metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m20-m21

cis-Bis{1-[(4-nitro­phen­yl)diazen­yl]-2-naphtholato}di­pyridine­nickel(II)

aInstituto de Química, Universidade Federal do Rio de Janeiro, Caixa Postal 68563, 21949-900 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: visentin72@yahoo.com.br

(Received 12 November 2008; accepted 1 December 2008; online 6 December 2008)

In the title compound, [Ni(C16H10N3O3)2(C5H5N)2], the NiII cation is in a distorted octa­hedral NiN4O2 coordination by two independent bidentate 1-[(4-nitro­phen­yl)diazen­yl]-2-naph­thol­ate anions and two pyridine ligands. C—H⋯O inter­actions between aromatic rings and the O atoms of the nitro substituents build up a two-dimensional supra­molecular arrangement parallel to (100).

Related literature

For background on metal azo complexes, see: Carella et al. (2007[Carella, A., Casalboni, M., Centore, R., Fusco, S., Noce, C., Quatela, A., Peluso, A. & Sirigu, A. (2007). Opt. Mater. 30, 473-477.]); Kulikovska et al. (2007[Kulikovska, O., Goldenberg, L. M. & Stumpe, J. (2007). Chem. Mater. 19, 3343-3348.]); Patnaik et al. (2007[Patnaik, S., Sharma, A. K., Garg, B. S., Gandhi, R. P. & Gupta, K. C. (2007). Int. J. Pharm. 342, 184-193.]); Leng et al. (2001[Leng, W. N., Zhou, Y. M., Xu, Q. H. & Liu, J. Z. (2001). Polymer, 42, 9253-9259.]). For bond lengths, see: Abildgaard et al. (2006[Abildgaard, J., Hansen, P. E., Josephsen, J., Hansen, B. K. V., Sørensen, H. O. & Larsen, S. (2006). Inorg. Chim. Acta, 359, 4493-4502.]). For hydrogen bonds, see: Jeffrey & Saenger (1991[Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures, p. 20. Berlin: Springer-Verlag.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C16H10N3O3)2(C5H5N)2]

  • Mr = 801.45

  • Monoclinic, P 21 /c

  • a = 11.719 (2) Å

  • b = 18.885 (4) Å

  • c = 16.922 (3) Å

  • β = 93.04 (3)°

  • V = 3740.0 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 295 (2) K

  • 0.37 × 0.18 × 0.15 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.814, Tmax = 0.918

  • 64998 measured reflections

  • 6566 independent reflections

  • 4859 reflections with I > 2σ(I)

  • Rint = 0.076

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.090

  • S = 1.05

  • 6566 reflections

  • 514 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—N1 2.168 (2)
Ni1—N4 2.143 (2)
Ni1—N7 2.121 (2)
Ni1—N8 2.122 (2)
Ni1—O1 2.0116 (16)
Ni1—O4 2.0161 (17)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C36—H36⋯O2i 0.93 2.38 3.124 (5) 137
C41—H41⋯O6ii 0.93 2.53 3.205 (4) 130
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z-{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: PHICHI (Duisenberg et al., 2000[Duisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893-898.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Metal complexes with azo ligands show interesting chemical and physical properties and are of interest as new materials, for example in bioinorganic and coordination chemistry, as well as in biological systems which can lead to the development of new products with specific properties (Carella et al., 2007; Kulikovska et al., 2007; Patnaik et al., 2007; Leng et al., 2001). In this work the structure of the title molecule, [Ni(C16H10N3O3)2(C5H5N)2], (I) is reported.

Fig. 1 shows the molecular structure of compound (I). The NiII cation is octahedrally coordinated by four N and two O atoms with only slight distortion from the ideal coordination geometry. The two independent 1-[(4-nitrophenyl)diazenyl]-2-naphtholate ligands are bidentate and provide each one N atom from the azene moiety and one naphtolate O atom. The coordination is completed by the two pyridine N atoms. The Ni—N and Ni—O distances (Table 1) are in the typical ranges and like all other interatomic distances are in good agreement with literature data (Abildgaard et al., 2006).

The crystal packing is accomplished by two non-classical intermolecular C—H···O hydrogen bonds (Jeffrey & Saenger, 1991), forming a two-dimensional arrangement parallel to (100) (Fig. 2).

Related literature top

For background on metal azo complexes, see: Carella et al. (2007); Kulikovska et al. (2007); Patnaik et al. (2007); Leng et al. (2001). For bond lengths, see: Abildgaard et al. (2006). For hydrogen bonds, see: Jeffrey & Saenger (1991).

Experimental top

To a mixture of 10.0 ml of MeOH and 10.0 ml of pyridine, 0.058 g (0.2 mmol) of 4-nitrophenylazo-2-naphthole was added with continuous stirring at room temperature. After stirring for 20 min, 0.025 g (0.1 mmol) of Ni(II) acetate were added. Stirring was maintained for 24 h. The solution was filtered off and red crystals of (I) with a block habit and up to 0.4 mm maximum size were obtained by slow evaporation of the mixture at room temperature. Melting point: 473 K; C, H, N analysis (%): calc., C, 62.94; H, 3.77; N, 13.98; found, C, 64.11; H, 3.91; N, 12.61.

Refinement top

The H atoms of the naphthyl, pyridine and phenyl rings were fixed geometrically at a distance of 0.93 Å and were refined in the riding model approximation with Uiso(H) = 1.2×Ueq of the parent C atom.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: PHICHI (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the title molecule, (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the intermolecular H-bonding interactions and the formation of the two-dimensional arrangement. [Symmetry codes: (i) -x + 2, y - 1/2, -z - 1/2; (ii) -x + 1, y - 1/2, -z + 1/2.]
cis-Bis{1-[(4-nitrophenyl)diazenyl]-2-naphtholato}dipyridinenickel(II) top
Crystal data top
[Ni(C16H10N3O3)2(C5H5N)2]F(000) = 1656
Mr = 801.45Dx = 1.423 Mg m3
Monoclinic, P21/cMelting point: 473 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.719 (2) ÅCell parameters from 217 reflections
b = 18.885 (4) Åθ = 1.0–27.5°
c = 16.922 (3) ŵ = 0.58 mm1
β = 93.04 (3)°T = 295 K
V = 3740.0 (13) Å3Block, red
Z = 40.37 × 0.18 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
6566 independent reflections
Radiation source: fine-focus sealed tube4859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.076
ϕ and ω scansθmax = 25.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1313
Tmin = 0.814, Tmax = 0.918k = 2222
64998 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0357P)2 + 1.6025P]
where P = (Fo2 + 2Fc2)/3
6566 reflections(Δ/σ)max < 0.001
514 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Ni(C16H10N3O3)2(C5H5N)2]V = 3740.0 (13) Å3
Mr = 801.45Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.719 (2) ŵ = 0.58 mm1
b = 18.885 (4) ÅT = 295 K
c = 16.922 (3) Å0.37 × 0.18 × 0.15 mm
β = 93.04 (3)°
Data collection top
Nonius KappaCCD
diffractometer
6566 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
4859 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 0.918Rint = 0.076
64998 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.05Δρmax = 0.23 e Å3
6566 reflectionsΔρmin = 0.24 e Å3
514 parameters
Special details top

Experimental. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

5.9841 (0.0107) x + 0.5948 (0.0176) y + 14.0605 (0.0119) z = 4.0378 (0.0057)

* 0.0370 (0.0010) N1 * -0.0652 (0.0015) N2 * 0.0496 (0.0015) C1 * -0.0087 (0.0015) C2 * -0.0127 (0.0010) O1

Rms deviation of fitted atoms = 0.0408

- 0.4462 (0.0069) x + 8.8584 (0.0115) y + 14.9440 (0.0093) z = 1.2966 (0.0053)

Angle to previous plane (with approximate e.s.d.) = 41.11 (0.07)

* 0.0666 (0.0009) O1 * -0.0633 (0.0009) N1 * 0.0616 (0.0008) O4 * -0.0623 (0.0009) N8 * -0.0026 (0.0008) Ni1

Rms deviation of fitted atoms = 0.0568

6.2807 (0.0104) x - 6.1779 (0.0201) y + 12.6704 (0.0108) z = 5.5919 (0.0111)

Angle to previous plane (with approximate e.s.d.) = 59.14 (0.06)

* -0.0118 (0.0011) O4 * 0.0423 (0.0016) C18 * -0.0623 (0.0015) C17 * 0.0507 (0.0015) N5 * -0.0189 (0.0010) N4

Rms deviation of fitted atoms = 0.0418

- 0.0859 (0.0070) x + 16.1355 (0.0106) y - 8.7731 (0.0106) z = 1.4081 (0.0053)

Angle to previous plane (with approximate e.s.d.) = 46.54 (0.09)

* 0.0058 (0.0009) O4 * 0.0056 (0.0010) N4 * 0.0063 (0.0009) O1 * 0.0060 (0.0009) N7 * -0.0236 (0.0008) Ni1

Rms deviation of fitted atoms = 0.0118

6.5874 (0.0126) x + 14.2991 (0.0164) y - 6.1291 (0.0186) z = 6.0049 (0.0088)

Angle to previous plane (with approximate e.s.d.) = 35.34 (0.09)

* 0.0044 (0.0017) N7 * -0.0069 (0.0020) C33 * 0.0029 (0.0023) C34 * 0.0033 (0.0025) C35 * -0.0056 (0.0023) C36 * 0.0019 (0.0019) C37

Rms deviation of fitted atoms = 0.0045

6.8092 (0.0117) x - 4.2913 (0.0191) y - 13.7284 (0.0134) z = 3.6963 (0.0099)

Angle to previous plane (with approximate e.s.d.) = 65.50 (0.09)

* 0.0087 (0.0016) N8 * -0.0004 (0.0019) C38 * -0.0074 (0.0021) C39 * 0.0071 (0.0020) C40 * 0.0011 (0.0019) C41 * -0.0092 (0.0018) C42

Rms deviation of fitted atoms = 0.0067

7.6103 (0.0099) x - 1.0403 (0.0194) y + 12.2331 (0.0135) z = 7.5132 (0.0060)

Angle to previous plane (with approximate e.s.d.) = 78.29 (0.07)

* -0.0081 (0.0017) C27 * 0.0104 (0.0018) C28 * -0.0020 (0.0018) C29 * -0.0088 (0.0018) C30 * 0.0109 (0.0019) C31 * -0.0025 (0.0019) C32

Rms deviation of fitted atoms = 0.0079

6.0882 (0.0095) x - 3.0287 (0.0105) y + 13.7154 (0.0112) z = 6.1985 (0.0098)

Angle to previous plane (with approximate e.s.d.) = 10.66 (0.13)

* 0.0072 (0.0020) C17 * -0.1226 (0.0020) C18 * 0.0188 (0.0022) C19 * 0.0637 (0.0024) C20 * 0.0353 (0.0026) C21 * -0.0368 (0.0028) C22 * -0.0666 (0.0033) C23 * -0.0092 (0.0031) C24 * 0.0452 (0.0026) C25 * 0.0652 (0.0024) C26

Rms deviation of fitted atoms = 0.0574

6.0989 (0.0089) x - 1.3127 (0.0101) y + 13.9139 (0.0107) z = 3.6881 (0.0050)

Angle to previous plane (with approximate e.s.d.) = 5.25 (0.11)

* -0.0019 (0.0019) C1 * 0.0685 (0.0019) C2 * -0.0202 (0.0021) C3 * -0.0339 (0.0022) C4 * -0.0136 (0.0024) C5 * 0.0221 (0.0025) C6 * 0.0381 (0.0028) C7 * -0.0039 (0.0027) C8 * -0.0255 (0.0024) C9 * -0.0297 (0.0023) C10

Rms deviation of fitted atoms = 0.0315

7.6507 (0.0101) x - 0.7993 (0.0215) y + 12.1938 (0.0139) z = 4.9408 (0.0114)

Angle to previous plane (with approximate e.s.d.) = 9.47 (0.13)

* 0.0100 (0.0017) C11 * -0.0050 (0.0019) C12 * -0.0055 (0.0021) C13 * 0.0110 (0.0019) C14 * -0.0058 (0.0018) C15 * -0.0048 (0.0018) C16

Rms deviation of fitted atoms = 0.0075

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.73654 (2)0.112500 (16)0.041889 (18)0.03358 (10)
N10.71063 (15)0.21142 (10)0.02158 (11)0.0336 (4)
N20.63714 (16)0.25763 (10)0.00047 (11)0.0370 (5)
N31.0357 (2)0.33257 (17)0.21680 (16)0.0701 (8)
N40.75644 (16)0.17270 (10)0.14908 (11)0.0379 (5)
N50.81962 (17)0.22968 (11)0.15104 (12)0.0401 (5)
N60.4055 (2)0.16963 (14)0.36697 (13)0.0531 (6)
N70.73012 (17)0.05551 (10)0.06623 (12)0.0406 (5)
N80.74895 (17)0.01201 (10)0.09784 (12)0.0386 (5)
C10.54975 (19)0.23983 (13)0.04658 (13)0.0358 (5)
C20.51196 (19)0.16895 (14)0.06152 (14)0.0373 (6)
C30.4060 (2)0.16159 (16)0.10089 (15)0.0471 (6)
H30.37510.11660.10670.056*
C40.3506 (2)0.21795 (17)0.12949 (16)0.0543 (8)
H40.28440.21030.15610.065*
C50.3901 (2)0.28914 (16)0.12038 (15)0.0480 (7)
C60.3342 (3)0.3474 (2)0.15296 (18)0.0678 (9)
H60.26960.33980.18150.081*
C70.3728 (3)0.4148 (2)0.1435 (2)0.0803 (11)
H70.33560.45270.16620.096*
C80.4683 (3)0.42665 (18)0.0997 (2)0.0732 (10)
H80.49370.47270.09200.088*
C90.5259 (3)0.37042 (15)0.06765 (18)0.0577 (8)
H90.59040.37910.03940.069*
C100.4883 (2)0.30047 (14)0.07722 (14)0.0426 (6)
C110.78929 (19)0.24392 (12)0.07322 (13)0.0340 (5)
C120.8024 (2)0.31680 (14)0.07792 (16)0.0482 (7)
H120.75740.34630.04850.058*
C130.8815 (3)0.34579 (15)0.12567 (17)0.0575 (8)
H130.89000.39470.12870.069*
C140.9481 (2)0.30173 (15)0.16898 (15)0.0465 (7)
C150.9355 (2)0.22981 (14)0.16720 (15)0.0451 (6)
H150.97980.20090.19780.054*
C160.8561 (2)0.20082 (13)0.11915 (15)0.0415 (6)
H160.84700.15190.11740.050*
C170.9075 (2)0.23637 (13)0.10183 (14)0.0413 (6)
C180.9558 (2)0.17932 (14)0.05833 (15)0.0425 (6)
C191.0637 (2)0.19248 (16)0.02366 (17)0.0532 (7)
H191.10290.15480.00240.064*
C201.1091 (2)0.25816 (18)0.02127 (18)0.0605 (8)
H201.17710.26470.00370.073*
C211.0559 (2)0.31780 (17)0.05598 (17)0.0571 (8)
C221.0988 (3)0.3870 (2)0.0470 (2)0.0810 (11)
H221.16300.39410.01800.097*
C231.0472 (4)0.4438 (2)0.0802 (3)0.0974 (14)
H231.07560.48920.07340.117*
C240.9519 (4)0.43321 (19)0.1244 (3)0.0902 (12)
H240.91800.47170.14810.108*
C250.9069 (3)0.36590 (16)0.13346 (19)0.0663 (9)
H250.84240.35980.16240.080*
C260.9579 (2)0.30722 (15)0.09933 (16)0.0495 (7)
C270.6742 (2)0.17444 (13)0.20889 (13)0.0376 (6)
C280.6336 (2)0.23743 (13)0.24103 (15)0.0418 (6)
H280.66500.28050.22680.050*
C290.5478 (2)0.23611 (14)0.29330 (15)0.0449 (6)
H290.52020.27810.31380.054*
C300.5028 (2)0.17145 (14)0.31523 (14)0.0416 (6)
C310.5433 (2)0.10847 (14)0.28627 (14)0.0463 (6)
H310.51400.06540.30260.056*
C320.6281 (2)0.11035 (14)0.23263 (15)0.0466 (6)
H320.65470.06820.21200.056*
C330.6487 (2)0.06812 (15)0.12249 (16)0.0511 (7)
H330.58970.09890.11150.061*
C340.6486 (3)0.03716 (19)0.19646 (19)0.0736 (10)
H340.59130.04750.23490.088*
C350.7351 (3)0.0094 (2)0.2122 (2)0.0834 (12)
H350.73700.03100.26150.100*
C360.8178 (3)0.02345 (18)0.1546 (2)0.0731 (10)
H360.87630.05520.16390.088*
C370.8135 (2)0.00968 (14)0.08311 (17)0.0519 (7)
H370.87070.00020.04430.062*
C380.8368 (2)0.00533 (14)0.14751 (16)0.0485 (7)
H380.88930.02970.16270.058*
C390.8535 (3)0.07288 (16)0.17741 (18)0.0595 (8)
H390.91540.08280.21230.071*
C400.7765 (3)0.12535 (15)0.15457 (18)0.0580 (8)
H400.78640.17150.17290.070*
C410.6855 (2)0.10789 (14)0.10441 (17)0.0512 (7)
H410.63210.14210.08840.061*
C420.6738 (2)0.03930 (13)0.07789 (16)0.0444 (6)
H420.61070.02800.04460.053*
O10.56484 (13)0.11301 (9)0.04110 (10)0.0399 (4)
O21.0358 (3)0.39692 (16)0.22459 (19)0.1256 (12)
O31.1043 (2)0.29343 (15)0.24720 (15)0.0888 (8)
O40.90854 (14)0.11845 (9)0.04779 (10)0.0449 (4)
O50.3680 (2)0.11152 (12)0.38569 (14)0.0799 (7)
O60.36631 (19)0.22562 (12)0.38958 (14)0.0758 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03349 (16)0.03100 (16)0.03668 (17)0.00179 (13)0.00593 (12)0.00190 (14)
N10.0334 (10)0.0355 (11)0.0326 (11)0.0007 (9)0.0084 (8)0.0021 (9)
N20.0360 (11)0.0394 (12)0.0358 (11)0.0018 (9)0.0035 (9)0.0009 (9)
N30.0730 (18)0.082 (2)0.0574 (16)0.0254 (16)0.0229 (14)0.0154 (15)
N40.0411 (11)0.0361 (11)0.0367 (11)0.0049 (9)0.0021 (9)0.0001 (9)
N50.0453 (12)0.0389 (12)0.0354 (11)0.0060 (10)0.0040 (9)0.0009 (9)
N60.0605 (15)0.0575 (16)0.0422 (13)0.0017 (13)0.0103 (11)0.0041 (12)
N70.0450 (12)0.0345 (11)0.0432 (12)0.0056 (9)0.0103 (10)0.0051 (10)
N80.0407 (11)0.0347 (11)0.0410 (12)0.0008 (9)0.0063 (9)0.0002 (9)
C10.0346 (13)0.0434 (14)0.0299 (13)0.0023 (11)0.0045 (10)0.0015 (11)
C20.0308 (12)0.0500 (15)0.0311 (13)0.0022 (11)0.0005 (10)0.0028 (11)
C30.0313 (13)0.0617 (18)0.0488 (16)0.0056 (12)0.0077 (11)0.0017 (14)
C40.0323 (14)0.089 (2)0.0428 (16)0.0034 (14)0.0072 (12)0.0034 (15)
C50.0369 (14)0.0677 (19)0.0392 (15)0.0134 (13)0.0006 (11)0.0089 (13)
C60.0507 (18)0.093 (3)0.060 (2)0.0191 (18)0.0077 (15)0.0226 (19)
C70.074 (2)0.084 (3)0.083 (3)0.032 (2)0.004 (2)0.036 (2)
C80.080 (2)0.057 (2)0.083 (2)0.0170 (17)0.0030 (19)0.0207 (18)
C90.0619 (18)0.0523 (18)0.0594 (19)0.0119 (14)0.0090 (15)0.0092 (14)
C100.0426 (14)0.0510 (16)0.0340 (14)0.0106 (12)0.0011 (11)0.0044 (12)
C110.0357 (13)0.0371 (13)0.0291 (12)0.0040 (10)0.0005 (10)0.0022 (10)
C120.0582 (17)0.0404 (15)0.0473 (16)0.0031 (12)0.0155 (13)0.0014 (12)
C130.072 (2)0.0411 (16)0.0603 (19)0.0136 (14)0.0173 (15)0.0090 (14)
C140.0456 (15)0.0587 (18)0.0358 (14)0.0105 (13)0.0074 (12)0.0098 (13)
C150.0435 (15)0.0518 (17)0.0413 (15)0.0018 (12)0.0131 (12)0.0049 (12)
C160.0430 (14)0.0362 (14)0.0464 (15)0.0019 (11)0.0128 (12)0.0032 (12)
C170.0412 (14)0.0465 (15)0.0353 (14)0.0087 (12)0.0053 (11)0.0041 (12)
C180.0353 (13)0.0508 (17)0.0409 (14)0.0035 (12)0.0032 (11)0.0084 (12)
C190.0363 (14)0.0658 (19)0.0575 (18)0.0043 (13)0.0024 (13)0.0042 (15)
C200.0383 (15)0.087 (2)0.0555 (18)0.0191 (16)0.0039 (13)0.0154 (17)
C210.0522 (17)0.066 (2)0.0515 (17)0.0233 (15)0.0131 (14)0.0154 (15)
C220.074 (2)0.080 (3)0.087 (3)0.040 (2)0.0172 (19)0.027 (2)
C230.117 (4)0.056 (2)0.116 (4)0.038 (2)0.020 (3)0.020 (2)
C240.114 (3)0.050 (2)0.104 (3)0.021 (2)0.008 (3)0.004 (2)
C250.081 (2)0.0481 (18)0.069 (2)0.0153 (16)0.0033 (17)0.0007 (15)
C260.0538 (16)0.0490 (17)0.0442 (16)0.0140 (13)0.0131 (13)0.0053 (13)
C270.0435 (14)0.0403 (14)0.0287 (12)0.0014 (11)0.0010 (10)0.0031 (11)
C280.0486 (15)0.0366 (14)0.0399 (15)0.0065 (11)0.0010 (12)0.0024 (11)
C290.0555 (16)0.0387 (15)0.0405 (15)0.0013 (12)0.0021 (12)0.0106 (12)
C300.0461 (14)0.0480 (16)0.0310 (13)0.0009 (12)0.0032 (11)0.0040 (12)
C310.0629 (17)0.0366 (14)0.0404 (14)0.0010 (13)0.0132 (12)0.0038 (12)
C320.0624 (17)0.0366 (14)0.0420 (14)0.0016 (13)0.0129 (12)0.0015 (12)
C330.0589 (17)0.0480 (17)0.0466 (16)0.0088 (13)0.0054 (14)0.0072 (13)
C340.080 (2)0.090 (3)0.0504 (19)0.027 (2)0.0005 (17)0.0147 (18)
C350.099 (3)0.091 (3)0.064 (2)0.031 (2)0.037 (2)0.042 (2)
C360.072 (2)0.069 (2)0.082 (2)0.0109 (18)0.037 (2)0.032 (2)
C370.0527 (16)0.0437 (16)0.0614 (18)0.0034 (13)0.0233 (14)0.0109 (14)
C380.0496 (16)0.0451 (16)0.0505 (16)0.0002 (12)0.0006 (13)0.0016 (13)
C390.0621 (19)0.0571 (19)0.0584 (19)0.0098 (15)0.0056 (15)0.0089 (15)
C400.074 (2)0.0377 (16)0.0638 (19)0.0050 (14)0.0153 (16)0.0099 (14)
C410.0599 (17)0.0389 (15)0.0557 (17)0.0084 (13)0.0102 (14)0.0021 (13)
C420.0449 (15)0.0391 (15)0.0495 (16)0.0038 (12)0.0060 (12)0.0010 (12)
O10.0348 (9)0.0402 (9)0.0453 (10)0.0050 (8)0.0083 (7)0.0032 (8)
O20.157 (3)0.083 (2)0.145 (3)0.0318 (19)0.088 (2)0.0334 (19)
O30.0725 (16)0.114 (2)0.0840 (18)0.0154 (15)0.0420 (14)0.0119 (16)
O40.0380 (9)0.0412 (10)0.0561 (11)0.0026 (8)0.0067 (8)0.0015 (9)
O50.0960 (17)0.0644 (15)0.0839 (16)0.0114 (13)0.0483 (13)0.0033 (13)
O60.0788 (15)0.0641 (14)0.0879 (17)0.0151 (12)0.0367 (13)0.0108 (12)
Geometric parameters (Å, º) top
Ni1—N12.168 (2)C16—H160.9300
Ni1—N42.143 (2)C17—C181.438 (4)
Ni1—N72.121 (2)C17—C261.464 (3)
Ni1—N82.122 (2)C18—O41.284 (3)
Ni1—O12.0116 (16)C18—C191.443 (3)
Ni1—O42.0161 (17)C19—C201.351 (4)
N1—N21.295 (3)C19—H190.9300
N1—C111.441 (3)C20—C211.429 (4)
N2—C11.362 (3)C20—H200.9300
N3—O21.222 (4)C21—C261.409 (4)
N3—O31.225 (4)C22—C231.366 (5)
N3—C141.462 (3)C22—C211.412 (4)
N4—N51.306 (3)C22—H220.9300
N4—C271.434 (3)C23—C241.390 (6)
N5—C171.364 (3)C23—H230.9300
N6—O51.230 (3)C24—C251.388 (4)
N6—C301.474 (3)C24—H240.9300
N7—C331.333 (3)C25—C261.398 (4)
N7—C371.348 (3)C25—H250.9300
N8—C381.335 (3)C27—C321.394 (3)
N8—C421.341 (3)C27—C281.402 (3)
C1—C21.437 (3)C28—C291.374 (3)
C1—C101.462 (3)C28—H280.9300
C2—O11.281 (3)C29—C301.389 (3)
C2—C31.447 (3)C29—H290.9300
C3—C41.350 (4)C30—C311.380 (3)
C3—H30.9300C31—C321.381 (3)
C4—C51.433 (4)C31—H310.9300
C4—H40.9300C32—H320.9300
C5—C61.409 (4)C33—C341.381 (4)
C5—C101.412 (4)C33—H330.9300
C6—C71.363 (5)C34—C351.379 (5)
C6—H60.9300C34—H340.9300
C7—H70.9300C35—C361.363 (5)
C8—C91.384 (4)C35—H350.9300
C8—C71.393 (5)C36—C371.365 (4)
C8—H80.9300C36—H360.9300
C9—C101.405 (4)C37—H370.9300
C9—H90.9300C38—C391.382 (4)
C11—C121.388 (3)C38—H380.9300
C11—C161.394 (3)C39—C401.381 (4)
C12—C131.375 (4)C39—H390.9300
C12—H120.9300C40—C411.368 (4)
C13—C141.378 (4)C40—H400.9300
C13—H130.9300C41—C421.375 (4)
C14—C151.367 (4)C41—H410.9300
C15—C161.382 (3)C42—H420.9300
C15—H150.9300O6—N61.222 (3)
N1—N2—C1122.0 (2)C8—C7—H7120.2
N2—C1—C2125.4 (2)C8—C9—C10120.9 (3)
N2—C1—C10114.1 (2)C8—C9—H9119.5
N2—N1—C11110.14 (18)C10—C9—H9119.5
N2—N1—Ni1121.05 (14)C9—C10—C5118.1 (2)
N4—Ni1—N188.18 (7)C9—C10—C1122.2 (2)
N4—N5—C17120.4 (2)C5—C10—C1119.7 (2)
N5—N4—C27111.37 (19)C12—C11—C16118.7 (2)
N5—N4—Ni1119.66 (15)C12—C11—N1122.3 (2)
N5—C17—C18125.0 (2)C16—C11—N1119.0 (2)
N5—C17—C26114.9 (2)C13—C12—C11120.6 (3)
N7—Ni1—N190.70 (8)C13—C12—H12119.7
N7—Ni1—N4175.45 (7)C11—C12—H12119.7
N7—Ni1—N885.96 (8)C12—C13—C14119.4 (3)
N7—C37—C36122.9 (3)C12—C13—H13120.3
N7—C37—H37118.5C14—C13—H13120.3
N7—C33—C34122.5 (3)C15—C14—C13121.6 (2)
N7—C33—H33118.7C15—C14—N3119.2 (3)
N8—C42—C41123.1 (3)C13—C14—N3119.2 (3)
N8—C42—H42118.5C14—C15—C16118.9 (2)
N8—C38—C39123.1 (3)C14—C15—H15120.5
N8—C38—H38118.5C16—C15—H15120.5
N8—Ni1—N1174.80 (8)C15—C16—C11120.8 (2)
N8—Ni1—N495.45 (8)C15—C16—H16119.6
O1—Ni1—N493.84 (7)C11—C16—H16119.6
O1—Ni1—O4175.75 (7)C18—C17—C26120.0 (2)
O1—Ni1—N790.40 (8)C17—C18—C19117.1 (2)
O1—Ni1—N892.99 (7)C20—C19—C18121.7 (3)
O1—Ni1—N183.04 (7)C20—C19—H19119.2
O1—C2—C1124.2 (2)C18—C19—H19119.2
O1—C2—C3119.0 (2)C19—C20—C21122.0 (3)
O2—N3—O3123.4 (3)C19—C20—H20119.0
O2—N3—C14117.4 (3)C21—C20—H20119.0
O3—N3—C14119.2 (3)C26—C21—C22119.5 (3)
O4—Ni1—N482.23 (8)C26—C21—C20119.2 (3)
O4—Ni1—N793.47 (8)C22—C21—C20121.3 (3)
O4—Ni1—N889.03 (7)C25—C26—C21118.7 (3)
O4—Ni1—N195.16 (7)C25—C26—C17122.0 (3)
O4—C18—C17124.3 (2)C21—C26—C17119.1 (3)
O4—C18—C19118.6 (2)C32—C27—C28118.7 (2)
O5—N6—C30118.2 (2)C32—C27—N4118.0 (2)
O6—N6—O5123.1 (2)C28—C27—N4123.2 (2)
O6—N6—C30118.8 (2)C29—C28—C27120.6 (2)
C11—N1—Ni1126.17 (14)C29—C28—H28119.7
C27—N4—Ni1124.23 (15)C27—C28—H28119.7
C9—C8—C7120.5 (3)C28—C29—C30119.3 (2)
C9—C8—H8119.7C28—C29—H29120.4
C7—C8—H8119.7C30—C29—H29120.4
C23—C22—C21120.9 (4)C31—C30—C29121.3 (2)
C23—C22—H22119.5C31—C30—N6118.8 (2)
C21—C22—H22119.5C29—C30—N6119.7 (2)
C22—C23—C24119.7 (3)C30—C31—C32119.0 (2)
C22—C23—H23120.2C30—C31—H31120.5
C24—C23—H23120.2C32—C31—H31120.5
C25—C24—C23120.8 (4)C31—C32—C27121.0 (2)
C25—C24—H24119.6C31—C32—H32119.5
C23—C24—H24119.6C27—C32—H32119.5
C24—C25—C26120.4 (3)C34—C33—H33118.7
C24—C25—H25119.8C35—C34—C33118.6 (3)
C26—C25—H25119.8C35—C34—H34120.7
C33—N7—C37117.6 (2)C33—C34—H34120.7
C33—N7—Ni1121.11 (17)C36—C35—C34119.2 (3)
C37—N7—Ni1121.06 (19)C36—C35—H35120.4
C38—N8—C42117.1 (2)C34—C35—H35120.4
C38—N8—Ni1122.17 (17)C35—C36—C37119.1 (3)
C42—N8—Ni1120.36 (17)C35—C36—H36120.5
C2—C1—C10120.4 (2)C37—C36—H36120.5
C1—C2—C3116.8 (2)C36—C37—H37118.5
C4—C3—C2122.0 (3)C39—C38—H38118.5
C4—C3—H3119.0C40—C39—C38118.8 (3)
C2—C3—H3119.0C40—C39—H39120.6
C3—C4—C5122.5 (2)C38—C39—H39120.6
C3—C4—H4118.7C41—C40—C39118.5 (3)
C5—C4—H4118.7C41—C40—H40120.8
C6—C5—C10119.5 (3)C39—C40—H40120.8
C6—C5—C4122.1 (3)C40—C41—C42119.4 (3)
C10—C5—C4118.3 (2)C40—C41—H41120.3
C7—C6—C5121.3 (3)C42—C41—H41120.3
C7—C6—H6119.3C41—C42—H42118.5
C5—C6—H6119.3C2—O1—Ni1120.00 (14)
C6—C7—C8119.5 (3)C18—O4—Ni1118.64 (15)
C6—C7—H7120.2
C21—C22—C23—C240.8 (6)O2—N3—C14—C139.6 (4)
C22—C23—C24—C251.6 (6)O3—N3—C14—C13170.8 (3)
C23—C24—C25—C261.1 (6)C13—C14—C15—C161.7 (4)
O1—Ni1—N1—N243.27 (17)N3—C14—C15—C16177.1 (2)
O4—Ni1—N1—N2132.86 (17)C14—C15—C16—C110.1 (4)
N7—Ni1—N1—N2133.59 (17)C12—C11—C16—C151.4 (4)
N4—Ni1—N1—N250.82 (17)N1—C11—C16—C15177.6 (2)
O1—Ni1—N1—C11156.98 (18)N4—N5—C17—C1814.8 (4)
O4—Ni1—N1—C1126.89 (18)N4—N5—C17—C26169.2 (2)
N7—Ni1—N1—C1166.66 (18)N5—C17—C18—O414.6 (4)
N4—Ni1—N1—C11108.92 (18)C26—C17—C18—O4169.7 (2)
C11—N1—N2—C1176.8 (2)N5—C17—C18—C19166.3 (2)
Ni1—N1—N2—C120.5 (3)C26—C17—C18—C199.4 (3)
O1—Ni1—N4—N5127.58 (17)O4—C18—C19—C20169.1 (3)
O4—Ni1—N4—N550.77 (17)C17—C18—C19—C2010.0 (4)
N8—Ni1—N4—N5139.04 (17)C18—C19—C20—C212.9 (4)
N1—Ni1—N4—N544.68 (17)C23—C22—C21—C260.5 (5)
O1—Ni1—N4—C2725.88 (19)C23—C22—C21—C20179.8 (3)
O4—Ni1—N4—C27155.77 (19)C19—C20—C21—C265.0 (4)
N8—Ni1—N4—C2767.50 (19)C19—C20—C21—C22174.3 (3)
N1—Ni1—N4—C27108.78 (18)C24—C25—C26—C210.3 (5)
C27—N4—N5—C17176.1 (2)C24—C25—C26—C17174.7 (3)
Ni1—N4—N5—C1727.2 (3)C22—C21—C26—C251.1 (4)
O1—Ni1—N7—C3336.6 (2)C20—C21—C26—C25179.6 (3)
O4—Ni1—N7—C33141.64 (19)C22—C21—C26—C17174.0 (3)
N8—Ni1—N7—C33129.6 (2)C20—C21—C26—C175.3 (4)
N1—Ni1—N7—C3346.4 (2)N5—C17—C26—C2510.9 (4)
O1—Ni1—N7—C37149.05 (19)C18—C17—C26—C25172.9 (3)
O4—Ni1—N7—C3732.70 (19)N5—C17—C26—C21174.1 (2)
N8—Ni1—N7—C3756.08 (19)C18—C17—C26—C212.0 (4)
N1—Ni1—N7—C37127.91 (19)N5—N4—C27—C32158.6 (2)
O1—Ni1—N8—C38147.84 (19)Ni1—N4—C27—C3246.0 (3)
O4—Ni1—N8—C3828.4 (2)N5—N4—C27—C2825.2 (3)
N7—Ni1—N8—C38122.0 (2)Ni1—N4—C27—C28130.2 (2)
N4—Ni1—N8—C3853.7 (2)C32—C27—C28—C291.7 (4)
O1—Ni1—N8—C4239.14 (19)N4—C27—C28—C29174.5 (2)
O4—Ni1—N8—C42144.60 (19)C27—C28—C29—C301.2 (4)
N7—Ni1—N8—C4251.05 (19)C28—C29—C30—C310.7 (4)
N4—Ni1—N8—C42133.29 (18)C28—C29—C30—N6175.9 (2)
N1—N2—C1—C214.7 (4)O6—N6—C30—C31176.6 (2)
N1—N2—C1—C10169.5 (2)O5—N6—C30—C313.7 (4)
N2—C1—C2—O19.0 (4)O6—N6—C30—C290.0 (4)
C10—C1—C2—O1175.5 (2)O5—N6—C30—C29179.6 (3)
N2—C1—C2—C3169.8 (2)C29—C30—C31—C321.9 (4)
C10—C1—C2—C35.7 (3)N6—C30—C31—C32174.7 (2)
O1—C2—C3—C4174.7 (2)C30—C31—C32—C271.3 (4)
C1—C2—C3—C46.4 (4)C28—C27—C32—C310.5 (4)
C2—C3—C4—C52.4 (4)N4—C27—C32—C31175.9 (2)
C3—C4—C5—C6177.6 (3)C37—N7—C33—C341.2 (4)
C3—C4—C5—C102.4 (4)Ni1—N7—C33—C34173.4 (2)
C10—C5—C6—C70.2 (4)N7—C33—C34—C351.0 (5)
C4—C5—C6—C7179.9 (3)C33—C34—C35—C360.0 (5)
C5—C6—C7—C81.1 (5)C34—C35—C36—C370.8 (5)
C9—C8—C7—C61.7 (5)C33—N7—C37—C360.3 (4)
C7—C8—C9—C101.1 (5)Ni1—N7—C37—C36174.2 (2)
C8—C9—C10—C50.1 (4)C35—C36—C37—N70.7 (5)
C8—C9—C10—C1177.7 (3)C42—N8—C38—C391.0 (4)
C6—C5—C10—C90.8 (4)Ni1—N8—C38—C39172.3 (2)
C4—C5—C10—C9179.3 (2)N8—C38—C39—C400.6 (4)
C6—C5—C10—C1177.1 (2)C38—C39—C40—C411.3 (4)
C4—C5—C10—C12.9 (4)C39—C40—C41—C420.5 (4)
N2—C1—C10—C97.5 (4)C38—N8—C42—C411.8 (4)
C2—C1—C10—C9176.5 (2)Ni1—N8—C42—C41171.5 (2)
N2—C1—C10—C5174.8 (2)C40—C41—C42—N81.1 (4)
C2—C1—C10—C51.2 (3)C1—C2—O1—Ni134.0 (3)
N2—N1—C11—C1217.2 (3)C3—C2—O1—Ni1147.22 (18)
Ni1—N1—C11—C12144.4 (2)N7—Ni1—O1—C2138.84 (17)
N2—N1—C11—C16163.9 (2)N8—Ni1—O1—C2135.18 (17)
Ni1—N1—C11—C1634.5 (3)N4—Ni1—O1—C239.51 (18)
C16—C11—C12—C131.4 (4)N1—Ni1—O1—C248.18 (17)
N1—C11—C12—C13177.5 (2)C17—C18—O4—Ni130.8 (3)
C11—C12—C13—C140.1 (4)C19—C18—O4—Ni1148.24 (19)
C12—C13—C14—C151.7 (4)N7—Ni1—O4—C18128.08 (18)
C12—C13—C14—N3177.1 (3)N8—Ni1—O4—C18146.03 (18)
O2—N3—C14—C15171.5 (3)N4—Ni1—O4—C1850.39 (18)
O3—N3—C14—C158.0 (4)N1—Ni1—O4—C1837.06 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C36—H36···O2i0.932.383.124 (5)137
C41—H41···O6ii0.932.533.205 (4)130
Symmetry codes: (i) x+2, y1/2, z1/2; (ii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C16H10N3O3)2(C5H5N)2]
Mr801.45
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)11.719 (2), 18.885 (4), 16.922 (3)
β (°) 93.04 (3)
V3)3740.0 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.58
Crystal size (mm)0.37 × 0.18 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.814, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
64998, 6566, 4859
Rint0.076
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.090, 1.05
No. of reflections6566
No. of parameters514
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.24

Computer programs: COLLECT (Nonius, 1998), PHICHI (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PLATON (Spek, 2003) and WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Ni1—N12.168 (2)Ni1—N82.122 (2)
Ni1—N42.143 (2)Ni1—O12.0116 (16)
Ni1—N72.121 (2)Ni1—O42.0161 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C36—H36···O2i0.932.383.124 (5)137
C41—H41···O6ii0.932.533.205 (4)130
Symmetry codes: (i) x+2, y1/2, z1/2; (ii) x+1, y1/2, z+1/2.
 

Footnotes

Dedicated to the memory of Professor Jairo Bordinhão.

Acknowledgements

X-ray diffraction measurements were performed in the Laboratório de Difração de Raios X at the Universidade Federal Fluminense (LDRX-UFF), Niterói, Brazil. The authors thank Professor J. A. P. Bonapace for the initial reagents, CAPES, CNPq and FAPERJ for financial support, and the co-editor for his help in the improvement of the manuscript.

References

First citationAbildgaard, J., Hansen, P. E., Josephsen, J., Hansen, B. K. V., Sørensen, H. O. & Larsen, S. (2006). Inorg. Chim. Acta, 359, 4493–4502.  Web of Science CSD CrossRef CAS Google Scholar
First citationCarella, A., Casalboni, M., Centore, R., Fusco, S., Noce, C., Quatela, A., Peluso, A. & Sirigu, A. (2007). Opt. Mater. 30, 473–477.  Web of Science CrossRef CAS Google Scholar
First citationDuisenberg, A. J. M., Hooft, R. W. W., Schreurs, A. M. M. & Kroon, J. (2000). J. Appl. Cryst. 33, 893–898.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures, p. 20. Berlin: Springer-Verlag.  Google Scholar
First citationKulikovska, O., Goldenberg, L. M. & Stumpe, J. (2007). Chem. Mater. 19, 3343–3348.  Web of Science CrossRef CAS Google Scholar
First citationLeng, W. N., Zhou, Y. M., Xu, Q. H. & Liu, J. Z. (2001). Polymer, 42, 9253-9259.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationPatnaik, S., Sharma, A. K., Garg, B. S., Gandhi, R. P. & Gupta, K. C. (2007). Int. J. Pharm. 342, 184–193.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages m20-m21
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds