metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[Benzyl(2-pyridylmeth­yl)amine]di­chloridomercury(II)

aDepartment of Chemistry, Pusan National University, Pusan 609-735, Republic of Korea, bDepartment of Chemistry Education and Center for Plastic Information Systems, Pusan National University, Pusan 609-735, Republic of Korea, and cDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 30 November 2008; accepted 3 December 2008; online 13 December 2008)

The Hg atom in the title compound, [HgCl2(C13H14N2)], adopts a distorted tetra­hedral geometry, being ligated by two N atoms of the benzyl(2-pyridylmeth­yl)amine (bpma) ligand and two Cl atoms. The dihedral angle between the least-squares planes through the chelate ring and Cl—Hg—Cl atoms is 85.4 (1)°. The phenyl ring on the bpma ligand is twisted out of the pyridine plane, forming a dihedral angle of 76.0 (3)°. Disorder in this ring is also noted with two coplanar conformations having equal site occupancies.

Related literature

For general background, see: Ojida et al. (2004[Ojida, A., Miti-oka, Y., Sada, K. & Hamachi, I. (2004). J. Am. Chem. Soc. 126, 2454-2463.]). For background on luminescent mercury compounds, see: Yordanov & Roundhill (1998[Yordanov, A. T. & Roundhill, D. M. (1998). Coord. Chem. Rev. 170, 93-124.]); Das et al. (2003[Das, S., Hung, C.-H. & Goswami, S. (2003). Inorg. Chem. 42, 8592-8597.]); Haneline et al. (2002[Haneline, M. R., Tsunoda, M. & Gabbai, F. P. (2002). J. Am. Chem. Soc. 124, 3737-3742.]); Atoub et al. (2007[Atoub, N., Mahmoudi, G. & Morsali, A. (2007). Inorg. Chem. Commun. 10, 166-169.]). For related structures, see Kim et al. (2007[Kim, Y.-I., Lee, Y.-S., Seo, H.-J., Lee, J.-Y. & Kang, S. K. (2007). Acta Cryst. E63, m2810-m2811.], 2008[Kim, Y.-I., Lee, Y.-S., Seo, H.-J., Nam, K.-S. & Kang, S. K. (2008). Acta Cryst. E64, m358.]).

[Scheme 1]

Experimental

Crystal data
  • [HgCl2(C13H14N2)]

  • Mr = 469.75

  • Monoclinic, P 21 /c

  • a = 13.1045 (3) Å

  • b = 13.8233 (3) Å

  • c = 8.3201 (2) Å

  • β = 91.135 (1)°

  • V = 1506.87 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 10.55 mm−1

  • T = 174 (2) K

  • 0.12 × 0.11 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.290, Tmax = 0.345

  • 16218 measured reflections

  • 3751 independent reflections

  • 3258 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.045

  • S = 1.03

  • 3751 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.82 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N8—H8⋯Cl2i 0.89 (4) 2.44 (4) 3.297 (3) 163 (3)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Luminescent mercury compounds have attracted considerable attention because of the detection and extraction of the mercury (Yordanov & Roundhill, 1998; Das et al., 2003) as well as the development of luminescent materials (Haneline et al., 2002; Atoub et al., 2007). Recently, we reported Zn(II) (Kim et al., 2007) and Hg(II) (Kim et al., 2008) compounds with bis(2-pyridylmethyl)amine and proposed these as blue fluorescent materials. As an extension of our study on luminescent chemosensors (Ojida et al., 2004), herein, we report a Hg(II) chloride compound with N-benzyl-N-2-(pyridyl)methylamine (bpma), (I), and investigated its structural and luminescent properties.

In (I), Fig, 1, the Hg atom is ligated by two N atoms of the bpma ligand and two Cl atoms. The angles around Hg atom are in the range of 72.83 (9) - 123.37 (7)°, suggesting the coordination geometry around the Hg atom is best described as a distorted tetrahedron. The dihedral angle between the least-squares planes through N1—Hg1—N8 and Cl1—Hg1—Cl2 is 85.4 (1)°, which is close to 90° for a perfect tetrahedron. The phenyl ring on the bpma ligand is twisted out of the pyridine plane, and forms a dihedral angle of 76.0 (3)°. The major contacts in the crystal structure are N-H···Cl interactions and these combine to form a supramolecular chain, Table 1.

The free ligand (bpma) showed two strong blue (λmax,PL = 379 and 449 nm in methylene chloride) fluorescent emissions upon 280 nm excitation, and Hg(bpma)Cl2 displayed an intense blue emission (λmax,PL = 430 nm in dichloromethane) which is tentatively assigned to be an intraligand (IL) 1π-π* transition.

Related literature top

For general background, see: Ojida et al. (2004). For background on luminescent mercury compounds, see: Yordanov & Roundhill (1998); Das et al. (2003); Haneline et al. (2002); Atoub et al. (2007). For related structures, see Kim et al. (2007, 2008).

Experimental top

All of the reagents and solvents were purchased from Aldrich and used without further purification. N-benzyl-N-(2-pyridylmethyl)amine (bpma) was synthesized from the reaction of 2-pyridinecarboxaldehyde, benzylamine and sodium borohydride. A solution benzylamine (20 mmol) in methanol (30 ml) was added slowly to a solution 2–2-pyridinecarboxaldehyde (20 mmol) in methanol (30 ml), and the mixture stirred for 3 h at room temperature. Sodium borohydride (20 mmol) in methanol (20 ml) was added and the solution was further stirred for 3 h at room temperature. The solution was evaporated to dryness and the residue extracted with dichloromethane to give bpma as yellow oil. To a stirred solution of mercuric chloride (10 mmol) in methanol (20 ml) was added bpma (10 mmol) in methanol (20 ml). The solution was stirred for 6 h at room temperature under a nitrogen atmosphere. The precipitates were filtered off and recrystallized from methanol to give (I) in a 61% yield. 1H-NMR for (I): (300 MHz, d6-DMSO) δ: 8.67 (d, 1H), 8.16 (t, 1H), 7.71 (d, 2H), 7.51 (m, 5H), 6.08 (s, 1H), 4.39(d, 2H), 4.12 (s, 2H).

Refinement top

The amine H8 atom was located in a difference map and refined freely with N—H = 0.89 (4) Å. The C-bound H atoms were included in the riding model approximation with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C). Disorder was noted in the structure and this modelled so that two sites were resolved for the phenyl-C12, C13, and C14 atoms. From refinement, each component of the disorder had a site occupancy factor = 0.50 (4).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme and 30% probability ellipsoids. For clarity, only one component of the disordered phenyl group is shown.
[Benzyl(2-pyridylmethyl)amine]dichloridomercury(II) top
Crystal data top
[HgCl2(C13H14N2)]F(000) = 880
Mr = 469.75Dx = 2.071 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6766 reflections
a = 13.1045 (3) Åθ = 2.9–28.3°
b = 13.8233 (3) ŵ = 10.55 mm1
c = 8.3201 (2) ÅT = 174 K
β = 91.135 (1)°Block, colourless
V = 1506.87 (6) Å30.12 × 0.11 × 0.1 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3258 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.027
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
θmax = 28.3°, θmin = 1.6°
Tmin = 0.290, Tmax = 0.345h = 1517
16218 measured reflectionsk = 1818
3751 independent reflectionsl = 1111
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.0166P)2 + 1.085P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.045(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.69 e Å3
3751 reflectionsΔρmin = 0.82 e Å3
195 parameters
Crystal data top
[HgCl2(C13H14N2)]V = 1506.87 (6) Å3
Mr = 469.75Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1045 (3) ŵ = 10.55 mm1
b = 13.8233 (3) ÅT = 174 K
c = 8.3201 (2) Å0.12 × 0.11 × 0.1 mm
β = 91.135 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3751 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3258 reflections with I > 2σ(I)
Tmin = 0.290, Tmax = 0.345Rint = 0.027
16218 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.045H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.69 e Å3
3751 reflectionsΔρmin = 0.82 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Hg10.212834 (9)0.445793 (9)0.162371 (14)0.03875 (5)
N10.05042 (19)0.39726 (18)0.2591 (3)0.0381 (6)
C20.0374 (3)0.3898 (3)0.1748 (4)0.0468 (8)
H20.03730.40270.06510.056*
C30.1277 (3)0.3639 (3)0.2442 (5)0.0550 (9)
H30.18760.35940.18290.066*
C40.1275 (3)0.3447 (3)0.4051 (5)0.0540 (9)
H40.18780.32780.45510.065*
C50.0378 (3)0.3505 (2)0.4930 (4)0.0462 (8)
H50.03650.33670.60240.055*
C60.0507 (2)0.3773 (2)0.4161 (4)0.0361 (6)
C70.1496 (2)0.3892 (3)0.5091 (4)0.0463 (8)
H7A0.15180.45350.55590.056*
H7B0.15170.34280.59660.056*
N80.24046 (19)0.37557 (19)0.4098 (3)0.0348 (5)
H80.247 (3)0.312 (3)0.391 (4)0.050 (10)*
C90.3360 (3)0.4089 (3)0.4915 (4)0.0526 (9)
H9A0.3460.37360.59130.063*
H9B0.33020.47710.51730.063*
C100.4254 (2)0.3936 (3)0.3868 (4)0.0411 (7)
C110.4612 (3)0.4674 (3)0.2916 (5)0.0605 (11)
H110.42510.52480.30250.073*
C120.5321 (13)0.473 (2)0.1940 (19)0.052 (4)0.50 (4)
H120.54980.52980.14120.062*0.50 (4)
C130.5821 (16)0.384 (3)0.173 (3)0.066 (7)0.50 (4)
H130.63610.3810.10220.079*0.50 (4)
C140.5540 (15)0.304 (2)0.252 (2)0.065 (6)0.50 (4)
H140.58620.24570.22950.078*0.50 (4)
C12A0.5511 (15)0.4286 (18)0.1850 (19)0.053 (5)0.50 (4)
H12A0.57970.46990.10990.063*0.50 (4)
C13A0.5883 (19)0.337 (2)0.199 (4)0.075 (7)0.50 (4)
H13A0.64180.31660.13560.09*0.50 (4)
C14A0.5477 (16)0.2739 (17)0.307 (4)0.076 (6)0.50 (4)
H14A0.57450.21250.32510.092*0.50 (4)
C150.4712 (3)0.3051 (3)0.3786 (6)0.0694 (12)
H150.45410.25220.44190.083*
Cl10.22317 (7)0.61872 (6)0.18426 (10)0.0500 (2)
Cl20.23761 (8)0.36292 (6)0.08585 (10)0.0558 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.03980 (7)0.04565 (7)0.03086 (7)0.00518 (5)0.00190 (5)0.00120 (5)
N10.0373 (14)0.0425 (14)0.0344 (13)0.0046 (11)0.0005 (11)0.0004 (11)
C20.0426 (19)0.058 (2)0.0401 (18)0.0070 (16)0.0046 (15)0.0019 (16)
C30.0386 (19)0.065 (2)0.062 (2)0.0093 (16)0.0023 (17)0.0102 (19)
C40.044 (2)0.055 (2)0.064 (2)0.0122 (16)0.0201 (17)0.0085 (18)
C50.048 (2)0.0474 (18)0.0439 (18)0.0041 (15)0.0132 (15)0.0000 (15)
C60.0383 (16)0.0338 (14)0.0365 (16)0.0025 (13)0.0069 (13)0.0041 (13)
C70.0431 (19)0.068 (2)0.0275 (16)0.0032 (16)0.0037 (13)0.0025 (15)
N80.0344 (13)0.0390 (13)0.0309 (13)0.0012 (11)0.0024 (10)0.0015 (11)
C90.043 (2)0.080 (2)0.0349 (18)0.0055 (18)0.0100 (15)0.0113 (17)
C100.0325 (16)0.062 (2)0.0285 (15)0.0043 (14)0.0112 (12)0.0002 (14)
C110.046 (2)0.085 (3)0.050 (2)0.021 (2)0.0177 (18)0.013 (2)
C120.031 (5)0.083 (11)0.040 (5)0.018 (7)0.014 (4)0.018 (7)
C130.028 (7)0.12 (2)0.053 (6)0.000 (11)0.008 (6)0.011 (14)
C140.031 (8)0.103 (18)0.062 (9)0.025 (10)0.006 (6)0.009 (8)
C12A0.045 (11)0.063 (14)0.051 (6)0.013 (8)0.007 (8)0.013 (10)
C13A0.032 (8)0.101 (18)0.093 (18)0.006 (10)0.013 (8)0.027 (13)
C14A0.044 (7)0.073 (9)0.111 (18)0.005 (6)0.001 (10)0.003 (9)
C150.039 (2)0.073 (3)0.096 (3)0.0058 (19)0.016 (2)0.002 (2)
Cl10.0564 (5)0.0400 (4)0.0539 (5)0.0043 (4)0.0104 (4)0.0042 (4)
Cl20.0875 (7)0.0456 (4)0.0346 (4)0.0015 (4)0.0060 (4)0.0064 (3)
Geometric parameters (Å, º) top
Hg1—N82.298 (2)C9—H9A0.97
Hg1—N12.387 (3)C9—H9B0.97
Hg1—Cl22.3895 (8)C10—C151.365 (5)
Hg1—Cl12.4010 (8)C10—C111.380 (5)
N1—C61.334 (4)C11—C121.248 (17)
N1—C21.340 (4)C11—C12A1.58 (2)
C2—C31.375 (5)C11—H110.93
C2—H20.93C12—C131.403 (19)
C3—C41.365 (5)C12—H120.93
C3—H30.93C13—C141.35 (3)
C4—C51.375 (5)C13—H130.93
C4—H40.93C14—C151.524 (19)
C5—C61.386 (4)C14—H140.93
C5—H50.93C12A—C13A1.37 (3)
C6—C71.506 (4)C12A—H12A0.93
C7—N81.475 (4)C13A—C14A1.36 (2)
C7—H7A0.97C13A—H13A0.93
C7—H7B0.97C14A—C151.25 (2)
N8—C91.486 (4)C14A—H14A0.93
N8—H80.89 (4)C15—H150.93
C9—C101.489 (5)
N8—Hg1—N172.83 (9)N8—C9—C10110.7 (3)
N8—Hg1—Cl2123.37 (7)N8—C9—H9A109.5
N1—Hg1—Cl2107.11 (7)C10—C9—H9A109.5
N8—Hg1—Cl1110.18 (7)N8—C9—H9B109.5
N1—Hg1—Cl1107.67 (7)C10—C9—H9B109.5
Cl2—Hg1—Cl1122.31 (3)H9A—C9—H9B108.1
C6—N1—C2118.8 (3)C15—C10—C11118.6 (4)
C6—N1—Hg1113.8 (2)C15—C10—C9120.6 (4)
C2—N1—Hg1127.4 (2)C11—C10—C9120.8 (4)
N1—C2—C3122.5 (3)C12—C11—C10133.4 (14)
N1—C2—H2118.7C10—C11—C12A109.8 (9)
C3—C2—H2118.7C12—C11—H11113.3
C4—C3—C2118.5 (3)C10—C11—H11113.3
C4—C3—H3120.7C11—C12—C13112.4 (18)
C2—C3—H3120.7C11—C12—H12123.8
C3—C4—C5119.7 (3)C13—C12—H12123.8
C3—C4—H4120.1C14—C13—C12122 (2)
C5—C4—H4120.1C14—C13—H13119.1
C4—C5—C6119.0 (3)C12—C13—H13119.1
C4—C5—H5120.5C13—C14—C15122.2 (14)
C6—C5—H5120.5C13—C14—H14118.9
N1—C6—C5121.4 (3)C15—C14—H14118.9
N1—C6—C7117.8 (3)C13A—C12A—C11122.2 (15)
C5—C6—C7120.8 (3)C13A—C12A—H12A118.9
N8—C7—C6113.2 (2)C11—C12A—H12A118.9
N8—C7—H7A108.9C14A—C13A—C12A120 (2)
C6—C7—H7A108.9C14A—C13A—H13A119.8
N8—C7—H7B108.9C12A—C13A—H13A119.8
C6—C7—H7B108.9C15—C14A—C13A115 (2)
H7A—C7—H7B107.8C15—C14A—H14A122.5
C7—N8—C9112.7 (2)C13A—C14A—H14A122.5
C7—N8—Hg1109.47 (18)C14A—C15—C10133.5 (13)
C9—N8—Hg1113.3 (2)C10—C15—C14111.4 (11)
C7—N8—H8108 (2)C14A—C15—H15101.8
C9—N8—H8107 (2)C10—C15—H15124.3
Hg1—N8—H8106 (2)C14—C15—H15124.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···Cl2i0.89 (4)2.44 (4)3.297 (3)163 (3)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[HgCl2(C13H14N2)]
Mr469.75
Crystal system, space groupMonoclinic, P21/c
Temperature (K)174
a, b, c (Å)13.1045 (3), 13.8233 (3), 8.3201 (2)
β (°) 91.135 (1)
V3)1506.87 (6)
Z4
Radiation typeMo Kα
µ (mm1)10.55
Crystal size (mm)0.12 × 0.11 × 0.1
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.290, 0.345
No. of measured, independent and
observed [I > 2σ(I)] reflections
16218, 3751, 3258
Rint0.027
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.045, 1.03
No. of reflections3751
No. of parameters195
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.82

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N8—H8···Cl2i0.89 (4)2.44 (4)3.297 (3)163 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Pusan National University Research Center [grant No. BK21(2008)].

References

First citationAtoub, N., Mahmoudi, G. & Morsali, A. (2007). Inorg. Chem. Commun. 10, 166–169.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SADABS, SAINT and SMART, Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDas, S., Hung, C.-H. & Goswami, S. (2003). Inorg. Chem. 42, 8592–8597.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHaneline, M. R., Tsunoda, M. & Gabbai, F. P. (2002). J. Am. Chem. Soc. 124, 3737–3742.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKim, Y.-I., Lee, Y.-S., Seo, H.-J., Lee, J.-Y. & Kang, S. K. (2007). Acta Cryst. E63, m2810–m2811.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKim, Y.-I., Lee, Y.-S., Seo, H.-J., Nam, K.-S. & Kang, S. K. (2008). Acta Cryst. E64, m358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOjida, A., Miti-oka, Y., Sada, K. & Hamachi, I. (2004). J. Am. Chem. Soc. 126, 2454–2463.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYordanov, A. T. & Roundhill, D. M. (1998). Coord. Chem. Rev. 170, 93–124.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds