organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(imidazol-1-yl)benzene–terephthalic acid (1/1)

aCollege of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China, and bThe Center of Testing and Analysis, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: suxiaoyu@scu.edu.cn

(Received 1 November 2008; accepted 1 December 2008; online 6 December 2008)

In the title compound, C12H10N4·C8H6O4, 1,4-bis­(imidazol-1-yl)benzene and terephthalic acid mol­ecules are joined via strong O—H⋯N hydrogen bonds to form infinite zigzag chains. Both mol­ecules are located on crystallographic inversion centers. The O—H⋯N hydrogen-bonded chains are assembled into two-dimensional layers through weak C—H⋯O and strong ππ stacking inter­actions [centroid–centroid distance = 3.818 (2) Å], leading to the formation of a three-dimensional supra­molecular structure.

Related literature

For general background, see: Aakeröy et al. (2006[Aakeröy, C. B., Salmon, D. J., Smith, M. M. & Desper, J. (2006). Cryst. Growth Des. 6, 1033-1042.]); Aakeröy & Seddon (1993[Aakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397-407.]); Desiraju, 2007[Desiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342-8356.]; Corna et al. (2004[Corna, A., Rey, F., Rius, J., Sabater, M. J. & Valencla, S. (2004). Nature (London), 431, 287-290.]); Dobrzanska et al. (2006); Van Roey et al. (1991[Van Roey, P., Bullion, K. A., Osawa, Y., Bowman, R. M. & Braun, D. G. (1991). Acta Cryst. C47, 1015-1018.]). For similar structures, see: Wang et al. (2007[Wang, W. H., Xi, P. H., Su, X. Y., Lan, J. B., Mao, Z. H., You, J. S. & Xie, R. G. (2007). Cryst. Growth Des. 7, 741-746.]); Su et al. (2007[Su, X.-Y., Wang, W.-H., Lan, J.-B., Mao, Z.-H. & Xie, R.-G. (2007). Acta Cryst. E63, o4513-o4514.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10N4·C8H6O4

  • Mr = 376.37

  • Monoclinic, P 21 /n

  • a = 5.2780 (17) Å

  • b = 10.599 (5) Å

  • c = 15.449 (5) Å

  • β = 91.17 (3)°

  • V = 864.1 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.25 × 0.22 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 1895 measured reflections

  • 1538 independent reflections

  • 904 reflections with I > 2σ(I)

  • Rint = 0.008

  • 3 standard reflections every 200 reflections intensity decay: 2.5%

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.132

  • S = 0.95

  • 1538 reflections

  • 128 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.82 1.79 2.60885 178
C2—H2⋯O2ii 0.93 2.54 3.376 (3) 150
C4—H4⋯O2iii 0.93 2.56 3.463 (3) 162
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Metting. Abstract PA104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Supramolecular architectures assembled via various delicate noncovalent interactions such as hydrogen bonds, ππ stacking and electrostatic interactions, etc., have attracted intense interest in recent years because of their fascinating structural diversity and potential applications for functional materials (Desiraju, 2007; Corna et al., 2004). Especially, the application of intermolecular hydrogen bonds is a well known and efficient tool in the field of organic crystal design owing to its strength and directional properties (Aakeröy & Seddon, 1993). Imidazoles, as excellent N-donor compounds, have attracted special attention in the construction of organic cocrystals in recent years (Aakeröy et al., 2006; Van Roey et al., 1991). We recently presented organic crystals composed of flexible diimidazole compounds and dicarboxylic acids (Wang et al., 2007; Su et al., 2007). In further development of such interesting hydrogen-bonded supramolecular systems and as a continuation of our research in this area, we report herein the crystal structure of the title compound formed from rigid diimidazole and dicarboxylic acids molecules.

As shown in Figure 1, the asymmetric unit of the title compound contains each half a molecule of 1,4-bis(1-imidazolyl)benzene and terephthalic acid which are both located on crystallographic inversion centers. The carboxyl groups of the terephthalic acid interact with the imidazol-1-yl nitrogen atoms of 1,4-bis(1-imidazolyl)benzene via O1—H1···N2 hydrogen bonds (O1···N2 = 2.608 (8) Å and O1—H1···N2 = 178°), and thus the hydrogen bonds further propagate the acid-base subunits into an infinite one-dimensional zig-zag chain. Meanwhile, these chains are assembled into two-dimensional layers through weak C2—H2···O2 and C4—H4···O2 hydrogen bonds, with C2···O2 = 3.376 (3) Å, C2—H2···O2 = 150° and C4···O2 = 3.463 (3) Å, C4—H4···O2 = 162° (Figure 2). Moreover, the supramolecular layers are further stablized by intermolecular ππ interactions to form a three-dimensional stucture as depicted in Figure 3. A relative strong ππ interaction between one imidazole ring (Cg1: N1—C4—N2—C5—C6) and contiguous phenyl ring (Cg2: C1—C3—C2—C1b—C3b—C2b) of 1,4-bis(1-imidazolyl)benzene from another chain (centroid-centroid distance = 3.818 (2) Å, dihedral angle = 27.12) plays an important part in the connection of adjacent layers, where Cg1 is the centroid of the imidazole ring of the molecule at (1 - x, 1 - y, -z) and (-1 + x, y, z), and Cg2 is the centroid of the phenyl ring of the molecule at (1 - x, 1 - y, -z) and (1 + x, y, z).

Related literature top

For general background, see: Aakeröy et al. (2006); Aakeröy & Seddon (1993); Desiraju, 2007; Corna et al. (2004); Dobrzanska et al. (2006); Van Roey et al. (1991). For similar structures, see: Wang et al. (2007); Su et al. (2007).

Experimental top

A methanol solution (5 ml) of 1,4-bis(1-imidazolyl)benzene (0.05 mmol, 10.5 mg) was added slowly with constant stirring to a solution of terephthalic acid (0.05 mmol, 8.3 mg) in methanol (2 ml) and water (0.5 ml) to give a clear solution. Then the reaction mixture was filtered and left to stand at room temperature. Colorless block crystals suitable for X-ray analysis were obtained after one week by slow evaporation of the solvent. Yield, 85%; 1H NMR (400 MHz, DMSO-d6): δ 8.34 (s, 2H), 8.04 (s, 4H), 7.83 (t, 6H), 7.13 (s, 2H).

Refinement top

All non-hydrogen atoms were located using direct methods and successive difference Fourier syntheses, and refined with anisotropic thermal parameters. All hydrogen atoms were positioned theoretically and refined with the riding model approximation with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C), and O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O)

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Version 1.2; Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipisoids; hydrogen bonds are illustrated by dashed lines.
[Figure 2] Fig. 2. A two-dimensional network layer of the title compound viewed along the c axis. Dashed lines indicate O—H···N and C—H···O hydrogen bonds. C, gray; H, green; O, red; N, cyan.
[Figure 3] Fig. 3. A three-dimensional view of the supramolecular layers of the title compound.
1,4-Bis(imidazol-1-yl)benzene–terephthalic acid (1/1) top
Crystal data top
C12H10N4·C8H6O4F(000) = 392
Mr = 376.37Dx = 1.447 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 18 reflections
a = 5.2780 (17) Åθ = 4.5–7.6°
b = 10.599 (5) ŵ = 0.10 mm1
c = 15.449 (5) ÅT = 293 K
β = 91.17 (3)°Block, colourless
V = 864.1 (6) Å30.25 × 0.22 × 0.15 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.008
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.3°
Graphite monochromatorh = 66
ω/2θ scansk = 012
1895 measured reflectionsl = 918
1538 independent reflections3 standard reflections every 200 reflections
904 reflections with I > 2σ(I) intensity decay: 2.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0842P)2]
where P = (Fo2 + 2Fc2)/3
1538 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H10N4·C8H6O4V = 864.1 (6) Å3
Mr = 376.37Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.2780 (17) ŵ = 0.10 mm1
b = 10.599 (5) ÅT = 293 K
c = 15.449 (5) Å0.25 × 0.22 × 0.15 mm
β = 91.17 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.008
1895 measured reflections3 standard reflections every 200 reflections
1538 independent reflections intensity decay: 2.5%
904 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 0.95Δρmax = 0.18 e Å3
1538 reflectionsΔρmin = 0.21 e Å3
128 parameters
Special details top

Experimental. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3750 (4)0.57026 (17)0.12218 (11)0.0403 (5)
N20.7031 (4)0.5588 (2)0.21140 (12)0.0489 (6)
C10.0819 (5)0.6228 (2)0.00451 (16)0.0467 (6)
H1A0.13820.70590.00730.056*
C20.1041 (5)0.5891 (2)0.05539 (15)0.0467 (6)
H20.17450.64950.09230.056*
C30.1844 (4)0.5339 (2)0.06017 (13)0.0375 (5)
C40.5583 (4)0.4962 (2)0.15707 (14)0.0445 (6)
H40.57880.41120.14400.053*
C50.6087 (5)0.6786 (2)0.21254 (16)0.0531 (7)
H50.67400.74440.24600.064*
C60.4073 (3)0.68757 (13)0.15820 (8)0.0504 (7)
H60.30950.75900.14720.061*
O10.0950 (3)0.49725 (13)0.30802 (8)0.0499 (5)
H10.02880.51790.27840.075*
O20.0072 (4)0.67524 (16)0.37876 (12)0.0601 (6)
C70.1260 (5)0.5775 (2)0.37186 (15)0.0428 (6)
C80.3231 (4)0.5370 (2)0.43721 (14)0.0387 (6)
C90.5136 (4)0.4536 (2)0.41709 (14)0.0415 (6)
H90.52360.42210.36110.050*
C100.6897 (4)0.4164 (2)0.47922 (14)0.0435 (6)
H100.81710.36000.46500.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0420 (11)0.0393 (11)0.0391 (10)0.0033 (9)0.0132 (9)0.0005 (8)
N20.0476 (12)0.0568 (13)0.0415 (11)0.0001 (11)0.0184 (9)0.0007 (9)
C10.0516 (15)0.0374 (12)0.0504 (13)0.0036 (11)0.0187 (12)0.0008 (10)
C20.0542 (15)0.0390 (13)0.0460 (12)0.0053 (12)0.0196 (11)0.0056 (10)
C30.0369 (12)0.0418 (13)0.0334 (11)0.0059 (10)0.0102 (9)0.0028 (9)
C40.0446 (13)0.0476 (14)0.0405 (12)0.0064 (12)0.0176 (10)0.0021 (10)
C50.0619 (16)0.0460 (14)0.0506 (14)0.0053 (13)0.0198 (12)0.0023 (12)
C60.0588 (16)0.0377 (14)0.0539 (15)0.0035 (12)0.0198 (13)0.0039 (11)
O10.0495 (10)0.0531 (10)0.0462 (9)0.0021 (8)0.0205 (7)0.0019 (8)
O20.0645 (12)0.0425 (10)0.0720 (13)0.0053 (9)0.0335 (10)0.0041 (9)
C70.0400 (13)0.0422 (14)0.0457 (13)0.0084 (12)0.0128 (11)0.0030 (11)
C80.0412 (13)0.0335 (12)0.0409 (12)0.0106 (10)0.0133 (10)0.0058 (9)
C90.0427 (13)0.0441 (13)0.0372 (11)0.0040 (11)0.0087 (10)0.0003 (10)
C100.0363 (13)0.0440 (14)0.0498 (13)0.0044 (11)0.0083 (11)0.0019 (11)
Geometric parameters (Å, º) top
N1—C41.349 (3)C5—H50.9300
N1—C61.371 (2)C6—H60.9300
N1—C31.428 (3)O1—C71.3101
N2—C41.305 (3)O1—H10.8200
N2—C51.364 (3)O2—C71.217 (3)
C1—C31.379 (3)C7—C81.498 (3)
C1—C21.383 (3)C8—C91.379 (3)
C1—H1A0.9300C8—C10ii1.385 (3)
C2—C3i1.372 (3)C9—C101.380 (3)
C2—H20.9300C9—H90.9300
C3—C2i1.372 (3)C10—C8ii1.385 (3)
C4—H40.9300C10—H100.9300
C5—C61.344 (3)
C4—N1—C6106.45 (17)N2—C5—H5125.0
C4—N1—C3126.9 (2)C5—C6—N1106.22 (16)
C6—N1—C3126.66 (17)C5—C6—H6126.9
C4—N2—C5105.8 (2)N1—C6—H6126.9
C3—C1—C2120.3 (2)C7—O1—H1109.5
C3—C1—H1A119.8O2—C7—O1124.20
C2—C1—H1A119.8O2—C7—C8122.5 (2)
C3i—C2—C1119.7 (2)O1—C7—C8113.31
C3i—C2—H2120.1C9—C8—C10ii119.2 (2)
C1—C2—H2120.1C9—C8—C7122.1 (2)
C2i—C3—C1119.9 (2)C10ii—C8—C7118.7 (2)
C2i—C3—N1120.35 (19)C8—C9—C10120.7 (2)
C1—C3—N1119.7 (2)C8—C9—H9119.7
N2—C4—N1111.5 (2)C10—C9—H9119.7
N2—C4—H4124.2C9—C10—C8ii120.1 (2)
N1—C4—H4124.2C9—C10—H10119.9
C6—C5—N2110.01 (19)C8ii—C10—H10119.9
C6—C5—H5125.0
C3—C1—C2—C3i0.9 (4)N2—C5—C6—N10.0 (3)
C2—C1—C3—C2i0.9 (4)C4—N1—C6—C50.3 (2)
C2—C1—C3—N1179.5 (2)C3—N1—C6—C5179.9 (2)
C4—N1—C3—C2i26.8 (4)O2—C7—C8—C9157.3 (2)
C6—N1—C3—C2i153.0 (2)O1—C7—C8—C923.07
C4—N1—C3—C1152.9 (2)O2—C7—C8—C10ii23.6 (4)
C6—N1—C3—C127.3 (3)O1—C7—C8—C10ii155.90
C5—N2—C4—N10.5 (3)C10ii—C8—C9—C100.2 (4)
C6—N1—C4—N20.5 (3)C7—C8—C9—C10178.8 (2)
C3—N1—C4—N2179.6 (2)C8—C9—C10—C8ii0.2 (4)
C4—N2—C5—C60.3 (3)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2iii0.821.792.6089178
C2—H2···O2iv0.932.543.376 (3)150
C4—H4···O2v0.932.563.463 (3)162
Symmetry codes: (iii) x1, y, z; (iv) x1/2, y+3/2, z1/2; (v) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H10N4·C8H6O4
Mr376.37
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)5.2780 (17), 10.599 (5), 15.449 (5)
β (°) 91.17 (3)
V3)864.1 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.25 × 0.22 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1895, 1538, 904
Rint0.008
(sin θ/λ)max1)0.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.132, 0.95
No. of reflections1538
No. of parameters128
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.21

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Version 1.2; Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.821.792.60885178
C2—H2···O2ii0.932.543.376 (3)150
C4—H4···O2iii0.932.563.463 (3)162
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+3/2, z1/2; (iii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (grant No. 20702035) and Sichuan University experimental technical project (grant No. 07-57, 07-61).

References

First citationAakeröy, C. B., Salmon, D. J., Smith, M. M. & Desper, J. (2006). Cryst. Growth Des. 6, 1033–1042.  Google Scholar
First citationAakeröy, C. B. & Seddon, K. R. (1993). Chem. Soc. Rev. 22, 397–407.  CrossRef CAS Web of Science Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationCorna, A., Rey, F., Rius, J., Sabater, M. J. & Valencla, S. (2004). Nature (London), 431, 287–290.  Web of Science PubMed Google Scholar
First citationDesiraju, G. R. (2007). Angew. Chem. Int. Ed. 46, 8342–8356.  Web of Science CrossRef CAS Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association, Pittsburgh Metting. Abstract PA104.  Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan Roey, P., Bullion, K. A., Osawa, Y., Bowman, R. M. & Braun, D. G. (1991). Acta Cryst. C47, 1015–1018.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, X.-Y., Wang, W.-H., Lan, J.-B., Mao, Z.-H. & Xie, R.-G. (2007). Acta Cryst. E63, o4513–o4514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, W. H., Xi, P. H., Su, X. Y., Lan, J. B., Mao, Z. H., You, J. S. & Xie, R. G. (2007). Cryst. Growth Des. 7, 741–746.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds