metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(imino­di­acetato-κ3O,N,O′)(1,10-phenanthroline-κ2N,N′)zinc(II) sesquihydrate

aFaculty of Engineering & Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53100 Kuala Lumpur, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 10 December 2008; accepted 11 December 2008; online 17 December 2008)

The imino­diacetate dianion in the title compound, [Zn(C4H5NO4)(C12H8N2)(H2O)]·1.5H2O, chelates to the ZnII center with its N and two O atoms. The metal atom is also chelated by the N-heterocycle and coordinated by one water molecule, leading to a distorted octahedral environment. The dianion, and coordinated and uncoordinated water mol­ecules inter­act through O—H⋯O hydrogen bonds, generating a three-dimensional network. One of the two uncoordinated water mol­ecules has half-site occupancy. The crystal studied was a non-merohedral twin with a 15% twin component.

Related literature

For the structure of zinc bis­[imino­diacetate­(1-)] tetra­hydrate, see: Sinkha et al. (1975[Sinkha, U.-Ch., Kramarenko, F. G., Polynova, T. N., Porai-Koshits, M. A. & Mitrofanova, N. D. (1975). Zh. Strukt. Khim. 16, 144-145.]). For the dihydrated adenine adduct of zinc imino­diacetate, see: Morel et al. (2003[Morel, C., Choquesillo-Lazarte, D., Alarcón-Payer, C., González-Pérez, J. M., Castiñeiras, A. & Niclós-Gutiérrez, J. (2003). Inorg. Chem. Commun. 11, 1354-1357.]). For the use of PLATON to separate twin fractions from diffraction data, see: Spek (2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C4H5NO4)(C12H8N2)(H2O)]·1.5H2O

  • Mr = 421.70

  • Triclinic, [P \overline 1]

  • a = 6.5989 (1) Å

  • b = 10.6440 (1) Å

  • c = 11.5456 (2) Å

  • α = 95.156 (1)°

  • β = 91.845 (1)°

  • γ = 92.190 (1)°

  • V = 806.56 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 100 (2) K

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.610, Tmax = 0.799

  • 7242 measured reflections

  • 3640 independent reflections

  • 3455 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.146

  • S = 1.22

  • 3640 reflections

  • 233 parameters

  • 72 restraints

  • H-atom parameters constrained

  • Δρmax = 1.02 e Å−3

  • Δρmin = −0.88 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O1i 0.84 2.17 2.801 (4) 132
O1w—H12⋯O3ii 0.84 1.92 2.757 (4) 172
O2w—H21⋯O2i 0.84 1.98 2.815 (5) 177
O2w—H22⋯O4iii 0.84 1.92 2.756 (5) 177
O3w—H31⋯O2w 0.84 1.94 2.780 (9) 174
Symmetry codes: (i) x+1, y, z; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+2, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

For the structure of zinc bis[iminodiacetate(1-)] tetrahydrate, see: Sinkha et al. (1975). For the dihydrated adenine adduct of zinc iminodiacetate, see: Morel et al. (2003). For the use of PLATON in de-twinning diffraction data, see: Spek (2003).

Experimental top

An methanol solution of zinc(II) nitrate hexahydrate (0.30 g, 1 mmol) and 1,10-phenanthroline (0.20 g, 1 mmol) was mixed with an aqueous solution of iminodiacetic acid (0.14 g, 1 mmol) and sodium hydroxide (0.08 g, 2 mmol). The mixture was briefly heated. The cool solution yielded a white solid. This was recrystallized from a water-methanol mixture to give colorless crystals.

Refinement top

Carbon- and nitrogen-bound hydrogen atoms were placed at calculated positions (C–H 0.95–0.98 Å, N–H 0.88 Å) and were treated as riding on their parent atoms, with U(H) set to 1.2 times Ueq(C or N). The water H-atoms were placed in chemically-sensible positions on the basis of hydrogen bonding, but were not refined; their temperature factors were tied by a factor of 1.5.

For the three phenanthroline groups, the central six-membered ring was refined as a rigid hexagon of 1.39 Å sides. The temperature factors of the carbon atoms of this fused-ring system were restrained to be nearly isotropic.

The O3w atom gave a large temperature factor when allowed to refined at full occupancy. The occupancy could be refined, and this refined to nearly 0.5. As such, the occupancy was then fixed as exactly 0.5. This water molecule was within hydrogen bonding distance of only one other acceptor atom.

The structure is a non-merohedral twin. PLATON (Spek, 2003) was used to de-twin the structure. The twin component refined to 15%; the inclusion of the twin law lowered the R index from 6.4%. More importantly, it improved the weighting scheme. The final difference Fourier map was now diffuse, with the largest peak of slighly over 1 e Å-3 in the vicinity of C12.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Zn(H2O)(C4H5NO4)(C12H8N2).1.5H2O at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The O3w water molecule, which lies on a general position, has 0.5 occupancy.
Aqua(iminodiacetato-κ3O,N,O')(1,10-phenanthroline- κ2N,N')zinc(II) sesquihydrate top
Crystal data top
[Zn(C4H5NO4)(C12H8N2)(H2O)]·1.5H2OZ = 2
Mr = 421.70F(000) = 434
Triclinic, P1Dx = 1.736 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.5989 (1) ÅCell parameters from 6223 reflections
b = 10.6440 (1) Åθ = 2.5–28.3°
c = 11.5456 (2) ŵ = 1.57 mm1
α = 95.156 (1)°T = 100 K
β = 91.845 (1)°Block, colorless
γ = 92.190 (1)°0.35 × 0.25 × 0.15 mm
V = 806.56 (2) Å3
Data collection top
Bruker SMART APEX
diffractometer
3640 independent reflections
Radiation source: fine-focus sealed tube3455 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.610, Tmax = 0.799k = 1313
7242 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0241P)2 + 4.8628P]
where P = (Fo2 + 2Fc2)/3
3640 reflections(Δ/σ)max = 0.001
233 parametersΔρmax = 1.02 e Å3
72 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Zn(C4H5NO4)(C12H8N2)(H2O)]·1.5H2Oγ = 92.190 (1)°
Mr = 421.70V = 806.56 (2) Å3
Triclinic, P1Z = 2
a = 6.5989 (1) ÅMo Kα radiation
b = 10.6440 (1) ŵ = 1.57 mm1
c = 11.5456 (2) ÅT = 100 K
α = 95.156 (1)°0.35 × 0.25 × 0.15 mm
β = 91.845 (1)°
Data collection top
Bruker SMART APEX
diffractometer
3640 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3455 reflections with I > 2σ(I)
Tmin = 0.610, Tmax = 0.799Rint = 0.025
7242 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04872 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.22Δρmax = 1.02 e Å3
3640 reflectionsΔρmin = 0.88 e Å3
233 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.30260 (7)0.63033 (5)0.84683 (4)0.01073 (15)
O10.0016 (5)0.7036 (3)0.8533 (3)0.0154 (6)
O20.1646 (5)0.8841 (3)0.8519 (4)0.0242 (8)
O30.3125 (5)0.6228 (3)1.0256 (3)0.0137 (6)
O40.3975 (5)0.7409 (3)1.1911 (3)0.0168 (7)
O1W0.6167 (5)0.5782 (3)0.8460 (3)0.0137 (6)
H110.69020.63760.87950.021*
H120.62940.51310.88120.021*
O2W0.5864 (6)1.0151 (3)0.7055 (3)0.0270 (8)
H210.66010.97370.74750.040*
H220.58861.09020.73490.040*
O3W0.7199 (12)1.0113 (7)0.4793 (7)0.0287 (16)0.50
H310.67051.01150.54550.043*0.50
H320.78701.07900.47400.043*0.50
N10.3717 (6)0.8255 (3)0.8921 (3)0.0155 (8)
H10.47350.84960.85070.019*
N20.1966 (5)0.4443 (4)0.7994 (3)0.0142 (7)
N30.3044 (5)0.6254 (4)0.6611 (3)0.0157 (7)
C10.0062 (7)0.8228 (4)0.8568 (4)0.0153 (8)
C20.1934 (7)0.8985 (4)0.8650 (5)0.0207 (10)
H2A0.21370.93490.79010.025*
H2B0.18490.96960.92590.025*
C30.4372 (7)0.8367 (4)1.0155 (4)0.0178 (9)
H3A0.38110.91411.05380.021*
H3B0.58690.84781.02060.021*
C40.3754 (6)0.7252 (4)1.0842 (4)0.0127 (8)
C50.1390 (6)0.3577 (4)0.8671 (4)0.0149 (8)
H50.13550.38020.94850.018*
C60.0828 (7)0.2336 (5)0.8242 (5)0.0200 (9)
H60.04240.17350.87600.024*
C70.0864 (7)0.1993 (5)0.7068 (4)0.0198 (9)
H70.05040.11510.67680.024*
C90.1991 (4)0.4127 (3)0.67929 (18)0.0146 (8)
C80.1450 (5)0.2916 (2)0.6299 (2)0.0186 (9)
C100.1399 (5)0.2654 (2)0.5097 (3)0.0265 (11)
H100.10290.18270.47590.032*
C110.1889 (5)0.3603 (3)0.43886 (18)0.0271 (11)
H11A0.18540.34230.35670.032*
C120.2430 (5)0.4813 (3)0.4883 (2)0.0213 (10)
C130.2481 (4)0.5075 (2)0.6085 (2)0.0168 (9)
C140.2936 (7)0.5828 (6)0.4185 (4)0.0254 (11)
H140.29120.56830.33600.030*
C150.3446 (7)0.6986 (5)0.4710 (4)0.0220 (10)
H150.37650.76680.42620.026*
C160.3497 (7)0.7169 (5)0.5941 (4)0.0209 (10)
H160.38740.79850.63040.025*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0119 (2)0.0110 (2)0.0096 (2)0.00101 (17)0.00101 (17)0.00212 (17)
O10.0118 (14)0.0139 (14)0.0205 (16)0.0007 (11)0.0005 (12)0.0029 (12)
O20.0160 (16)0.0179 (16)0.040 (2)0.0051 (13)0.0028 (15)0.0070 (15)
O30.0180 (15)0.0111 (14)0.0121 (15)0.0005 (12)0.0027 (12)0.0010 (11)
O40.0199 (16)0.0168 (15)0.0137 (15)0.0026 (12)0.0020 (12)0.0013 (12)
O1W0.0139 (14)0.0114 (14)0.0162 (15)0.0003 (11)0.0003 (12)0.0035 (12)
O2W0.036 (2)0.0172 (17)0.0267 (19)0.0008 (15)0.0018 (16)0.0029 (14)
O3W0.038 (4)0.023 (4)0.026 (4)0.005 (3)0.006 (3)0.003 (3)
N10.0130 (18)0.0134 (17)0.021 (2)0.0021 (14)0.0008 (14)0.0051 (14)
N20.0089 (16)0.0159 (18)0.0175 (19)0.0032 (13)0.0017 (14)0.0013 (14)
N30.0078 (16)0.027 (2)0.0135 (18)0.0044 (14)0.0017 (13)0.0069 (15)
C10.014 (2)0.017 (2)0.016 (2)0.0014 (16)0.0028 (16)0.0052 (17)
C20.013 (2)0.014 (2)0.037 (3)0.0018 (16)0.0014 (19)0.0100 (19)
C30.023 (2)0.0123 (19)0.018 (2)0.0015 (17)0.0011 (18)0.0002 (16)
C40.0091 (18)0.0126 (19)0.017 (2)0.0027 (15)0.0023 (15)0.0016 (16)
C50.0088 (18)0.019 (2)0.016 (2)0.0008 (15)0.0006 (15)0.0006 (16)
C60.016 (2)0.018 (2)0.027 (2)0.0023 (17)0.0023 (18)0.0038 (18)
C70.014 (2)0.019 (2)0.025 (2)0.0023 (17)0.0019 (18)0.0068 (18)
C90.0073 (18)0.024 (2)0.013 (2)0.0044 (16)0.0002 (15)0.0001 (17)
C80.0083 (19)0.024 (2)0.023 (2)0.0015 (16)0.0000 (16)0.0039 (18)
C100.011 (2)0.042 (3)0.024 (2)0.004 (2)0.0026 (18)0.012 (2)
C110.013 (2)0.050 (3)0.016 (2)0.005 (2)0.0006 (17)0.006 (2)
C120.0075 (18)0.041 (3)0.016 (2)0.0062 (18)0.0046 (16)0.0011 (19)
C130.0101 (19)0.026 (2)0.015 (2)0.0059 (17)0.0009 (15)0.0034 (17)
C140.014 (2)0.053 (3)0.010 (2)0.010 (2)0.0018 (17)0.008 (2)
C150.012 (2)0.042 (3)0.016 (2)0.0095 (19)0.0052 (16)0.015 (2)
C160.013 (2)0.033 (3)0.018 (2)0.0052 (18)0.0019 (17)0.0109 (19)
Geometric parameters (Å, º) top
Zn1—O32.072 (3)C2—H2B0.9900
Zn1—N22.093 (4)C3—C41.535 (6)
Zn1—N12.124 (4)C3—H3A0.9900
Zn1—N32.141 (4)C3—H3B0.9900
Zn1—O1W2.166 (3)C5—C61.401 (6)
Zn1—O12.182 (3)C5—H50.9500
O1—C11.267 (5)C6—C71.373 (7)
O2—C11.255 (5)C6—H60.9500
O3—C41.278 (5)C7—C81.433 (6)
O4—C41.233 (6)C7—H70.9500
O1W—H110.8399C9—C81.3900
O1W—H120.8400C9—C131.3900
O2W—H210.8400C8—C101.3900
O2W—H220.8400C10—C111.3900
O3W—H310.8401C10—H100.9500
O3W—H320.8399C11—C121.3900
N1—C31.469 (6)C11—H11A0.9500
N1—C21.475 (6)C12—C131.3900
N1—H10.8800C12—C141.440 (6)
N2—C51.315 (6)C14—C151.350 (8)
N2—C91.398 (4)C14—H140.9500
N3—C161.329 (6)C15—C161.415 (7)
N3—C131.376 (5)C15—H150.9500
C1—C21.513 (6)C16—H160.9500
C2—H2A0.9900
O3—Zn1—N298.01 (14)N1—C3—H3A108.3
O3—Zn1—N183.15 (14)C4—C3—H3A108.3
N2—Zn1—N1172.78 (14)N1—C3—H3B108.3
O3—Zn1—N3175.75 (14)C4—C3—H3B108.3
N2—Zn1—N379.24 (16)H3A—C3—H3B107.4
N1—Zn1—N399.99 (16)O4—C4—O3125.7 (4)
O3—Zn1—O1W88.31 (12)O4—C4—C3117.1 (4)
N2—Zn1—O1W92.50 (13)O3—C4—C3117.2 (4)
N1—Zn1—O1W94.66 (13)N2—C5—C6122.7 (4)
N3—Zn1—O1W88.57 (13)N2—C5—H5118.6
O3—Zn1—O190.74 (12)C6—C5—H5118.6
N2—Zn1—O193.69 (13)C7—C6—C5119.5 (5)
N1—Zn1—O179.15 (13)C7—C6—H6120.3
N3—Zn1—O192.67 (13)C5—C6—H6120.3
O1W—Zn1—O1173.81 (12)C6—C7—C8119.5 (4)
C1—O1—Zn1114.4 (3)C6—C7—H7120.3
C4—O3—Zn1114.8 (3)C8—C7—H7120.3
Zn1—O1W—H11109.5C8—C9—C13120.0
Zn1—O1W—H12109.4C8—C9—N2121.7 (2)
H11—O1W—H12109.5C13—C9—N2118.2 (2)
H21—O2W—H22108.3C10—C8—C9120.0
H31—O3W—H32110.0C10—C8—C7122.4 (3)
C3—N1—C2114.7 (4)C9—C8—C7117.5 (3)
C3—N1—Zn1105.8 (3)C8—C10—C11120.0
C2—N1—Zn1109.4 (3)C8—C10—H10120.0
C3—N1—H1108.9C11—C10—H10120.0
C2—N1—H1108.9C12—C11—C10120.0
Zn1—N1—H1108.9C12—C11—H11A120.0
C5—N2—C9119.1 (4)C10—C11—H11A120.0
C5—N2—Zn1128.5 (3)C13—C12—C11120.0
C9—N2—Zn1112.3 (3)C13—C12—C14118.0 (3)
C16—N3—C13118.5 (4)C11—C12—C14122.0 (3)
C16—N3—Zn1129.7 (4)N3—C13—C12121.9 (2)
C13—N3—Zn1111.8 (2)N3—C13—C9118.1 (2)
O2—C1—O1125.1 (4)C12—C13—C9120.0
O2—C1—C2116.7 (4)C15—C14—C12119.5 (4)
O1—C1—C2118.3 (4)C15—C14—H14120.2
N1—C2—C1114.4 (4)C12—C14—H14120.2
N1—C2—H2A108.7C14—C15—C16119.0 (5)
C1—C2—H2A108.7C14—C15—H15120.5
N1—C2—H2B108.7C16—C15—H15120.5
C1—C2—H2B108.7N3—C16—C15123.0 (5)
H2A—C2—H2B107.6N3—C16—H16118.5
N1—C3—C4115.9 (4)C15—C16—H16118.5
O3—Zn1—O1—C195.8 (3)Zn1—O3—C4—C31.0 (5)
N2—Zn1—O1—C1166.1 (3)N1—C3—C4—O4167.9 (4)
N1—Zn1—O1—C112.9 (3)N1—C3—C4—O314.5 (6)
N3—Zn1—O1—C186.8 (3)C9—N2—C5—C61.0 (6)
N2—Zn1—O3—C4179.4 (3)Zn1—N2—C5—C6175.9 (3)
N1—Zn1—O3—C47.8 (3)N2—C5—C6—C70.2 (7)
O1W—Zn1—O3—C487.1 (3)C5—C6—C7—C80.9 (7)
O1—Zn1—O3—C486.8 (3)C5—N2—C9—C80.8 (5)
O3—Zn1—N1—C314.2 (3)Zn1—N2—C9—C8176.55 (15)
N3—Zn1—N1—C3162.9 (3)C5—N2—C9—C13176.0 (3)
O1W—Zn1—N1—C373.6 (3)Zn1—N2—C9—C136.6 (3)
O1—Zn1—N1—C3106.2 (3)C13—C9—C8—C100.0
O3—Zn1—N1—C2110.0 (3)N2—C9—C8—C10176.8 (3)
N3—Zn1—N1—C272.9 (3)C13—C9—C8—C7177.0 (3)
O1W—Zn1—N1—C2162.3 (3)N2—C9—C8—C70.2 (4)
O1—Zn1—N1—C217.9 (3)C6—C7—C8—C10175.9 (3)
O3—Zn1—N2—C55.3 (4)C6—C7—C8—C91.0 (5)
N3—Zn1—N2—C5178.0 (4)C9—C8—C10—C110.0
O1W—Zn1—N2—C594.0 (4)C7—C8—C10—C11176.9 (3)
O1—Zn1—N2—C585.9 (4)C8—C10—C11—C120.0
O3—Zn1—N2—C9171.7 (2)C10—C11—C12—C130.0
N3—Zn1—N2—C95.0 (2)C10—C11—C12—C14179.6 (3)
O1W—Zn1—N2—C983.1 (3)C16—N3—C13—C121.8 (5)
O1—Zn1—N2—C997.0 (3)Zn1—N3—C13—C12178.48 (15)
N2—Zn1—N3—C16176.8 (4)C16—N3—C13—C9179.4 (3)
N1—Zn1—N3—C164.1 (4)Zn1—N3—C13—C90.3 (3)
O1W—Zn1—N3—C1690.4 (4)C11—C12—C13—N3178.8 (3)
O1—Zn1—N3—C1683.5 (4)C14—C12—C13—N31.6 (4)
N2—Zn1—N3—C132.9 (2)C11—C12—C13—C90.0
N1—Zn1—N3—C13175.6 (2)C14—C12—C13—C9179.6 (3)
O1W—Zn1—N3—C1389.9 (3)C8—C9—C13—N3178.8 (3)
O1—Zn1—N3—C1396.2 (3)N2—C9—C13—N34.2 (3)
Zn1—O1—C1—O2174.2 (4)C8—C9—C13—C120.0
Zn1—O1—C1—C24.4 (5)N2—C9—C13—C12176.9 (3)
C3—N1—C2—C197.2 (5)C13—C12—C14—C150.2 (5)
Zn1—N1—C2—C121.6 (5)C11—C12—C14—C15179.8 (3)
O2—C1—C2—N1169.4 (4)C12—C14—C15—C160.9 (7)
O1—C1—C2—N111.9 (7)C13—N3—C16—C150.6 (6)
C2—N1—C3—C4101.9 (4)Zn1—N3—C16—C15179.8 (3)
Zn1—N1—C3—C418.9 (4)C14—C15—C16—N30.8 (7)
Zn1—O3—C4—O4178.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2w0.882.643.388 (5)143
O1w—H11···O1i0.842.172.801 (4)132
O1w—H12···O3ii0.841.922.757 (4)172
O2w—H21···O2i0.841.982.815 (5)177
O2w—H22···O4iii0.841.922.756 (5)177
O3w—H31···O2w0.841.942.780 (9)174
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2; (iii) x+1, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Zn(C4H5NO4)(C12H8N2)(H2O)]·1.5H2O
Mr421.70
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)6.5989 (1), 10.6440 (1), 11.5456 (2)
α, β, γ (°)95.156 (1), 91.845 (1), 92.190 (1)
V3)806.56 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.610, 0.799
No. of measured, independent and
observed [I > 2σ(I)] reflections
7242, 3640, 3455
Rint0.025
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.146, 1.22
No. of reflections3640
No. of parameters233
No. of restraints72
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.02, 0.88

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), pubCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O1i0.842.172.801 (4)132
O1w—H12···O3ii0.841.922.757 (4)172
O2w—H21···O2i0.841.982.815 (5)177
O2w—H22···O4iii0.841.922.756 (5)177
O3w—H31···O2w0.841.942.780 (9)174
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+2; (iii) x+1, y+2, z+2.
 

Acknowledgements

We thank Universiti Tunku Abdul Rahman and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMorel, C., Choquesillo-Lazarte, D., Alarcón-Payer, C., González-Pérez, J. M., Castiñeiras, A. & Niclós-Gutiérrez, J. (2003). Inorg. Chem. Commun. 11, 1354–1357.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSinkha, U.-Ch., Kramarenko, F. G., Polynova, T. N., Porai-Koshits, M. A. & Mitrofanova, N. D. (1975). Zh. Strukt. Khim. 16, 144–145.  CAS Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds