organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Phen­oxy­pyrimidine

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 4 December 2008; accepted 5 December 2008; online 13 December 2008)

There are two molecules in the asymmetric unit of, C10H8N2O, with dihedral angles between the aromatic ring planes of 75.9 (1) and 79.3 (1)°.

Related literature

For other phen­oxy-substituted N-heterocycles, see: Abdullah & Ng (2008[Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2165.]); Hassan et al. (2008[Hassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o1820.]); Idris et al. (2009[Idris, A., Afiffin, A., Abdullah, Z. & Ng, S. W. (2009). Acta Cryst. E65, o7.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2O

  • Mr = 172.18

  • Monoclinic, P 21 /c

  • a = 10.859 (1) Å

  • b = 20.181 (2) Å

  • c = 8.1339 (8) Å

  • β = 106.637 (2)°

  • V = 1707.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 (2) K

  • 0.25 × 0.20 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: none

  • 9752 measured reflections

  • 3901 independent reflections

  • 3026 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.03

  • 3901 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For other phenoxy-substituted N-heterocycles, see: Abdullah & Ng (2008); Hassan et al. (2008); Idris et al. (2009).

Experimental top

Phenol (1.88 g, 20 mmol) was mixed with sodium hydroxide (0.08 g, 20 mmol) in several drops of water. The water was then evaporated. The paste was heated with 2-chloropyrimidine (2.30 g, 20 mmol) at 423–433 K for 6 h. The product was dissolved in water and the solution extracted with ether. The ether phase was dried over sodium sulfate; the evaporation of the solvent gave well shaped colorless crystals along with some unidentified brown material.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of the two independent molecules of C10H8N2O at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
2-Phenoxypyrimidine top
Crystal data top
C10H8N2OF(000) = 720
Mr = 172.18Dx = 1.339 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2782 reflections
a = 10.859 (1) Åθ = 2.2–28.2°
b = 20.181 (2) ŵ = 0.09 mm1
c = 8.1339 (8) ÅT = 100 K
β = 106.637 (2)°Block, colorless
V = 1707.8 (3) Å30.25 × 0.20 × 0.15 mm
Z = 8
Data collection top
Bruker SMART APEX
diffractometer
3026 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
ω scansh = 1114
9752 measured reflectionsk = 2626
3901 independent reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.2571P]
where P = (Fo2 + 2Fc2)/3
3901 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C10H8N2OV = 1707.8 (3) Å3
Mr = 172.18Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.859 (1) ŵ = 0.09 mm1
b = 20.181 (2) ÅT = 100 K
c = 8.1339 (8) Å0.25 × 0.20 × 0.15 mm
β = 106.637 (2)°
Data collection top
Bruker SMART APEX
diffractometer
3026 reflections with I > 2σ(I)
9752 measured reflectionsRint = 0.024
3901 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.18 e Å3
3901 reflectionsΔρmin = 0.22 e Å3
235 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69295 (8)0.58216 (5)0.51546 (11)0.0274 (2)
O20.97744 (9)0.67233 (5)0.77250 (11)0.0281 (2)
N10.59037 (10)0.60351 (5)0.72195 (13)0.0245 (2)
N20.77301 (10)0.53229 (5)0.76936 (14)0.0253 (2)
N31.05326 (11)0.62385 (5)1.03911 (13)0.0264 (3)
N40.87443 (10)0.69812 (5)0.96601 (13)0.0247 (2)
C10.59965 (12)0.62116 (6)0.40077 (16)0.0213 (3)
C20.48239 (12)0.59386 (6)0.31580 (17)0.0256 (3)
H20.46170.55000.34080.031*
C30.39513 (13)0.63124 (7)0.19343 (18)0.0297 (3)
H30.31360.61330.13460.036*
C40.42700 (14)0.69480 (7)0.15706 (17)0.0311 (3)
H40.36710.72040.07290.037*
C50.54526 (14)0.72141 (6)0.24218 (18)0.0314 (3)
H15A0.56660.76500.21610.038*
C60.63298 (13)0.68443 (6)0.36592 (17)0.0263 (3)
H6B0.71440.70240.42540.032*
C70.68331 (12)0.57302 (6)0.67684 (16)0.0208 (3)
C80.58755 (14)0.59106 (7)0.88258 (17)0.0303 (3)
H80.52270.61150.92250.036*
C90.67458 (14)0.54993 (7)0.99239 (17)0.0295 (3)
H90.67110.54161.10590.035*
C100.76711 (13)0.52151 (6)0.92888 (17)0.0267 (3)
H100.82910.49311.00150.032*
C111.07433 (12)0.63814 (6)0.72453 (15)0.0235 (3)
C121.05906 (12)0.57148 (6)0.68472 (15)0.0235 (3)
H120.98590.54800.69540.028*
C131.15275 (12)0.53963 (6)0.62894 (15)0.0239 (3)
H131.14390.49390.60070.029*
C141.25931 (13)0.57413 (7)0.61407 (16)0.0258 (3)
H141.32390.55180.57730.031*
C151.27177 (13)0.64082 (7)0.65256 (18)0.0298 (3)
H151.34450.66440.64090.036*
C161.17853 (13)0.67363 (6)0.70825 (17)0.0284 (3)
H161.18650.71960.73450.034*
C170.96950 (12)0.66360 (6)0.93451 (15)0.0214 (3)
C181.03893 (14)0.61819 (7)1.19692 (17)0.0302 (3)
H181.09570.59001.27740.036*
C190.94557 (14)0.65152 (7)1.24657 (16)0.0293 (3)
H190.93680.64721.35900.035*
C200.86503 (13)0.69161 (6)1.12499 (17)0.0271 (3)
H200.79990.71571.15600.033*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0224 (5)0.0355 (5)0.0264 (5)0.0089 (4)0.0102 (4)0.0033 (4)
O20.0304 (5)0.0329 (5)0.0221 (5)0.0140 (4)0.0092 (4)0.0064 (4)
N10.0230 (6)0.0253 (5)0.0255 (6)0.0043 (4)0.0075 (5)0.0019 (4)
N20.0205 (6)0.0237 (5)0.0302 (6)0.0025 (4)0.0050 (5)0.0001 (4)
N30.0246 (6)0.0298 (6)0.0219 (5)0.0066 (5)0.0018 (4)0.0021 (4)
N40.0242 (6)0.0241 (5)0.0261 (6)0.0051 (4)0.0079 (5)0.0030 (4)
C10.0202 (6)0.0238 (6)0.0221 (6)0.0030 (5)0.0097 (5)0.0010 (5)
C20.0237 (7)0.0206 (6)0.0340 (7)0.0018 (5)0.0107 (6)0.0004 (5)
C30.0232 (7)0.0314 (7)0.0326 (7)0.0008 (5)0.0052 (6)0.0040 (6)
C40.0389 (8)0.0280 (7)0.0260 (7)0.0102 (6)0.0084 (6)0.0020 (5)
C50.0441 (9)0.0198 (6)0.0346 (7)0.0002 (6)0.0181 (7)0.0007 (5)
C60.0262 (7)0.0263 (6)0.0291 (7)0.0069 (5)0.0121 (6)0.0077 (5)
C70.0192 (6)0.0181 (5)0.0248 (6)0.0026 (5)0.0059 (5)0.0031 (5)
C80.0297 (7)0.0349 (7)0.0285 (7)0.0062 (6)0.0118 (6)0.0031 (6)
C90.0321 (8)0.0323 (7)0.0231 (6)0.0014 (6)0.0059 (6)0.0008 (5)
C100.0239 (7)0.0236 (6)0.0288 (7)0.0007 (5)0.0015 (5)0.0012 (5)
C110.0232 (7)0.0282 (6)0.0175 (6)0.0075 (5)0.0034 (5)0.0034 (5)
C120.0213 (6)0.0276 (6)0.0209 (6)0.0000 (5)0.0052 (5)0.0034 (5)
C130.0246 (7)0.0248 (6)0.0205 (6)0.0010 (5)0.0037 (5)0.0004 (5)
C140.0218 (7)0.0313 (7)0.0240 (6)0.0039 (5)0.0064 (5)0.0011 (5)
C150.0226 (7)0.0320 (7)0.0345 (7)0.0030 (6)0.0077 (6)0.0028 (6)
C160.0298 (7)0.0234 (6)0.0292 (7)0.0006 (5)0.0039 (6)0.0005 (5)
C170.0218 (6)0.0202 (6)0.0204 (6)0.0007 (5)0.0031 (5)0.0000 (5)
C180.0308 (8)0.0343 (7)0.0210 (6)0.0057 (6)0.0001 (6)0.0038 (5)
C190.0357 (8)0.0316 (7)0.0200 (6)0.0016 (6)0.0069 (6)0.0015 (5)
C200.0275 (7)0.0268 (6)0.0291 (7)0.0024 (5)0.0113 (6)0.0007 (5)
Geometric parameters (Å, º) top
O1—C71.3590 (15)C6—H6B0.9500
O1—C11.4053 (15)C8—C91.3771 (19)
O2—C171.3565 (14)C8—H80.9500
O2—C111.4037 (15)C9—C101.3793 (19)
N1—C71.3205 (16)C9—H90.9500
N1—C81.3394 (17)C10—H100.9500
N2—C71.3307 (16)C11—C161.3772 (19)
N2—C101.3352 (17)C11—C121.3824 (18)
N3—C171.3235 (16)C12—C131.3850 (17)
N3—C181.3414 (17)C12—H120.9500
N4—C171.3297 (16)C13—C141.3851 (18)
N4—C201.3324 (16)C13—H130.9500
C1—C21.3780 (18)C14—C151.3797 (18)
C1—C61.3785 (17)C14—H140.9500
C2—C31.3848 (19)C15—C161.3897 (19)
C2—H20.9500C15—H150.9500
C3—C41.3824 (19)C16—H160.9500
C3—H30.9500C18—C191.3703 (19)
C4—C51.381 (2)C18—H180.9500
C4—H40.9500C19—C201.3792 (18)
C5—C61.389 (2)C19—H190.9500
C5—H15A0.9500C20—H200.9500
C7—O1—C1118.48 (9)N2—C10—C9122.61 (12)
C17—O2—C11117.86 (9)N2—C10—H10118.7
C7—N1—C8114.61 (11)C9—C10—H10118.7
C7—N2—C10114.78 (11)C16—C11—C12122.03 (12)
C17—N3—C18114.85 (11)C16—C11—O2118.22 (11)
C17—N4—C20114.51 (11)C12—C11—O2119.62 (12)
C2—C1—C6121.77 (12)C11—C12—C13118.57 (12)
C2—C1—O1119.74 (11)C11—C12—H12120.7
C6—C1—O1118.26 (11)C13—C12—H12120.7
C1—C2—C3119.11 (12)C12—C13—C14120.38 (12)
C1—C2—H2120.4C12—C13—H13119.8
C3—C2—H2120.4C14—C13—H13119.8
C4—C3—C2119.85 (13)C15—C14—C13120.04 (12)
C4—C3—H3120.1C15—C14—H14120.0
C2—C3—H3120.1C13—C14—H14120.0
C5—C4—C3120.48 (13)C14—C15—C16120.37 (12)
C5—C4—H4119.8C14—C15—H15119.8
C3—C4—H4119.8C16—C15—H15119.8
C4—C5—C6120.05 (12)C11—C16—C15118.61 (12)
C4—C5—H15A120.0C11—C16—H16120.7
C6—C5—H15A120.0C15—C16—H16120.7
C1—C6—C5118.74 (12)N3—C17—N4128.48 (11)
C1—C6—H6B120.6N3—C17—O2118.70 (11)
C5—C6—H6B120.6N4—C17—O2112.82 (10)
N1—C7—N2128.65 (11)N3—C18—C19122.58 (12)
N1—C7—O1118.78 (11)N3—C18—H18118.7
N2—C7—O1112.56 (10)C19—C18—H18118.7
N1—C8—C9122.86 (12)C18—C19—C20116.58 (12)
N1—C8—H8118.6C18—C19—H19121.7
C9—C8—H8118.6C20—C19—H19121.7
C8—C9—C10116.48 (12)N4—C20—C19123.00 (12)
C8—C9—H9121.8N4—C20—H20118.5
C10—C9—H9121.8C19—C20—H20118.5
C7—O1—C1—C280.80 (14)C17—O2—C11—C16106.60 (13)
C7—O1—C1—C6104.66 (13)C17—O2—C11—C1277.48 (15)
C6—C1—C2—C30.72 (19)C16—C11—C12—C130.84 (19)
O1—C1—C2—C3175.06 (11)O2—C11—C12—C13176.60 (10)
C1—C2—C3—C40.64 (19)C11—C12—C13—C140.14 (18)
C2—C3—C4—C50.1 (2)C12—C13—C14—C150.92 (19)
C3—C4—C5—C60.3 (2)C13—C14—C15—C160.7 (2)
C2—C1—C6—C50.28 (18)C12—C11—C16—C151.03 (19)
O1—C1—C6—C5174.70 (11)O2—C11—C16—C15176.84 (11)
C4—C5—C6—C10.24 (19)C14—C15—C16—C110.23 (19)
C8—N1—C7—N20.11 (19)C18—N3—C17—N40.05 (19)
C8—N1—C7—O1179.36 (11)C18—N3—C17—O2179.77 (11)
C10—N2—C7—N10.22 (19)C20—N4—C17—N30.79 (19)
C10—N2—C7—O1179.71 (10)C20—N4—C17—O2178.94 (11)
C1—O1—C7—N13.06 (16)C11—O2—C17—N30.36 (17)
C1—O1—C7—N2176.49 (10)C11—O2—C17—N4179.88 (10)
C7—N1—C8—C90.14 (19)C17—N3—C18—C190.63 (19)
N1—C8—C9—C100.1 (2)N3—C18—C19—C200.3 (2)
C7—N2—C10—C90.52 (18)C17—N4—C20—C191.10 (19)
C8—C9—C10—N20.5 (2)C18—C19—C20—N40.6 (2)

Experimental details

Crystal data
Chemical formulaC10H8N2O
Mr172.18
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)10.859 (1), 20.181 (2), 8.1339 (8)
β (°) 106.637 (2)
V3)1707.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9752, 3901, 3026
Rint0.024
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.102, 1.03
No. of reflections3901
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.22

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2009).

 

Acknowledgements

We thank the University of Malaya for supporting this study (FS358/2008 A).

References

First citationAbdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o2165.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHassan, N. D., Tajuddin, H. A., Abdullah, Z. & Ng, S. W. (2008). Acta Cryst. E64, o1820.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationIdris, A., Afiffin, A., Abdullah, Z. & Ng, S. W. (2009). Acta Cryst. E65, o7.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds