organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Chloro-N-(pyrimidin-2-yl)aniline

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 December 2008; accepted 5 December 2008; online 10 December 2008)

The two aromatic rings in the title compound, C10H8ClN3, open the angle at the planar N atom to 128.00 (12)°. The amino N atom of one mol­ecule forms a hydrogen bond to the 1-N atom of an adjacent pyrimidyl ring, generating a hydrogen-bonded dimer.

Related literature

For other 4-chloro­anilino substituted N-heterocycles, see: Fairuz et al. (2008[Fairuz, M. Z. A., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o1800.]); Idris et al. (2008[Idris, A., Wan Saffiee, W. A. M., Abdullah, Z., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o2443.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8ClN3

  • Mr = 205.64

  • Triclinic, [P \overline 1]

  • a = 3.7750 (1) Å

  • b = 10.0589 (3) Å

  • c = 12.0116 (3) Å

  • α = 89.237 (1)°

  • β = 89.037 (1)°

  • γ = 89.399 (2)°

  • V = 455.98 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 100 (2) K

  • 0.35 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.880, Tmax = 0.982

  • 3625 measured reflections

  • 2032 independent reflections

  • 1757 reflections with I > 2σ(I)

  • Rint = 0.014

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.080

  • S = 1.02

  • 2032 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.85 (2) 2.18 (2) 3.028 (2) 174 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For other 4-chloroanilino substituted N-heterocycles, see: Fairuz et al. (2008); Idris et al. (2008).

Experimental top

2-Chloropyrimidine (2.88 g, 2.5 mmol) and 4-chloroaniline (3.20 g, 25 mmol) were mixed with ethanol (2 ml) and the mixture was heated at 423–433 K for 8 h. The product was dissolved in water and the solution extracted with ether. The ether phase was dried over sodium sulfate; the evaporation of the solvent gave well shaped crystals along with some unidentified brown material.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88±0.01 Å; its temperature factors were freely refined.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of hydrogen-bonded dimeric structure of C10H8ClN3 at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. Hydrogen bonds are shown as red dashed lines.
4-Chloro-N-(pyrimidin-2-yl)aniline top
Crystal data top
C10H8ClN3Z = 2
Mr = 205.64F(000) = 212
Triclinic, P1Dx = 1.498 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 3.7750 (1) ÅCell parameters from 2160 reflections
b = 10.0589 (3) Åθ = 2.6–28.2°
c = 12.0116 (3) ŵ = 0.38 mm1
α = 89.237 (1)°T = 100 K
β = 89.037 (1)°Plate, yellow
γ = 89.399 (2)°0.35 × 0.15 × 0.05 mm
V = 455.98 (2) Å3
Data collection top
Bruker SMART APEX
diffractometer
2032 independent reflections
Radiation source: fine-focus sealed tube1757 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 44
Tmin = 0.880, Tmax = 0.982k = 1313
3625 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0319P)2 + 0.3201P]
where P = (Fo2 + 2Fc2)/3
2032 reflections(Δ/σ)max = 0.001
131 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C10H8ClN3γ = 89.399 (2)°
Mr = 205.64V = 455.98 (2) Å3
Triclinic, P1Z = 2
a = 3.7750 (1) ÅMo Kα radiation
b = 10.0589 (3) ŵ = 0.38 mm1
c = 12.0116 (3) ÅT = 100 K
α = 89.237 (1)°0.35 × 0.15 × 0.05 mm
β = 89.037 (1)°
Data collection top
Bruker SMART APEX
diffractometer
2032 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1757 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.982Rint = 0.014
3625 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.34 e Å3
2032 reflectionsΔρmin = 0.24 e Å3
131 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.12780 (11)0.77439 (4)1.04792 (3)0.02641 (13)
N10.6990 (3)0.63747 (13)0.59185 (10)0.0156 (3)
H10.642 (5)0.556 (2)0.5875 (16)0.028 (5)*
N20.5390 (3)0.64905 (12)0.40908 (10)0.0150 (3)
N30.7907 (3)0.83808 (12)0.49717 (10)0.0156 (3)
C10.8101 (4)0.67719 (14)0.69743 (11)0.0136 (3)
C20.7505 (4)0.80454 (15)0.73923 (11)0.0156 (3)
H20.64160.87100.69410.019*
C30.8504 (4)0.83405 (15)0.84683 (12)0.0178 (3)
H30.81170.92080.87520.021*
C41.0064 (4)0.73655 (16)0.91245 (11)0.0172 (3)
C51.0687 (4)0.60984 (15)0.87278 (12)0.0175 (3)
H51.17670.54360.91840.021*
C60.9703 (4)0.58131 (15)0.76498 (12)0.0156 (3)
H61.01310.49470.73680.019*
C70.6752 (4)0.71254 (14)0.49723 (11)0.0132 (3)
C80.7695 (4)0.90471 (14)0.40058 (12)0.0156 (3)
H80.84690.99430.39750.019*
C90.6401 (4)0.84960 (15)0.30478 (12)0.0165 (3)
H90.62960.89810.23650.020*
C100.5268 (4)0.71961 (15)0.31431 (11)0.0159 (3)
H100.43580.67850.25020.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0288 (2)0.0384 (2)0.01228 (18)0.00173 (17)0.00450 (14)0.00490 (15)
N10.0213 (7)0.0124 (6)0.0133 (6)0.0040 (5)0.0022 (5)0.0008 (5)
N20.0171 (6)0.0139 (6)0.0141 (6)0.0007 (5)0.0017 (5)0.0020 (4)
N30.0169 (6)0.0151 (6)0.0146 (6)0.0028 (5)0.0002 (5)0.0010 (5)
C10.0129 (6)0.0158 (7)0.0121 (6)0.0037 (5)0.0005 (5)0.0004 (5)
C20.0173 (7)0.0159 (7)0.0136 (6)0.0006 (5)0.0002 (5)0.0005 (5)
C30.0184 (7)0.0185 (7)0.0164 (7)0.0019 (6)0.0022 (5)0.0043 (5)
C40.0152 (7)0.0260 (8)0.0103 (6)0.0035 (6)0.0003 (5)0.0020 (5)
C50.0141 (7)0.0224 (8)0.0158 (7)0.0005 (6)0.0003 (5)0.0030 (6)
C60.0153 (7)0.0154 (7)0.0162 (7)0.0012 (5)0.0016 (5)0.0009 (5)
C70.0118 (6)0.0145 (7)0.0133 (6)0.0001 (5)0.0007 (5)0.0018 (5)
C80.0159 (7)0.0138 (7)0.0170 (7)0.0013 (5)0.0017 (5)0.0001 (5)
C90.0182 (7)0.0177 (7)0.0135 (6)0.0008 (6)0.0004 (5)0.0012 (5)
C100.0161 (7)0.0180 (7)0.0136 (6)0.0010 (5)0.0019 (5)0.0030 (5)
Geometric parameters (Å, º) top
Cl1—C41.7458 (14)C3—C41.383 (2)
N1—C71.3599 (18)C3—H30.9500
N1—C11.4067 (17)C4—C51.383 (2)
N1—H10.85 (2)C5—C61.3875 (19)
N2—C101.3346 (18)C5—H50.9500
N2—C71.3552 (17)C6—H60.9500
N3—C81.3353 (18)C8—C91.383 (2)
N3—C71.3404 (18)C8—H80.9500
C1—C61.392 (2)C9—C101.383 (2)
C1—C21.397 (2)C9—H90.9500
C2—C31.3890 (19)C10—H100.9500
C2—H20.9500
C7—N1—C1128.00 (12)C4—C5—H5120.7
C7—N1—H1116.9 (14)C6—C5—H5120.7
C1—N1—H1115.1 (14)C5—C6—C1121.22 (13)
C10—N2—C7115.63 (12)C5—C6—H6119.4
C8—N3—C7116.05 (12)C1—C6—H6119.4
C6—C1—C2119.06 (13)N3—C7—N2125.91 (13)
C6—C1—N1117.44 (13)N3—C7—N1119.22 (12)
C2—C1—N1123.41 (13)N2—C7—N1114.85 (12)
C3—C2—C1120.03 (14)N3—C8—C9123.14 (13)
C3—C2—H2120.0N3—C8—H8118.4
C1—C2—H2120.0C9—C8—H8118.4
C4—C3—C2119.69 (14)C10—C9—C8115.99 (13)
C4—C3—H3120.2C10—C9—H9122.0
C2—C3—H3120.2C8—C9—H9122.0
C5—C4—C3121.30 (13)N2—C10—C9123.27 (13)
C5—C4—Cl1119.40 (12)N2—C10—H10118.4
C3—C4—Cl1119.31 (12)C9—C10—H10118.4
C4—C5—C6118.70 (14)
C7—N1—C1—C6150.50 (14)N1—C1—C6—C5176.11 (13)
C7—N1—C1—C233.1 (2)C8—N3—C7—N20.4 (2)
C6—C1—C2—C30.1 (2)C8—N3—C7—N1178.01 (13)
N1—C1—C2—C3176.32 (13)C10—N2—C7—N31.0 (2)
C1—C2—C3—C40.5 (2)C10—N2—C7—N1177.43 (13)
C2—C3—C4—C50.6 (2)C1—N1—C7—N35.1 (2)
C2—C3—C4—Cl1179.51 (11)C1—N1—C7—N2176.27 (13)
C3—C4—C5—C60.2 (2)C7—N3—C8—C90.6 (2)
Cl1—C4—C5—C6179.93 (11)N3—C8—C9—C100.8 (2)
C4—C5—C6—C10.4 (2)C7—N2—C10—C90.7 (2)
C2—C1—C6—C50.5 (2)C8—C9—C10—N20.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.85 (2)2.18 (2)3.028 (2)174 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC10H8ClN3
Mr205.64
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)3.7750 (1), 10.0589 (3), 12.0116 (3)
α, β, γ (°)89.237 (1), 89.037 (1), 89.399 (2)
V3)455.98 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.35 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.880, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
3625, 2032, 1757
Rint0.014
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.080, 1.02
No. of reflections2032
No. of parameters131
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.24

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.85 (2)2.18 (2)3.028 (2)174 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

We thank the University of Malaya for supporting this study (PS077/2007 C).

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFairuz, M. Z. A., Aiyub, Z., Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o1800.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIdris, A., Wan Saffiee, W. A. M., Abdullah, Z., Ariffin, A. & Ng, S. W. (2008). Acta Cryst. E64, o2443.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds