organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Carb­­oxy-2-methyl-1H-imidazol-3-ium-5-carboxyl­ate monohydrate

aSchool of Pharmacy, Jiangxi Science and Technology Normal University, Jiangxi 330013, People's Republic of China
*Correspondence e-mail: guoyp1029@126.com

(Received 21 November 2008; accepted 29 November 2008; online 6 December 2008)

In the title compound, C6H6N2O4·H2O, one carboxyl group is deprotonated and one imidazole N atom is protonated. The organic mol­ecule, excluding methyl H atoms, is essentially planar, with an r.m.s. deviation of 0.0156 (1) Å. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link mol­ecules into chains along the b axis; these chains are further linked via O—H⋯O hydrogen bonds involving the water O atoms and carboxyl O atoms, generating a two-dimensional supra­molecular framework.

Related literature

For details of related structures, see: Sun et al. (2006[Sun, T., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2751-o2752.]); Nie et al. (2007[Nie, X.-L., Wen, H.-L., Wu, Z.-S., Liu, D.-B. & Liu, C.-B. (2007). Acta Cryst. E63, m753-m755.]). For applications as functional materials, see: Liang et al. (2002[Liang, Y. C., Cao, R. & Hong, M. C. (2002). Inorg. Chem. Commun. 5, 366-368.]); Qin et al. (2002[Qin, Z. Q., Jennings, M. & Puddephatt, R. J. (2002). Inorg. Chem. 41, 5174-5186.]); Li et al. (1998[Li, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8571-8572.]). For biological activities, see: Ucucu et al. (2001[Ucucu, U., Karaburun, N. G. & Isikdag, I. (2001). Farmaco, 56, 285-290.]); Maeda et al. (1984[Maeda, S., Suzuki, M., Iwasaki, T., Matsumoto, K. & Iwasawa, Y. (1984). Chem. Pharm. Bull. 32, 2536-2543.]); Quattara et al. (1987[Quattara, L., Debaert, M. & Cavier, R. (1987). Farmaco Ed. Sci. 42, 449-456.]); Seko et al. (1991[Seko, N., Yoshino, K., Yokota, K. & Tsukamoto, G. (1991). Chem. Pharm. Bull. 39, 651-657.]). For the synthesis of the title compound, see: Anderson et al. (1989[Anderson, W. K., Bhattacharjee, D. & Houston, D. M. (1989). J. Med. Chem. 32, 119-127.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N2O4·H2O

  • Mr = 188.14

  • Monoclinic, P 21 /c

  • a = 8.491 (2) Å

  • b = 14.280 (4) Å

  • c = 6.5385 (17) Å

  • β = 97.386 (5)°

  • V = 786.2 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 295 (2) K

  • 0.23 × 0.09 × 0.08 mm

Data collection
  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.995

  • 4506 measured reflections

  • 1538 independent reflections

  • 1246 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.131

  • S = 1.05

  • 1538 reflections

  • 128 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O4i 0.85 (1) 2.05 (1) 2.887 (3) 168 (4)
O1W—H1WA⋯O3ii 0.85 (1) 2.00 (1) 2.839 (3) 173 (4)
N2—H2⋯O1iii 0.86 1.86 2.716 (3) 176
N1—H1⋯O1W 0.86 1.83 2.689 (3) 177
O3—H3⋯O2 0.86 (1) 1.59 (2) 2.447 (2) 179 (3)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, N-heterocyclic carboxylic acids have attracted considerable interest as ligands in metal complexes because of their structural diversity (Nie et al., 2007; Sun et al.) and their potential applications as functional materials (Liang et al., 2002; Qin et al., 2002; Li et al., 1998). Sun et al. (2006) have prepared the inner salt, 4-carboxy-2-(pyridinium-4-yl)-1H-imidazole-5-carboxylate monohydrate; in its crystal structure, one carboxyl group is deprotonated and the pyridyl group is protonated. Nie et al. (2007) have reported the mononuclear complex, diaquabis(5-carboxy-2-methyl-1H-imidazole-4-carboxylate- κ2N3,O4)cadmium(II). Imidazole derivatives have a wide range of biological activities such as analgesic (Ucucu et al., 2001), anti-inflammatory (Maeda et al., 1984), antiparasitic (Quattara et al., 1987), antiepileptic and platelet aggregation inhibitors (Seko et al., 1991). I report here the crystal structure of 4-carboxy-2-methyl-1H-3-imidazolium-5-carboxylate monohydrate.

As shown in Fig. 1, the asymmetric unit consists of a neutral C6H6N2O4 molecule and one water molecule. The organic molecule, excluding methyl hydrogen atoms, is essentially planar, with an r.m.s. deviation of 0.0156 (1) Å. The C1-containing carboxylate group forms an intramolecular hydrogen bond with the neighboring C5-containing carboxyl group.

In the crystal structure, intermolecular N—H···O hydrogen bonds link the molecules into chains along the b axis; these chains are further linked via O—H···O hydrogen bonds involving the water O atoms and carboxyl O atoms, generating a two-dimensional supramolecular framework (Fig. 2).

Related literature top

For details of related structures, see: Sun et al. (2006); Nie et al. (2007). For applications as functional materials, see: Liang et al. (2002); Qin et al. (2002); Li et al. (1998). For biological activities, see: Ucucu et al. (2001); Maeda et al. (1984); Quattara et al. (1987); Seko et al. (1991). For the synthesis of the title compound, see: Anderson et al., 1989).

Experimental top

The title compound was synthesized according to a revised procedure (Anderson et al., 1989). 2-Methylimidazole (3.0 g) was added to a mixture of concentrated sulfuric acid (40 ml) and water (30 ml) at 363 K. This was followed by the careful addition of powdered potassium dichromate (22 g). After 30 min the mixture was poured into ice-cold water. The white precipitates were collected by filtration, and washed with water. Recrystallization from hot water afforded colorless block crystals of the title compound. Yield: 1.8 g (44%).

Refinement top

The carboxyl and water H atoms were located in a difference Fourier map and refined with Uiso(H) = 1.5Ueq(O). The O—H distances of the water molecule were restrained to 0.85 (1) Å; however, that of the carboxyl was refined freely. All other H-atoms were positioned geometrically and refined using a riding model with C—H (methyl) = 0.96 Å, N—H = 0.86 Å; Uiso(H) = kUeq(carrier atom), where k = 1.2 for N and 1.5 for C.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Packing diagram of the title structure, showing the intermolecular N—H···O and O—H···O hydrogen bonds as dashed lines. Methyl H atoms are omitted for clarity.
4-Carboxy-2-methyl-1H-imidazol-3-ium-5-carboxylate monohydrate top
Crystal data top
C6H6N2O4·H2OF(000) = 392
Mr = 188.14Dx = 1.589 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 927 reflections
a = 8.491 (2) Åθ = 2.4–24.3°
b = 14.280 (4) ŵ = 0.14 mm1
c = 6.5385 (17) ÅT = 295 K
β = 97.386 (5)°Block, colorless
V = 786.2 (4) Å30.23 × 0.09 × 0.08 mm
Z = 4
Data collection top
Bruker SMART APEX area-detector
diffractometer
1538 independent reflections
Radiation source: fine-focus sealed tube1246 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 810
Tmin = 0.969, Tmax = 0.995k = 1717
4506 measured reflectionsl = 87
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0559P)2 + 0.4711P]
where P = (Fo2 + 2Fc2)/3
1538 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.25 e Å3
4 restraintsΔρmin = 0.26 e Å3
Crystal data top
C6H6N2O4·H2OV = 786.2 (4) Å3
Mr = 188.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.491 (2) ŵ = 0.14 mm1
b = 14.280 (4) ÅT = 295 K
c = 6.5385 (17) Å0.23 × 0.09 × 0.08 mm
β = 97.386 (5)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
1538 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1246 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.995Rint = 0.032
4506 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0564 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.25 e Å3
1538 reflectionsΔρmin = 0.26 e Å3
128 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5312 (2)0.88207 (11)0.2430 (3)0.0404 (5)
O30.1439 (2)0.68027 (12)0.1429 (3)0.0430 (5)
H30.191 (3)0.7337 (12)0.157 (5)0.065*
N20.5293 (2)0.56877 (13)0.2531 (3)0.0287 (5)
H20.51260.50940.25010.034*
O20.2822 (2)0.83103 (12)0.1822 (3)0.0436 (5)
N10.6490 (2)0.70121 (13)0.2840 (3)0.0284 (5)
H10.72320.74240.30450.034*
C20.4901 (3)0.72074 (15)0.2375 (3)0.0265 (5)
C30.4139 (3)0.63632 (15)0.2178 (3)0.0265 (5)
C10.4314 (3)0.81906 (15)0.2198 (4)0.0303 (6)
C40.6708 (3)0.60933 (16)0.2927 (4)0.0283 (5)
C50.2437 (3)0.61108 (17)0.1680 (4)0.0335 (6)
O40.2045 (2)0.52952 (12)0.1540 (3)0.0506 (6)
C60.8249 (3)0.56070 (18)0.3429 (4)0.0405 (7)
H6A0.85570.53330.21990.061*
H6B0.81480.51240.44250.061*
H6C0.90430.60490.39870.061*
O1W0.8762 (2)0.83332 (13)0.3359 (4)0.0563 (6)
H1WA0.961 (3)0.827 (2)0.419 (5)0.084*
H1WB0.840 (4)0.8884 (12)0.345 (5)0.084*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0417 (11)0.0175 (8)0.0613 (13)0.0014 (7)0.0041 (9)0.0002 (8)
O30.0293 (10)0.0278 (10)0.0697 (14)0.0004 (7)0.0020 (9)0.0000 (9)
N20.0313 (11)0.0172 (9)0.0371 (12)0.0002 (8)0.0025 (9)0.0009 (8)
O20.0360 (11)0.0272 (9)0.0664 (14)0.0062 (8)0.0025 (9)0.0008 (8)
N10.0287 (11)0.0206 (10)0.0351 (11)0.0044 (8)0.0016 (8)0.0009 (8)
C20.0288 (12)0.0229 (11)0.0275 (13)0.0001 (9)0.0028 (10)0.0002 (9)
C30.0330 (13)0.0200 (11)0.0267 (12)0.0015 (9)0.0042 (10)0.0005 (9)
C10.0380 (14)0.0214 (12)0.0315 (14)0.0013 (10)0.0046 (10)0.0005 (9)
C40.0304 (13)0.0230 (12)0.0311 (13)0.0008 (9)0.0028 (10)0.0005 (9)
C50.0307 (13)0.0278 (14)0.0413 (15)0.0016 (10)0.0023 (11)0.0009 (10)
O40.0399 (11)0.0261 (10)0.0835 (16)0.0082 (8)0.0013 (10)0.0008 (9)
C60.0346 (14)0.0309 (13)0.0551 (18)0.0050 (11)0.0019 (12)0.0018 (12)
O1W0.0395 (12)0.0292 (10)0.0942 (18)0.0035 (8)0.0148 (11)0.0009 (11)
Geometric parameters (Å, º) top
O1—C11.232 (3)C2—C31.367 (3)
O3—C51.299 (3)C2—C11.489 (3)
O3—H30.861 (10)C3—C51.484 (3)
N2—C41.329 (3)C4—C61.481 (3)
N2—C31.373 (3)C5—O41.212 (3)
N2—H20.8600C6—H6A0.9600
O2—C11.271 (3)C6—H6B0.9600
N1—C41.325 (3)C6—H6C0.9600
N1—C21.373 (3)O1W—H1WA0.849 (10)
N1—H10.8600O1W—H1WB0.850 (10)
C5—O3—H3112 (2)O2—C1—C2117.2 (2)
C4—N2—C3109.54 (19)N1—C4—N2107.8 (2)
C4—N2—H2125.2N1—C4—C6126.1 (2)
C3—N2—H2125.2N2—C4—C6126.2 (2)
C4—N1—C2109.81 (19)O4—C5—O3123.6 (2)
C4—N1—H1125.1O4—C5—C3120.0 (2)
C2—N1—H1125.1O3—C5—C3116.4 (2)
C3—C2—N1106.37 (19)C4—C6—H6A109.5
C3—C2—C1132.4 (2)C4—C6—H6B109.5
N1—C2—C1121.2 (2)H6A—C6—H6B109.5
C2—C3—N2106.5 (2)C4—C6—H6C109.5
C2—C3—C5132.1 (2)H6A—C6—H6C109.5
N2—C3—C5121.3 (2)H6B—C6—H6C109.5
O1—C1—O2125.4 (2)H1WA—O1W—H1WB110 (2)
O1—C1—C2117.4 (2)
C4—N1—C2—C30.1 (3)C3—C2—C1—O21.2 (4)
C4—N1—C2—C1179.5 (2)N1—C2—C1—O2178.0 (2)
N1—C2—C3—N20.0 (2)C2—N1—C4—N20.1 (3)
C1—C2—C3—N2179.3 (2)C2—N1—C4—C6178.7 (2)
N1—C2—C3—C5179.6 (2)C3—N2—C4—N10.1 (3)
C1—C2—C3—C51.1 (4)C3—N2—C4—C6178.7 (2)
C4—N2—C3—C20.1 (3)C2—C3—C5—O4178.1 (3)
C4—N2—C3—C5179.6 (2)N2—C3—C5—O41.4 (4)
C3—C2—C1—O1178.9 (2)C2—C3—C5—O32.3 (4)
N1—C2—C1—O11.9 (3)N2—C3—C5—O3178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O4i0.85 (1)2.05 (1)2.887 (3)168 (4)
O1W—H1WA···O3ii0.85 (1)2.00 (1)2.839 (3)173 (4)
N2—H2···O1iii0.861.862.716 (3)176
N1—H1···O1W0.861.832.689 (3)177
O3—H3···O20.86 (1)1.59 (2)2.447 (2)179 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6N2O4·H2O
Mr188.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)8.491 (2), 14.280 (4), 6.5385 (17)
β (°) 97.386 (5)
V3)786.2 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.23 × 0.09 × 0.08
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.969, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
4506, 1538, 1246
Rint0.032
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.131, 1.05
No. of reflections1538
No. of parameters128
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.26

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WB···O4i0.85 (1)2.05 (1)2.887 (3)168 (4)
O1W—H1WA···O3ii0.85 (1)2.00 (1)2.839 (3)173 (4)
N2—H2···O1iii0.861.862.716 (3)176.4
N1—H1···O1W0.861.832.689 (3)177.0
O3—H3···O20.86 (1)1.59 (2)2.447 (2)179 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+3/2, z+1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

The author thanks Jiangxi Science and Technology Normal University for supporting this study.

References

First citationAnderson, W. K., Bhattacharjee, D. & Houston, D. M. (1989). J. Med. Chem. 32, 119–127.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLi, H., Eddaoudi, M., Groy, T. L. & Yaghi, O. M. (1998). J. Am. Chem. Soc. 120, 8571–8572.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiang, Y. C., Cao, R. & Hong, M. C. (2002). Inorg. Chem. Commun. 5, 366–368.  Web of Science CSD CrossRef CAS Google Scholar
First citationMaeda, S., Suzuki, M., Iwasaki, T., Matsumoto, K. & Iwasawa, Y. (1984). Chem. Pharm. Bull. 32, 2536–2543.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNie, X.-L., Wen, H.-L., Wu, Z.-S., Liu, D.-B. & Liu, C.-B. (2007). Acta Cryst. E63, m753–m755.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationQin, Z. Q., Jennings, M. & Puddephatt, R. J. (2002). Inorg. Chem. 41, 5174–5186.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationQuattara, L., Debaert, M. & Cavier, R. (1987). Farmaco Ed. Sci. 42, 449–456.  CAS Google Scholar
First citationSeko, N., Yoshino, K., Yokota, K. & Tsukamoto, G. (1991). Chem. Pharm. Bull. 39, 651–657.  CrossRef CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, T., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2006). Acta Cryst. E62, o2751–o2752.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUcucu, U., Karaburun, N. G. & Isikdag, I. (2001). Farmaco, 56, 285–290.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds