organic compounds
3,5-Dichloro-6-methylpyridin-2-amine
aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Bengal Engineering and Science University, Shibpur, Howrah 711 103, India
*Correspondence e-mail: hkfun@usm.my
In the title compound, C6H6Cl2N2, intramolecular N–H⋯Cl and C—H⋯Cl contacts generate five-membered rings, producing S(5) ring motifs. Pairs of intermolecular N—H⋯N hydrogen bonds link neighbouring molecules into dimers with R22(8) ring motifs. In the these dimers are connected by N—H⋯Cl interactions and are packed into columns.
Related literature
For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For related literature and applications see, for example: Goswami & Maity (2007); Taylor et al. (1989); Taylor & Ray (1988); Beer et al. (1993); Goswami et al. (2000, 2005); Fun et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).
Supporting information
10.1107/S1600536808041366/tk2343sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808041366/tk2343Isup2.hkl
Phosphorus oxychloride (POCl3) (15 ml) was added to 2-amino-6-methylpyridine (2 g, 0.019 mmol) and the mixture was refluxed at 383 K for 16 h. Excess POCl3 was distilled off. The solid residue was neutralized using KOH solution in an ice bath and a saturated NaHCO3 solution was added. The solid residue was filtered off, extracted with CHCl3, the solution was dried over anhydrous Na2SO4 and then concentrated under vacuum. The crude product was purified by
using silica gel with 20% ethyl acetate in petroleum ether as eluant to afford (I) (2.14 g, 65%) as a colourless crystalline solid, mp. 404–407 K.All hydrogen atoms were located from a difference Fourier map and refined freely; range of C-H distances: 0.924 (7) to 1.02 (2) Å. See Table 1 for N-H distances.
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).C6H6Cl2N2 | F(000) = 360 |
Mr = 177.03 | Dx = 1.626 Mg m−3 |
Monoclinic, P21/n | Melting point: 404 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 12.7670 (3) Å | Cell parameters from 9896 reflections |
b = 3.8037 (1) Å | θ = 2.4–40.3° |
c = 15.4129 (3) Å | µ = 0.81 mm−1 |
β = 104.990 (1)° | T = 100 K |
V = 723.01 (3) Å3 | Block, colourless |
Z = 4 | 0.45 × 0.31 × 0.28 mm |
Bruker SMART APEXII CCD area-detector diffractometer | 3795 independent reflections |
Radiation source: fine-focus sealed tube | 3485 reflections with I > 2˘I) |
Graphite monochromator | Rint = 0.026 |
ϕ and ω scans | θmax = 37.5°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −21→21 |
Tmin = 0.711, Tmax = 0.803 | k = −6→6 |
26531 measured reflections | l = −26→26 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | All H-atom parameters refined |
S = 1.11 | w = 1/[σ2(Fo2) + (0.037P)2 + 0.1631P] where P = (Fo2 + 2Fc2)/3 |
3795 reflections | (Δ/σ)max = 0.001 |
115 parameters | Δρmax = 0.61 e Å−3 |
0 restraints | Δρmin = −0.42 e Å−3 |
C6H6Cl2N2 | V = 723.01 (3) Å3 |
Mr = 177.03 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 12.7670 (3) Å | µ = 0.81 mm−1 |
b = 3.8037 (1) Å | T = 100 K |
c = 15.4129 (3) Å | 0.45 × 0.31 × 0.28 mm |
β = 104.990 (1)° |
Bruker SMART APEXII CCD area-detector diffractometer | 3795 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 3485 reflections with I > 2˘I) |
Tmin = 0.711, Tmax = 0.803 | Rint = 0.026 |
26531 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.071 | All H-atom parameters refined |
S = 1.11 | Δρmax = 0.61 e Å−3 |
3795 reflections | Δρmin = −0.42 e Å−3 |
115 parameters |
Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.116608 (15) | 0.89761 (5) | 0.117299 (12) | 0.01973 (5) | |
Cl2 | 0.150078 (13) | 0.32687 (5) | −0.194719 (10) | 0.01603 (4) | |
N1 | 0.36956 (5) | 0.65340 (16) | 0.02268 (4) | 0.01455 (9) | |
N2 | 0.38950 (5) | 0.41291 (19) | −0.10983 (4) | 0.01738 (11) | |
H2N1 | 0.4571 (12) | 0.379 (4) | −0.0819 (9) | 0.027 (3)* | |
H1N1 | 0.3607 (11) | 0.284 (4) | −0.1526 (9) | 0.025 (3)* | |
C1 | 0.32310 (5) | 0.51854 (18) | −0.05855 (4) | 0.01322 (10) | |
C2 | 0.20904 (5) | 0.49965 (17) | −0.08923 (4) | 0.01321 (10) | |
C3 | 0.14544 (5) | 0.61633 (18) | −0.03563 (4) | 0.01465 (10) | |
H3 | 0.0672 (10) | 0.605 (3) | −0.0583 (8) | 0.022 (3)* | |
C4 | 0.19660 (5) | 0.75331 (18) | 0.04856 (4) | 0.01450 (10) | |
C5 | 0.30903 (5) | 0.77194 (18) | 0.07629 (4) | 0.01437 (10) | |
C6 | 0.37037 (7) | 0.9165 (2) | 0.16549 (5) | 0.02130 (13) | |
H6C | 0.4268 (13) | 1.055 (5) | 0.1579 (11) | 0.041 (4)* | |
H6B | 0.4079 (16) | 0.744 (5) | 0.2083 (12) | 0.061 (5)* | |
H6A | 0.3222 (16) | 1.071 (6) | 0.1929 (13) | 0.065 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.02170 (8) | 0.02155 (8) | 0.01862 (8) | 0.00364 (6) | 0.01006 (6) | −0.00108 (5) |
Cl2 | 0.01665 (7) | 0.01786 (7) | 0.01167 (7) | −0.00132 (5) | 0.00022 (5) | −0.00081 (5) |
N1 | 0.0143 (2) | 0.0174 (2) | 0.0113 (2) | −0.00002 (17) | 0.00219 (17) | −0.00112 (17) |
N2 | 0.0146 (2) | 0.0247 (3) | 0.0127 (2) | 0.00163 (19) | 0.00317 (18) | −0.00292 (19) |
C1 | 0.0136 (2) | 0.0146 (2) | 0.0110 (2) | 0.00045 (18) | 0.00251 (18) | 0.00056 (18) |
C2 | 0.0140 (2) | 0.0139 (2) | 0.0108 (2) | −0.00021 (18) | 0.00163 (17) | 0.00039 (18) |
C3 | 0.0143 (2) | 0.0153 (2) | 0.0142 (2) | 0.00085 (19) | 0.00352 (19) | 0.0011 (2) |
C4 | 0.0168 (2) | 0.0140 (2) | 0.0137 (2) | 0.0020 (2) | 0.00586 (19) | 0.00056 (19) |
C5 | 0.0172 (2) | 0.0141 (2) | 0.0117 (2) | 0.00022 (19) | 0.00350 (19) | −0.00028 (19) |
C6 | 0.0264 (3) | 0.0224 (3) | 0.0135 (3) | −0.0011 (3) | 0.0023 (2) | −0.0044 (2) |
Cl1—C4 | 1.7396 (7) | C2—C3 | 1.3733 (9) |
Cl2—C2 | 1.7346 (6) | C3—C4 | 1.3941 (9) |
N1—C1 | 1.3409 (8) | C3—H3 | 0.970 (13) |
N1—C5 | 1.3468 (9) | C4—C5 | 1.3894 (10) |
N2—C1 | 1.3607 (9) | C5—C6 | 1.4996 (10) |
N2—H2N1 | 0.869 (14) | C6—H6C | 0.924 (17) |
N2—H1N1 | 0.828 (14) | C6—H6B | 0.96 (2) |
C1—C2 | 1.4118 (9) | C6—H6A | 1.02 (2) |
C1—N1—C5 | 121.03 (6) | C5—C4—C3 | 120.23 (6) |
C1—N2—H2N1 | 116.4 (9) | C5—C4—Cl1 | 121.27 (5) |
C1—N2—H1N1 | 115.0 (9) | C3—C4—Cl1 | 118.50 (5) |
H2N1—N2—H1N1 | 119.1 (13) | N1—C5—C4 | 120.35 (6) |
N1—C1—N2 | 117.62 (6) | N1—C5—C6 | 116.03 (6) |
N1—C1—C2 | 120.07 (6) | C4—C5—C6 | 123.62 (6) |
N2—C1—C2 | 122.28 (6) | C5—C6—H6C | 109.4 (10) |
C3—C2—C1 | 120.08 (6) | C5—C6—H6B | 115.3 (11) |
C3—C2—Cl2 | 120.37 (5) | H6C—C6—H6B | 102.0 (15) |
C1—C2—Cl2 | 119.55 (5) | C5—C6—H6A | 111.3 (11) |
C2—C3—C4 | 118.24 (6) | H6C—C6—H6A | 107.2 (15) |
C2—C3—H3 | 118.9 (7) | H6B—C6—H6A | 110.8 (14) |
C4—C3—H3 | 122.8 (7) | ||
C5—N1—C1—N2 | 178.27 (6) | C2—C3—C4—C5 | 0.46 (10) |
C5—N1—C1—C2 | 0.13 (10) | C2—C3—C4—Cl1 | −179.37 (5) |
N1—C1—C2—C3 | −0.61 (10) | C1—N1—C5—C4 | 0.64 (10) |
N2—C1—C2—C3 | −178.66 (7) | C1—N1—C5—C6 | 179.98 (6) |
N1—C1—C2—Cl2 | 179.63 (5) | C3—C4—C5—N1 | −0.94 (10) |
N2—C1—C2—Cl2 | 1.58 (9) | Cl1—C4—C5—N1 | 178.89 (5) |
C1—C2—C3—C4 | 0.29 (10) | C3—C4—C5—C6 | 179.77 (7) |
Cl2—C2—C3—C4 | −179.95 (5) | Cl1—C4—C5—C6 | −0.40 (10) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N1···N1i | 0.869 (15) | 2.168 (15) | 3.0320 (9) | 172.8 (13) |
N2—H1N1···Cl2 | 0.828 (14) | 2.603 (14) | 3.0156 (7) | 112.3 (12) |
C6—H6A···Cl1 | 1.02 (2) | 2.67 (2) | 3.1318 (9) | 108.0 (14) |
N2—H1N1···Cl2ii | 0.828 (14) | 2.900 (14) | 3.6758 (7) | 156.9 (13) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1/2, y−1/2, −z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C6H6Cl2N2 |
Mr | 177.03 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 12.7670 (3), 3.8037 (1), 15.4129 (3) |
β (°) | 104.990 (1) |
V (Å3) | 723.01 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.81 |
Crystal size (mm) | 0.45 × 0.31 × 0.28 |
Data collection | |
Diffractometer | Bruker SMART APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.711, 0.803 |
No. of measured, independent and observed [I > 2˘I)] reflections | 26531, 3795, 3485 |
Rint | 0.026 |
(sin θ/λ)max (Å−1) | 0.857 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.071, 1.11 |
No. of reflections | 3795 |
No. of parameters | 115 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.61, −0.42 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2N1···N1i | 0.869 (15) | 2.168 (15) | 3.0320 (9) | 172.8 (13) |
N2—H1N1···Cl2 | 0.828 (14) | 2.603 (14) | 3.0156 (7) | 112.3 (12) |
C6—H6A···Cl1 | 1.02 (2) | 2.67 (2) | 3.1318 (9) | 108.0 (14) |
N2—H1N1···Cl2ii | 0.828 (14) | 2.900 (14) | 3.6758 (7) | 156.9 (13) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1/2, y−1/2, −z−1/2. |
Acknowledgements
HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. We thank the DST [SR/S1/OC-13/2005], Govt. of India, for financial support. ACM thanks the UGC, Govt. of India, for a fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.
References
Beer, R. H., Jimenez, J. & Drago, R. S. (1993). J. Org. Chem. 58, 1746–1747. CrossRef CAS Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chamg, N.-L. (1995). Angew. Chem. Int. Ed. Eng1. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fun, H.-K., Chantrapromma, S., Jana, S., Chakrabarty, R. & Goswami, S. (2008). Acta Cryst. E64, o1659–o1660. Web of Science CSD CrossRef IUCr Journals Google Scholar
Goswami, S. P., Dey, S., Fun, H. K., Anjum, S. & Rahman, A. (2005). Tetrahedron Lett. 46, 7187–7191. Web of Science CSD CrossRef CAS Google Scholar
Goswami, S. P., Ghosh, K. & Dasgupta, S. J. (2000). J. Org. Chem. 65, 1907–1914. Web of Science CrossRef PubMed CAS Google Scholar
Goswami, S. P. & Maity, A. C. (2007). Chem. Lett. 36, 552–555. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13. Web of Science CrossRef CAS IUCr Journals Google Scholar
Taylor, E. C. & Ray, P. S. (1988). J. Am. Chem. Soc. 53, 35–41. CAS Google Scholar
Taylor, E. C., Ray, P. S., Darwish, I. S., Johnson, J. L. & Rajagopalan, K. V. (1989). J. Am. Chem. Soc. 111, 7664–7665. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The halogen substituted π-depleted heteroaromatics (e.g. pterin, quinoxaline, naphthyridine, or pyridine derivatives) are important intermediates in modern organic chemistry (Goswami & Maity 2007; Taylor et al. 1989; Taylor & Ray 1988; Beer et al. 1993), e.g. they are used as precursors for pharmacologically active compounds. These are also versatile compounds in manifold synthesis of artificial receptors for molecular recognition (Goswami et al. 2000, 2005; Fun et al. 2008).
In the title compound (I), Fig. 1, intramolecular N–H···Cl and C—H···Cl contacts generate five-membered rings, producing S(5) ring motifs (Bernstein et al., 1995). Pairs of intermolecular N—H···N hydrogen bonds link molecules into dimers with a R22(8) ring motif (Table 1). In the crystal structure, these dimers are connected by N—H···Cl interactions and are packed into columns along the b axis, Fig. 2.