04 (4)
N3—H1N30.83 (4)C13—H13B1.04 (4)
C1—C21.386 (3)C13—H13C1.16 (5)
C1—H10.92 (3)O7—H1O70.79 (4)
C2—C31.380 (4)O7—H2O70.69 (5)
O1—Cu1—N383.99 (7)C4—C3—H3120.4 (18)
O1—Cu1—N295.03 (6)C3—C4—C5119.4 (2)
N3—Cu1—N2169.62 (10)C3—C4—H4119 (2)
O1—Cu1—N1175.41 (6)C5—C4—H4122 (2)
N3—Cu1—N198.87 (7)N1—C5—C4121.28 (19)
N2—Cu1—N181.51 (7)N1—C5—C10114.65 (16)
O1—Cu1—O2i93.37 (6)C4—C5—C10124.07 (19)
N3—Cu1—O2i94.28 (9)N2—C6—C7122.0 (2)
N2—Cu1—O2i96.09 (6)N2—C6—H6116.2 (16)
N1—Cu1—O2i90.00 (6)C7—C6—H6121.8 (16)
O4—Cl1—O6110.13 (11)C8—C7—C6119.0 (2)
O4—Cl1—O5109.66 (11)C8—C7—H7123.1 (18)
O6—Cl1—O5110.07 (13)C6—C7—H7117.9 (18)
O4—Cl1—O3109.65 (11)C7—C8—C9119.6 (2)
O6—Cl1—O3108.38 (11)C7—C8—H8121.0 (19)
O5—Cl1—O3108.93 (13)C9—C8—H8119.4 (19)
C11—O1—Cu1115.46 (12)C8—C9—C10118.9 (2)
C11—O2—Cu1ii121.01 (14)C8—C9—H9120.8 (17)
C1—N1—C5118.82 (17)C10—C9—H9120.3 (17)
C1—N1—Cu1126.92 (14)N2—C10—C9121.42 (19)
C5—N1—Cu1114.25 (13)N2—C10—C5114.75 (16)
C6—N2—C10119.06 (18)C9—C10—C5123.82 (19)
C6—N2—Cu1125.95 (14)O2—C11—O1123.87 (19)
C10—N2—Cu1114.56 (13)O2—C11—C12118.42 (19)
C12—N3—Cu1110.57 (14)O1—C11—C12117.66 (18)
C12—N3—H2N3101 (4)N3—C12—C13113.9 (2)
Cu1—N3—H2N3117 (3)N3—C12—C11109.41 (19)
C12—N3—H1N3109 (3)C13—C12—C11113.9 (2)
Cu1—N3—H1N3108 (3)N3—C12—H12116 (2)
H2N3—N3—H1N3111 (4)C13—C12—H1291.9 (19)
N1—C1—C2122.4 (2)C11—C12—H12111 (2)
N1—C1—H1118.5 (18)C12—C13—H13A113 (2)
C2—C1—H1119.1 (18)C12—C13—H13B111 (2)
C3—C2—C1119.0 (2)H13A—C13—H13B102 (3)
C3—C2—H2123 (2)C12—C13—H13C102 (2)
C1—C2—H2118 (2)H13A—C13—H13C113 (3)
C2—C3—C4119.1 (2)H13B—C13—H13C117 (3)
C2—C3—H3120.5 (18)H1O7—O7—H2O7102 (5)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H2N3···O7iii0.74 (4)2.60 (4)3.293 (4)159 (5)
N3—H1N3···O1i0.83 (4)2.48 (4)3.225 (3)149 (3)
N3—H1N3···O2i0.83 (4)2.91 (4)3.225 (3)105 (3)
N3—H1N3···O7i0.83 (4)2.70 (5)3.059 (3)108 (3)
N3—H2N3···O7i0.74 (4)2.69 (5)3.059 (3)114 (4)
O7—H1O7···O2i0.79 (4)2.08 (4)2.857 (3)166 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C3H6NO2)(C10H8N2)]ClO4·H2O
Mr425.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)220
a, b, c (Å)13.1807 (10), 8.2656 (6), 16.1195 (13)
β (°) 110.606 (2)
V3)1643.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.60 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.460, 0.656
No. of measured, independent and
observed [I > 2σ(I)] reflections
13671, 3939, 3611
Rint0.020
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.078, 1.11
No. of reflections3939
No. of parameters290
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.89, 0.43

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg, 1999), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H2N3···O7i0.74 (4)2.60 (4)3.293 (4)159 (5)
N3—H1N3···O1ii0.83 (4)2.48 (4)3.225 (3)149 (3)
N3—H1N3···O2ii0.83 (4)2.91 (4)3.225 (3)105 (3)
N3—H1N3···O7ii0.83 (4)2.70 (5)3.059 (3)108 (3)
N3—H2N3···O7ii0.74 (4)2.69 (5)3.059 (3)114 (4)
O7—H1O7···O2ii0.79 (4)2.08 (4)2.857 (3)166 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank Professor Evamarie Hey-Hawkins for cooperation.

References

First citationAntolini, L., Marcotrigiano, G., Menabue, L. & Pellacani, G. C. (1983). Inorg. Chem. 22, 141–145.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMasuda, H., Sugimori, T., Odani, A. & Yamauchi, O. (1991). Inorg. Chim. Acta, 180, 73–79.  CSD CrossRef CAS Web of Science Google Scholar
First citationSgarabotto, P., Bisceglie, P., Pelosi, G. & Adbel-Rahman, L. (1999). Polyhedron, 18, 2505–2510.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSolans, X., Ruíz-Ramírez, L., Martínez, A., Gasque, L. & Moreno-Esparza, R. (1992). Acta Cryst. C48, 1785–1788.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds