organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o102-o103

3-Fluoro-N-(3-fluoro­benzo­yl)-N-(2-pyrid­yl)benzamide

aSchool of Chemical Sciences, Dublin City University, Dublin 9, Ireland, and bDepartment of Chemistry, 80 St George Street, University of Toronto, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: john.gallagher@dcu.ie

(Received 3 December 2008; accepted 5 December 2008; online 13 December 2008)

The title compound, C19H12F2N2O2, a 2:1 product of the reaction of 3-fluoro­benzoyl­chloride and 2-amino­pyridine crystallizes with a disordered 3-fluoro­benzene ring adopting two conformations [ratio of occupancies 0.959 (4):0.041 (4)]. In the crystal structure, there are no classical hydrogen bonds and inter­actions comprise C—H⋯O in the form 2(C—H)⋯O=C [with motif R21(5)]; C—H⋯π(arene) inter­actions are also present.

Related literature

For background information, see: Donnelly et al. (2008[Donnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335-o340.]); Gallagher et al. (2008[Gallagher, J. F., McMahon, J., Anderson, F. P. & Lough, A. J. (2008). Acta Cryst. E64, o2394.]); McMahon et al. (2008[McMahon, J., Anderson, F. P., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o493-o497.]); Moody et al. (1998[Moody, C. J., Miah, S., Slawin, A. M. Z., Mansfield, D. J. & Richards, I. C. (1998). Tetrahedron, 54, 9689-9700.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the parent compound, 2-(dibenzoyl­amino)pyridine, see: Weng et al. (2006[Weng, Y.-B., Wang, J.-K. & Wang, Y.-F. (2006). Acta Cryst. E62, o1868-o1869.]). For related structures, see: Usman et al. (2002a[Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Tian, J.-Z., Zhang, Y. & Xu, J.-H. (2002a). Acta Cryst. E58, o357-o358.],b[Usman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Tian, J.-Z., Zhang, Y. & Xu, J.-H. (2002b). Acta Cryst. E58, o377-o379.]).

[Scheme 1]

Experimental

Crystal data
  • C19H12F2N2O2

  • Mr = 338.31

  • Triclinic, [P \overline 1]

  • a = 5.4932 (4) Å

  • b = 8.1549 (5) Å

  • c = 17.9205 (15) Å

  • α = 78.081 (4)°

  • β = 89.588 (3)°

  • γ = 76.693 (3)°

  • V = 763.69 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 (1) K

  • 0.34 × 0.30 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.873, Tmax = 0.992

  • 5197 measured reflections

  • 3422 independent reflections

  • 1966 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.167

  • S = 1.04

  • 3422 reflections

  • 236 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯O2i 0.95 2.53 3.097 (3) 119
C25—H25⋯O2i 0.95 2.46 3.063 (3) 121
C25—H25⋯Cg1i 0.95 2.79 3.606 (3) 145
Symmetry code: (i) x-1, y+1, z. Cg1 is the centroid of the C11–C16 benzene ring.

Data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SORTX (McArdle, 1995[McArdle, P. (1995). J. Appl. Cryst. 28, 65.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PREP8 (Ferguson, 1998[Ferguson, G. (1998). PREP8. University of Guelph, Canada.]).

Supporting information


Comment top

Our group is completing a structural systematic study of fluoro-N'-(pyridyl)benzamide isomers (Donnelly et al., 2008) and we are adding to our research with the analogous difluoro-N-(pyridyl)benzamide series (McMahon et al., 2008) (Scheme 1).

In the chemical synthesis of either the mono- or di-fluoro derivatives and when using the ortho-aminopyridine, two products can be isolated as either the 1:1 or 2:1 benzoyl:pyridine components, and with yields and ratios depending on the reaction conditions. We have reported the structure of the 1:1 derivative, 2,3-difluoro-N-(2-pyridyl)benzamide (Gallagher et al., 2008), and now report a 2:1 relative of this compound, namely 3-fluoro-N'-(3-fluorobenzoyl)-N'-(2-pyridinyl)benzamide (I) (Figs 1 & 2). The parent compound 2-(dibenzoylamino)pyridine has been reported previously (Weng et al., 2006) as well as the compounds N,N-dibenzoyl-4-chloroaniline and 4-acetyl-N,N-dibenzoylphenylamine (Usman et al., 2002a,b).

In the crystal structure of (I), there are no classical hydrogen bonds and the weaker interactions present consist of C—H···O and C—H···π(arene) contacts. An unusual (phenyl)C—H···C=O interaction arises between neighbouring molecules as (C24—H24/C25—H25)···O2=C2i [graph set R21(5)] with O···C distances of 3.062 (3) and 3.097 (3) Å (symmetry code: i = x - 1, y + 1, z), Table 1.

A search of the literature (Allen, 2002) reveals a structure exhibiting a comparable example of hydrogen bonding and is archived in the CSD (as XOXRIL). However, in this structure the interacting molecules are offset with respect to the C=O···C2 moiety in the aromatic C5N ring. A related search yielded POZWUW (Fig. 3) (Moody et al., 1998) and RINXUI which both have relatively symmetrical C=O···C2 distances similar to (I) and form chains along the b axis. In the POZWUW structure the C3/C4···O1ii distances are 3.013 (3) and 3.090 (3) Å, and similar to that in (I) (symmetry code: ii = x, y - 1, z) (Fig. 3).

A related search for C=O···C2 [in C6] yielded 6 compounds in the same range of C···O from 2.0–3.0 Å but most were disordered, with high R-factors and typically had the solvent benzene as the acceptor; these are listed as BARJUZ10, LAYDAQ, MERRIK, OGOPUV, SEDLET, XICFEV (Allen, 2002).

Related literature top

For background information, see: Donnelly et al. (2008); Gallagher et al. (2008); McMahon et al. (2008); Moody et al. (1998). For a description of the Cambridge Structural Database, see: Allen (2002). For the parent compound, 2-(dibenzoylamino)pyridine, see: Weng et al. (2006). For related structures, see: Usman et al. (2002a,b).

Experimental top

Compound (I) was synthesized via standard condensation procedures and similar to the related syntheses reported previously (Donnelly et al., 2008; McMahon et al., 2008). Separation of the 1:1 and 2:1 derivatives was undertaken by using flash chromatography. Typical organic workup and washing gave the product (I) in modest yield of 25–35% as a 2:1 component of the mixture. Crystals suitable for X-ray diffraction were grown from CHCl3 as colourless blocks over a period of 1–2 weeks and gave a melting point of 401–406 K. The compounds gave clean 1H and 13C NMR spectra in CDC3 and infrared spectra (in CHCl3 solution, and as KBr disks).

For (I), m.p. 401–406 K (uncorrected). IR (νC=O cm-1): 1697(s, br), (CHCl3); 1695(s) (KBr).

Refinement top

Molecule (I) crystallized in the triclinic system; space group P1 (No. 2) assumed and confirmed by the refinement and analysis. In the final stages of refinement it was observed that there was electron density consistent with a partial occupancy F atom in a position expected for a minor orientation (site) of the F33 atom position. This new site only necessitates rotation by 180° about the C2—C31 axis in a group that is not engaged in strong hydrogen bonding.

The minor F35 site was treated initially with isotropic displacement values and in the final refinement cycles was restrained by DFIX values to 1.350 (5) Å, SIMU restraints of 0.2 (F33, F35) and FLAT constraints of 0.1 with the {C31···C36} benzene ring. The final refinement gave site occupancy values of 0.959 (4):0.041 (4). As the major and minor sites for the C6 ring are essentially coincidental it was decided to retain the major orientation with 100% occupancy for use with the restraints.

Refinement and disorder analysis: (WGHT, R-factor and residual electron density).

Refinement without disorder gives an R-factor of 0.058 WGHT = 0.0856 0.018, R = 0.058 and +0.40/-0.30. Refinement with F33 at variable occupancy changes site from 1.000 to 0.937. WGHT = 0.082 0.018, R = 0.057 and +0.39/-0.30. Final refinement and treatment of disorder gives an R-factor of 0.057: WGHT = 0.0816 0, R = 0.057 and +0.26/-0.32 [Inclusion of the minor site at F35 using DFIX/SIMU/FLAT restraints].

H atoms attached to C atoms were treated as riding with C—H = 0.95 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and SORTX (McArdle, 1995); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PREP8 (Ferguson, 1998).

Figures top
[Figure 1] Fig. 1. A view of (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. The disordered F33/F35 sites are depicted for clarity.
[Figure 2] Fig. 2. A view of the C—H···O interactions in the crystal structure of (I).
[Figure 3] Fig. 3. A view of the 2x(C—H)···O=C interaction in POZWUW crystal structure with atoms drawn as their van der Waals spheres (Moody et al., 1998).
[Figure 4] Fig. 4. The CSD instructions and search criteria for the 2x(C—H)···O=C interaction in related structures.
3-Fluoro-N-(3-fluorobenzoyl)-N-(2-pyridyl)benzamide top
Crystal data top
C19H12F2N2O2Z = 2
Mr = 338.31F(000) = 348
Triclinic, P1Dx = 1.471 Mg m3
Hall symbol: -P 1Melting point: 403 K
a = 5.4932 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.1549 (5) ÅCell parameters from 2910 reflections
c = 17.9205 (15) Åθ = 2.6–27.5°
α = 78.081 (4)°µ = 0.11 mm1
β = 89.588 (3)°T = 150 K
γ = 76.693 (3)°Block, colourless
V = 763.69 (10) Å30.34 × 0.30 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
3422 independent reflections
Radiation source: fine-focus sealed X-ray tube1966 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ϕ, and ω scans with κ offsetsθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 77
Tmin = 0.873, Tmax = 0.992k = 1010
5197 measured reflectionsl = 2023
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.167H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0816P)2]
where P = (Fo2 + 2Fc2)/3
3422 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.26 e Å3
5 restraintsΔρmin = 0.32 e Å3
Crystal data top
C19H12F2N2O2γ = 76.693 (3)°
Mr = 338.31V = 763.69 (10) Å3
Triclinic, P1Z = 2
a = 5.4932 (4) ÅMo Kα radiation
b = 8.1549 (5) ŵ = 0.11 mm1
c = 17.9205 (15) ÅT = 150 K
α = 78.081 (4)°0.34 × 0.30 × 0.12 mm
β = 89.588 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3422 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1966 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 0.992Rint = 0.043
5197 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0575 restraints
wR(F2) = 0.167H-atom parameters constrained
S = 1.04Δρmax = 0.26 e Å3
3422 reflectionsΔρmin = 0.32 e Å3
236 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F131.4634 (3)0.23528 (17)0.51411 (9)0.0438 (4)
F330.7405 (3)0.6582 (2)0.04453 (9)0.0534 (6)0.959 (4)
F350.085 (3)0.975 (3)0.064 (3)0.072 (17)0.041 (4)
O11.0215 (3)0.83326 (19)0.37748 (10)0.0389 (5)
C10.9639 (4)0.7323 (3)0.34430 (14)0.0268 (6)
C111.0136 (4)0.5439 (3)0.37798 (13)0.0247 (5)
C121.2170 (4)0.4755 (3)0.42993 (14)0.0283 (6)
C131.2672 (4)0.3023 (3)0.46246 (14)0.0302 (6)
C141.1272 (5)0.1930 (3)0.44586 (14)0.0316 (6)
C150.9220 (5)0.2637 (3)0.39557 (14)0.0310 (6)
C160.8640 (4)0.4374 (3)0.36223 (14)0.0285 (6)
N10.8296 (4)0.7932 (2)0.27278 (11)0.0252 (5)
C210.7380 (4)0.9785 (3)0.25150 (13)0.0232 (5)
N220.8718 (4)1.0596 (2)0.20067 (11)0.0282 (5)
C230.7874 (4)1.2313 (3)0.17910 (14)0.0293 (6)
C240.5739 (4)1.3220 (3)0.20586 (14)0.0288 (6)
C250.4409 (4)1.2343 (3)0.25976 (14)0.0282 (6)
C260.5261 (4)1.0580 (3)0.28380 (14)0.0279 (6)
O21.0823 (3)0.5907 (2)0.21749 (10)0.0357 (5)
C20.8926 (4)0.7035 (3)0.21272 (13)0.0259 (5)
C310.7138 (4)0.7490 (3)0.14525 (13)0.0256 (5)
C320.8076 (5)0.6859 (3)0.08106 (14)0.0287 (6)
C330.6501 (5)0.7166 (3)0.01795 (15)0.0361 (6)
C340.4039 (5)0.8066 (3)0.01530 (16)0.0381 (7)
C350.3124 (5)0.8666 (3)0.07875 (15)0.0345 (6)
C360.4653 (4)0.8371 (3)0.14401 (14)0.0279 (6)
H121.31850.54660.44260.034*
H141.17010.07330.46820.038*
H150.82000.19210.38380.037*
H160.72120.48440.32840.034*
H230.88011.29330.14350.035*
H240.51831.44290.18770.035*
H250.29431.29420.27970.034*
H260.44180.99370.32130.033*
H320.97640.62320.08120.034*
H330.71340.67420.02560.043*0.041 (4)
H340.29980.82670.02930.046*
H350.14310.92880.07800.041*0.959 (4)
H360.39930.87750.18780.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F130.0402 (9)0.0387 (8)0.0439 (10)0.0050 (7)0.0157 (8)0.0068 (7)
F330.0543 (12)0.0759 (13)0.0333 (11)0.0060 (9)0.0036 (8)0.0295 (9)
F350.07 (3)0.06 (3)0.07 (4)0.02 (3)0.02 (3)0.01 (2)
O10.0534 (12)0.0265 (9)0.0372 (11)0.0090 (9)0.0134 (9)0.0078 (8)
C10.0250 (13)0.0276 (12)0.0256 (14)0.0026 (11)0.0028 (10)0.0049 (11)
C110.0268 (13)0.0234 (11)0.0226 (13)0.0030 (10)0.0023 (10)0.0054 (10)
C120.0295 (13)0.0268 (12)0.0292 (14)0.0068 (11)0.0019 (11)0.0074 (11)
C130.0266 (13)0.0286 (13)0.0302 (15)0.0014 (10)0.0038 (11)0.0000 (11)
C140.0370 (15)0.0238 (12)0.0309 (15)0.0054 (11)0.0038 (12)0.0008 (11)
C150.0361 (14)0.0275 (13)0.0309 (15)0.0112 (11)0.0012 (12)0.0052 (11)
C160.0291 (13)0.0313 (13)0.0248 (14)0.0048 (11)0.0019 (11)0.0072 (11)
N10.0300 (11)0.0192 (9)0.0245 (11)0.0015 (8)0.0025 (9)0.0045 (8)
C210.0257 (13)0.0181 (11)0.0240 (13)0.0001 (10)0.0039 (10)0.0056 (9)
N220.0295 (11)0.0240 (10)0.0310 (12)0.0053 (9)0.0021 (9)0.0064 (9)
C230.0322 (14)0.0247 (12)0.0308 (15)0.0083 (11)0.0012 (11)0.0033 (11)
C240.0338 (14)0.0187 (11)0.0318 (15)0.0026 (10)0.0039 (11)0.0046 (10)
C250.0304 (13)0.0245 (12)0.0292 (14)0.0027 (10)0.0001 (11)0.0086 (10)
C260.0302 (13)0.0271 (12)0.0267 (14)0.0074 (11)0.0031 (11)0.0057 (10)
O20.0382 (10)0.0295 (9)0.0310 (11)0.0069 (8)0.0042 (8)0.0038 (8)
C20.0322 (14)0.0182 (11)0.0261 (14)0.0032 (10)0.0054 (11)0.0050 (10)
C310.0322 (13)0.0203 (11)0.0250 (14)0.0082 (10)0.0020 (11)0.0044 (10)
C320.0302 (13)0.0240 (12)0.0318 (15)0.0063 (11)0.0036 (11)0.0058 (11)
C330.0456 (17)0.0386 (14)0.0284 (15)0.0139 (13)0.0076 (13)0.0127 (12)
C340.0413 (16)0.0445 (15)0.0321 (16)0.0144 (13)0.0033 (13)0.0111 (13)
C350.0316 (14)0.0329 (14)0.0400 (17)0.0085 (12)0.0006 (12)0.0090 (12)
C360.0306 (14)0.0257 (12)0.0299 (15)0.0082 (11)0.0024 (11)0.0092 (11)
Geometric parameters (Å, º) top
F13—C131.361 (3)C25—C261.381 (3)
F33—C331.353 (3)C31—C321.402 (3)
F35—C351.347 (5)C31—C361.387 (3)
O1—C11.207 (2)C32—C331.374 (3)
C1—N11.420 (3)C33—C341.378 (4)
O2—C21.211 (3)C34—C351.376 (4)
C2—C311.493 (3)C35—C361.391 (3)
N1—C21.420 (3)C12—H120.9500
N1—C211.448 (3)C14—H140.9500
C1—C111.492 (3)C15—H150.9500
C11—C121.393 (3)C16—H160.9500
C11—C161.394 (3)C23—H230.9500
C12—C131.377 (3)C24—H240.9500
C13—C141.379 (3)C25—H250.9500
C14—C151.384 (3)C26—H260.9500
C15—C161.382 (3)C32—H320.9500
C21—N221.331 (3)C33—H330.9500
C21—C261.382 (3)C34—H340.9500
N22—C231.344 (3)C35—H350.9500
C23—C241.375 (3)C36—H360.9500
C24—C251.387 (3)
O1—C1—N1119.86 (19)C32—C33—C34122.6 (2)
O1—C1—C11122.3 (2)C35—C34—C33118.5 (2)
N1—C1—C11117.67 (18)C34—C35—C36120.7 (2)
C12—C11—C16119.5 (2)C31—C36—C35120.1 (2)
C12—C11—C1116.76 (18)C13—C12—H12120.9
C16—C11—C1123.7 (2)C11—C12—H12120.9
C13—C12—C11118.3 (2)C13—C14—H14121.1
F13—C13—C12118.5 (2)C15—C14—H14121.1
F13—C13—C14118.2 (2)C16—C15—H15119.6
C12—C13—C14123.3 (2)C14—C15—H15119.6
C13—C14—C15117.7 (2)C15—C16—H16119.8
C16—C15—C14120.7 (2)C11—C16—H16119.8
C15—C16—C11120.4 (2)N22—C23—H23118.3
C1—N1—C2120.05 (18)C24—C23—H23118.3
C1—N1—C21114.85 (17)C23—C24—H24120.5
C2—N1—C21117.18 (18)C25—C24—H24120.5
N22—C21—C26124.97 (19)C26—C25—H25120.7
N22—C21—N1115.2 (2)C24—C25—H25120.7
C26—C21—N1119.8 (2)C25—C26—H26121.1
C21—N22—C23116.2 (2)C21—C26—H26121.1
N22—C23—C24123.4 (2)C33—C32—H32120.7
C23—C24—C25119.0 (2)C31—C32—H32120.7
C26—C25—C24118.6 (2)C32—C33—H33118.7
C25—C26—C21117.7 (2)C34—C33—H33118.7
O2—C2—N1120.7 (2)C35—C34—H34120.8
O2—C2—C31121.5 (2)C33—C34—H34120.8
N1—C2—C31117.8 (2)C34—C35—H35119.7
C36—C31—C32119.5 (2)C36—C35—H35119.7
C36—C31—C2124.9 (2)C31—C36—H36119.9
C32—C31—C2115.4 (2)C35—C36—H36119.9
C33—C32—C31118.6 (2)
O1—C1—C11—C1227.9 (3)N1—C21—N22—C23178.84 (18)
N1—C1—C11—C12156.2 (2)C21—N22—C23—C241.0 (3)
O1—C1—C11—C16149.8 (2)N22—C23—C24—C252.1 (3)
N1—C1—C11—C1626.1 (3)C23—C24—C25—C261.0 (3)
C16—C11—C12—C131.8 (4)C24—C25—C26—C211.1 (3)
C1—C11—C12—C13179.6 (2)N22—C21—C26—C252.3 (3)
C11—C12—C13—F13179.0 (2)N1—C21—C26—C25177.79 (18)
C11—C12—C13—C140.4 (4)C1—N1—C2—O211.0 (3)
F13—C13—C14—C15177.5 (2)C21—N1—C2—O2136.5 (2)
C12—C13—C14—C152.0 (4)C1—N1—C2—C31167.05 (19)
C13—C14—C15—C161.3 (4)C21—N1—C2—C3145.5 (3)
C14—C15—C16—C110.9 (4)O2—C2—C31—C36160.4 (2)
C12—C11—C16—C152.5 (4)N1—C2—C31—C3617.6 (3)
C1—C11—C16—C15179.9 (2)O2—C2—C31—C3215.4 (3)
O1—C1—N1—C2138.7 (2)N1—C2—C31—C32166.55 (19)
C11—C1—N1—C245.3 (3)C36—C31—C32—C331.3 (3)
O1—C1—N1—C219.4 (3)C2—C31—C32—C33177.3 (2)
C11—C1—N1—C21166.5 (2)C31—C32—C33—C340.1 (3)
C1—N1—C21—N22101.8 (2)C32—C33—C34—C350.5 (4)
C2—N1—C21—N2247.3 (3)C33—C34—C35—C360.1 (4)
C1—N1—C21—C2678.1 (3)C32—C31—C36—C351.7 (3)
C2—N1—C21—C26132.8 (2)C2—C31—C36—C35177.4 (2)
C26—C21—N22—C231.3 (3)C34—C35—C36—C311.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24···O2i0.952.533.097 (3)119
C25—H25···O2i0.952.463.063 (3)121
C25—H25···Cg1i0.952.793.606 (3)145
Symmetry code: (i) x1, y+1, z.

Experimental details

Crystal data
Chemical formulaC19H12F2N2O2
Mr338.31
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)5.4932 (4), 8.1549 (5), 17.9205 (15)
α, β, γ (°)78.081 (4), 89.588 (3), 76.693 (3)
V3)763.69 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.34 × 0.30 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.873, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5197, 3422, 1966
Rint0.043
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.167, 1.04
No. of reflections3422
No. of parameters236
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.32

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and SORTX (McArdle, 1995), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 2008) and PREP8 (Ferguson, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24···O2i0.952.533.097 (3)119
C25—H25···O2i0.952.463.063 (3)121
C25—H25···Cg1i0.952.793.606 (3)145
Symmetry code: (i) x1, y+1, z.
 

Footnotes

Additional correspondence author, e-mail: alough@chem.utoronto.ca.

Acknowledgements

JFG thanks Dublin City University for grants in aid of undergraduate research. Thanks especially to Mr Damien McGuirk for providing excellent technical support in the undergraduate research laboratories.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDonnelly, K., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o335–o340.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFerguson, G. (1998). PREP8. University of Guelph, Canada.  Google Scholar
First citationGallagher, J. F., McMahon, J., Anderson, F. P. & Lough, A. J. (2008). Acta Cryst. E64, o2394.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMcArdle, P. (1995). J. Appl. Cryst. 28, 65.  CrossRef IUCr Journals Google Scholar
First citationMcMahon, J., Anderson, F. P., Gallagher, J. F. & Lough, A. J. (2008). Acta Cryst. C64, o493–o497.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoody, C. J., Miah, S., Slawin, A. M. Z., Mansfield, D. J. & Richards, I. C. (1998). Tetrahedron, 54, 9689–9700.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr. & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUsman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Tian, J.-Z., Zhang, Y. & Xu, J.-H. (2002a). Acta Cryst. E58, o357–o358.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUsman, A., Razak, I. A., Fun, H.-K., Chantrapromma, S., Tian, J.-Z., Zhang, Y. & Xu, J.-H. (2002b). Acta Cryst. E58, o377–o379.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWeng, Y.-B., Wang, J.-K. & Wang, Y.-F. (2006). Acta Cryst. E62, o1868–o1869.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o102-o103
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds