organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o20-o21

6,6′-Dimeth­­oxy-2,2′-[2,2-di­methyl­propane-1,3-diylbis(nitrilo­methyl­­idyne)]diphenol

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 4 November 2008; accepted 15 November 2008; online 3 December 2008)

The title Schiff base compound, C21H26N2O4, exhibits two crystallographically independent mol­ecules in the asymmetric unit with similar conformations. The imino groups are coplanar with the benzene rings; the maximum deviations of the N atoms from the planes comprising the benzene rings and the imino groups are −0.037 (4), 0.013 (4), −0.021 (5), and 0.008 (5) Å. The dihedral angles between the benzene rings in the two mol­ecules are 53.64 (17) and 51.93 (17)°. Strong intra­molecular O—H⋯N hydrogen bonds generate S(6) ring motifs. The N atoms are also in close proximity to the H atoms of the dimethyl­propane groups, with H⋯N distances between 2.54 and 2.75 Å. The crystal structure is further stabilized by weak inter­molecular C—H⋯O hydrogen bonds, weak inter­molecular C—H⋯π inter­actions and ππ contacts involving the imine C atom and two C atoms from the adjacent benzene rings.

Related literature

For reference bond lengths, see Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For information on Schiff base ligands and complexes and their applications, see: Calligaris & Randaccio (1987[Calligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715-738. London: Pergamon.]). For related structures, see: Li et al. (2005[Li, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156-o4157.]); Bomfim et al. (2005[Bomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53-o56.]); Glidewell et al. (2006[Glidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1-o4.]); Sun et al. (2004[Sun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707-o1708.]).

[Scheme 1]

Experimental

Crystal data
  • C21H26N2O4

  • Mr = 370.44

  • Monoclinic, C c

  • a = 6.8859 (3) Å

  • b = 30.8090 (14) Å

  • c = 18.8611 (9) Å

  • β = 96.102 (3)°

  • V = 3978.7 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100.0 (1) K

  • 0.45 × 0.38 × 0.26 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.962, Tmax = 0.978

  • 55368 measured reflections

  • 7045 independent reflections

  • 6422 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.202

  • S = 1.07

  • 7045 reflections

  • 495 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Selected geometric parameters (Å) associated with ππ stacking interactions between the planar sections of C1A–C6A–C7A–N1A and C5B–C6B–C7B–N1B

C1A⋯C7B 3.298 (5)
C6A⋯C6B 3.300 (5)
C6A⋯C7B 3.250 (3)
C7A⋯C5B 3.393 (5)
C7A⋯C6B 3.267 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N1A 0.84 1.82 2.570 (4) 148
O1B—H1B⋯N1B 0.84 1.85 2.581 (4) 144
O2A—H2A⋯N2A 0.84 1.89 2.625 (4) 145
O2B—H2B⋯N2B 0.84 1.87 2.607 (4) 146
C5B—H5BA⋯O1Bi 0.95 2.59 3.233 (4) 125
C18A—H18C⋯N1A 0.98 2.56 2.900 (5) 100
C18B—H18F⋯N1B 0.98 2.54 2.889 (5) 101
C18A—H18C⋯N1A 0.98 2.56 2.900 (5) 100
C19A—H19C⋯N1A 0.98 2.71 3.021 (5) 99
C19A—H19A⋯N2A 0.98 2.63 2.950 (5) 99
C19B—H19F⋯N1B 0.98 2.70 3.012 (5) 99
C19B—H19D⋯N2B 0.98 2.63 2.946 (5) 99
C8B—H8BA⋯N2B 0.99 2.75 3.021 (5) 96
C10A—H10BCg1ii 0.99 2.73 3.481 (4) 133
C10B—H10DCg2iii 0.99 2.79 3.524 (4) 131
Symmetry codes: (i) x+1, y, z; (ii) [x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]. Cg1 and Cg2 are the centroids of the C12B–C17B and C12A–C17A benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Schiff bases are one of the most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and supramolecular architectures (Calligaris & Randaccio, 1987). Structures of Schiff bases derived from substituted benzaldehydes and closely related to the title compound have been reported earlier (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2006; Sun et al., 2004).

The molecule of the title compound (Fig. 1), consists of two crystallographically independent molecules, A and B, with similar conformations. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The imino groups in both molecules are coplanar with the benzene rings they are attached to, and the dihedral angles between the benzene rings in molecules A and B are 53.64 (17) and 51.93 (17)°, respectively. Strong intramolecular O—H···N hydrogen bonds generate S(6) ring motifs (Bernstein et al., 1995). The nitrogen atoms are also in close proximity to the hydrogen atoms of the dimethylpropane groups with H···N distances between 2.54 and 2.75 Å (Table 2). There is also a significant π-stacking interaction between the planar sections associated with C1A–C6A–C7A–N1A and C5B–C6B–C7B–N1B (Table 1), and the crystal structure is further stabilized by weak intermolecular C—H···O hydrogen bonds and weak intermolecular C—H···π interactions (Cg1 and Cg2 are the centroids of the C12B–C17B and C12A–C17A benzene rings) (Table 2).

Related literature top

For reference bond lengths, see Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For information on Schiff base ligands and complexes and their applications, see: Calligaris & Randaccio (1987). For related structures, see: Li et al. (2005); Bomfim et al. (2005); Glidewell et al. (2006); Sun et al. (2004).

Experimental top

In a 50 ml round-bottomed flask, 3-methoxy salicylaldehyde (2 mmol, 304 mg) was added into a 30 ml ethanolic solution of 2,2-dimethyl-1,3-propane diamine (1 mmol, 102 mg) and then the mixture was next refluxed for 1 h. The resulting yellow solid was filtered and washed with cold ethanol. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

H atoms of the hydroxy groups were positioned by a freely rotating O—H bond and constrained with a fixed distance of 0.84 Å. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and Uiso(H) = 1.2 or 1.5Ueq(C). A rotating-group model was applied for the methyl hydrogen atoms of the methoxy groups. In the absence of sufficient anomalous scattering effects the Friedel pairs were merged prior to refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with atom labels and 50% probability ellipsoids for non-H atoms. Dashed lines indicate intramolecular O—H···N hydrogen bonds.
[Figure 2] Fig. 2. The crystal structure of the title compound, viewed down the a axis.
6,6'-Dimethoxy-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethylidyne)]diphenol top
Crystal data top
C21H26N2O4F(000) = 1584
Mr = 370.44Dx = 1.237 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 9913 reflections
a = 6.8859 (3) Åθ = 2.5–31.8°
b = 30.8090 (14) ŵ = 0.09 mm1
c = 18.8611 (9) ÅT = 100 K
β = 96.102 (3)°Block, yellow
V = 3978.7 (3) Å30.45 × 0.38 × 0.26 mm
Z = 8
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7045 independent reflections
Radiation source: fine-focus sealed tube6422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ϕ and ω scansθmax = 32.3°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.962, Tmax = 0.978k = 4646
55368 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1051P)2 + 8.0789P]
where P = (Fo2 + 2Fc2)/3
7045 reflections(Δ/σ)max = 0.002
495 parametersΔρmax = 0.45 e Å3
2 restraintsΔρmin = 0.37 e Å3
Crystal data top
C21H26N2O4V = 3978.7 (3) Å3
Mr = 370.44Z = 8
Monoclinic, CcMo Kα radiation
a = 6.8859 (3) ŵ = 0.09 mm1
b = 30.8090 (14) ÅT = 100 K
c = 18.8611 (9) Å0.45 × 0.38 × 0.26 mm
β = 96.102 (3)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7045 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6422 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.978Rint = 0.050
55368 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0702 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 1.07Δρmax = 0.45 e Å3
7045 reflectionsΔρmin = 0.37 e Å3
495 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.6602 (3)0.61681 (8)0.79393 (15)0.0220 (5)
H1A0.65140.64330.78370.033*
O2A0.1871 (4)0.81687 (9)0.62720 (15)0.0262 (5)
H2A0.25520.81260.66620.039*
O3A0.7407 (4)0.53607 (8)0.82872 (15)0.0231 (5)
O4A0.0011 (4)0.84221 (9)0.50566 (15)0.0256 (5)
N1A0.7730 (4)0.69245 (9)0.75795 (16)0.0200 (5)
N2A0.5033 (4)0.82012 (9)0.71799 (16)0.0209 (5)
C1A0.8478 (4)0.60400 (10)0.79486 (17)0.0162 (5)
C2A0.8952 (5)0.56063 (10)0.81212 (17)0.0187 (6)
C3A1.0852 (5)0.54614 (11)0.81211 (19)0.0223 (6)
H3AA1.11630.51690.82430.027*
C4A1.2326 (5)0.57441 (12)0.7942 (2)0.0228 (6)
H4AA1.36230.56410.79330.027*
C5A1.1880 (5)0.61752 (11)0.7780 (2)0.0205 (6)
H5AA1.28790.63680.76660.025*
C6A0.9952 (5)0.63275 (10)0.77833 (17)0.0175 (5)
C7A0.9487 (5)0.67788 (10)0.76016 (18)0.0183 (5)
H7AA1.05040.69690.74970.022*
C8A0.7357 (5)0.73797 (10)0.74149 (19)0.0210 (6)
H8AA0.65480.74040.69500.025*
H8AB0.86100.75300.73750.025*
C9A0.6290 (5)0.76003 (10)0.79997 (18)0.0202 (6)
C10A0.6207 (5)0.80896 (10)0.78462 (19)0.0213 (6)
H10A0.56590.82390.82450.026*
H10B0.75530.81990.78270.026*
C11A0.5777 (5)0.84575 (10)0.67483 (18)0.0198 (6)
H11A0.70690.85610.68700.024*
C12A0.4712 (5)0.85970 (11)0.60758 (18)0.0198 (6)
C13A0.5596 (5)0.88882 (14)0.5638 (2)0.0267 (7)
H13A0.68660.89980.57830.032*
C14A0.4617 (6)0.90153 (14)0.4996 (2)0.0285 (7)
H14A0.52250.92100.46980.034*
C15A0.2746 (6)0.88615 (13)0.4779 (2)0.0253 (7)
H15A0.20950.89490.43330.030*
C16A0.1831 (5)0.85812 (11)0.52116 (19)0.0206 (6)
C17A0.2814 (5)0.84420 (10)0.58698 (18)0.0184 (5)
C18A0.7447 (7)0.75372 (13)0.8731 (2)0.0300 (8)
H18A0.67570.76780.90970.045*
H18B0.87470.76670.87290.045*
H18C0.75800.72260.88350.045*
C19A0.4231 (6)0.74167 (13)0.7997 (2)0.0289 (8)
H19A0.35120.74590.75250.043*
H19B0.35520.75670.83570.043*
H19C0.43060.71060.81080.043*
C20A0.1043 (6)0.85672 (13)0.4401 (2)0.0272 (7)
H20A0.23550.84400.43460.041*
H20B0.03350.84770.40020.041*
H20C0.11460.88840.44060.041*
C21A0.7845 (7)0.49164 (11)0.8457 (2)0.0291 (7)
H21A0.66510.47670.85600.044*
H21B0.88160.49020.88750.044*
H21C0.83680.47760.80510.044*
O1B0.5634 (3)0.64558 (8)0.58470 (15)0.0216 (5)
H1B0.56390.62100.60410.032*
O2B0.2253 (4)0.44378 (9)0.76179 (15)0.0255 (5)
H2B0.27860.45070.72540.038*
O3B0.6121 (4)0.72611 (9)0.54496 (16)0.0260 (5)
O4B0.1066 (4)0.41813 (9)0.88280 (15)0.0270 (5)
N1B0.7096 (4)0.57124 (9)0.62454 (16)0.0204 (5)
N2B0.4884 (4)0.44138 (9)0.67216 (16)0.0206 (5)
C1B0.7484 (4)0.65956 (10)0.58381 (18)0.0170 (5)
C2B0.7791 (5)0.70283 (11)0.56300 (18)0.0202 (6)
C3B0.9687 (5)0.71851 (11)0.5621 (2)0.0228 (6)
H3BA0.98950.74760.54790.027*
C4B1.1290 (5)0.69138 (12)0.5821 (2)0.0249 (7)
H4BA1.25780.70240.58210.030*
C5B1.1014 (5)0.64898 (11)0.6016 (2)0.0215 (6)
H5BA1.21110.63080.61440.026*
C6B0.9113 (5)0.63246 (11)0.60275 (17)0.0173 (5)
C7B0.8806 (5)0.58763 (10)0.62376 (18)0.0187 (5)
H7BA0.99130.56990.63740.022*
C8B0.6908 (5)0.52569 (11)0.64410 (19)0.0212 (6)
H8BA0.63930.52380.69110.025*
H8BB0.82110.51180.64830.025*
C9B0.5533 (5)0.50155 (10)0.58819 (18)0.0194 (6)
C10B0.5641 (5)0.45275 (10)0.60503 (19)0.0203 (6)
H10C0.48890.43670.56570.024*
H10D0.70190.44320.60710.024*
C11B0.5880 (5)0.41536 (10)0.71459 (19)0.0208 (6)
H11B0.70980.40500.70210.025*
C12B0.5202 (5)0.40099 (11)0.78172 (18)0.0193 (6)
C13B0.6361 (5)0.37212 (13)0.8259 (2)0.0264 (7)
H13B0.75580.36170.81160.032*
C14B0.5756 (6)0.35898 (14)0.8901 (2)0.0290 (7)
H14B0.65320.33930.91970.035*
C15B0.4011 (6)0.37457 (12)0.91147 (19)0.0245 (7)
H15B0.36240.36580.95620.029*
C16B0.2833 (5)0.40253 (11)0.86886 (18)0.0210 (6)
C17B0.3442 (5)0.41619 (10)0.80270 (18)0.0191 (6)
C18B0.6217 (7)0.50736 (13)0.5136 (2)0.0317 (8)
H18D0.53230.49190.47830.048*
H18E0.75370.49550.51340.048*
H18F0.62240.53830.50160.048*
C19B0.3445 (6)0.51819 (13)0.5896 (3)0.0302 (8)
H19D0.30410.51420.63740.045*
H19E0.25640.50190.55500.045*
H19F0.33910.54910.57730.045*
C20B0.0398 (6)0.40411 (14)0.9482 (2)0.0291 (7)
H20D0.08610.41780.95380.044*
H20E0.13530.41240.98810.044*
H20F0.02450.37250.94740.044*
C21B0.6384 (6)0.76900 (12)0.5185 (3)0.0313 (8)
H21D0.51140.78350.51030.047*
H21E0.69750.76730.47350.047*
H21F0.72420.78550.55350.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0150 (10)0.0177 (10)0.0338 (13)0.0015 (8)0.0053 (9)0.0003 (9)
O2A0.0263 (13)0.0208 (11)0.0296 (13)0.0085 (10)0.0051 (10)0.0080 (10)
O3A0.0230 (11)0.0157 (10)0.0314 (13)0.0021 (9)0.0057 (9)0.0016 (9)
O4A0.0227 (12)0.0256 (12)0.0266 (12)0.0056 (9)0.0064 (9)0.0038 (10)
N1A0.0208 (12)0.0137 (11)0.0250 (13)0.0031 (9)0.0003 (10)0.0006 (10)
N2A0.0233 (13)0.0137 (11)0.0244 (13)0.0026 (10)0.0036 (10)0.0004 (9)
C1A0.0147 (12)0.0152 (12)0.0184 (13)0.0005 (10)0.0007 (10)0.0028 (10)
C2A0.0205 (14)0.0159 (13)0.0191 (13)0.0015 (10)0.0001 (10)0.0013 (10)
C3A0.0237 (15)0.0164 (13)0.0258 (15)0.0036 (11)0.0020 (12)0.0026 (11)
C4A0.0178 (13)0.0207 (14)0.0294 (16)0.0031 (11)0.0002 (12)0.0036 (12)
C5A0.0141 (12)0.0186 (13)0.0285 (16)0.0013 (10)0.0013 (11)0.0037 (11)
C6A0.0151 (12)0.0170 (13)0.0200 (13)0.0003 (10)0.0007 (10)0.0027 (10)
C7A0.0170 (13)0.0156 (12)0.0221 (14)0.0008 (10)0.0010 (10)0.0008 (10)
C8A0.0238 (14)0.0124 (12)0.0271 (15)0.0032 (11)0.0032 (12)0.0015 (11)
C9A0.0232 (14)0.0154 (12)0.0212 (14)0.0015 (11)0.0005 (11)0.0012 (10)
C10A0.0235 (15)0.0128 (12)0.0260 (15)0.0014 (11)0.0055 (12)0.0003 (11)
C11A0.0179 (13)0.0173 (13)0.0232 (14)0.0011 (10)0.0022 (11)0.0001 (11)
C12A0.0175 (13)0.0181 (13)0.0234 (14)0.0004 (11)0.0006 (11)0.0006 (11)
C13A0.0193 (15)0.0313 (18)0.0291 (17)0.0024 (13)0.0010 (13)0.0038 (14)
C14A0.0268 (17)0.0337 (19)0.0258 (16)0.0005 (14)0.0059 (13)0.0058 (14)
C15A0.0261 (16)0.0268 (16)0.0224 (15)0.0063 (13)0.0002 (12)0.0006 (12)
C16A0.0214 (14)0.0178 (13)0.0217 (14)0.0028 (11)0.0021 (11)0.0015 (11)
C17A0.0180 (13)0.0148 (12)0.0221 (14)0.0000 (10)0.0002 (10)0.0007 (10)
C18A0.043 (2)0.0221 (15)0.0228 (16)0.0059 (15)0.0043 (15)0.0005 (12)
C19A0.0213 (15)0.0220 (16)0.043 (2)0.0010 (12)0.0033 (14)0.0057 (14)
C20A0.0284 (17)0.0277 (16)0.0234 (16)0.0010 (14)0.0066 (13)0.0023 (13)
C21A0.038 (2)0.0159 (14)0.0341 (19)0.0042 (14)0.0081 (15)0.0020 (13)
O1B0.0135 (10)0.0181 (10)0.0328 (13)0.0021 (8)0.0010 (9)0.0017 (9)
O2B0.0310 (13)0.0203 (11)0.0270 (12)0.0112 (10)0.0106 (10)0.0082 (9)
O3B0.0221 (12)0.0186 (11)0.0368 (14)0.0028 (9)0.0014 (10)0.0038 (10)
O4B0.0273 (13)0.0280 (13)0.0277 (13)0.0048 (10)0.0125 (10)0.0056 (10)
N1B0.0221 (13)0.0171 (12)0.0216 (12)0.0021 (10)0.0011 (10)0.0012 (10)
N2B0.0238 (13)0.0144 (11)0.0246 (13)0.0010 (10)0.0077 (10)0.0003 (10)
C1B0.0144 (12)0.0161 (12)0.0205 (13)0.0006 (10)0.0026 (10)0.0011 (10)
C2B0.0201 (14)0.0181 (13)0.0222 (14)0.0006 (11)0.0024 (11)0.0010 (11)
C3B0.0218 (15)0.0167 (13)0.0302 (16)0.0024 (11)0.0042 (12)0.0008 (12)
C4B0.0211 (15)0.0215 (15)0.0326 (17)0.0014 (12)0.0056 (13)0.0022 (13)
C5B0.0164 (13)0.0204 (14)0.0278 (16)0.0022 (11)0.0028 (11)0.0018 (12)
C6B0.0168 (12)0.0187 (13)0.0164 (12)0.0002 (10)0.0011 (10)0.0018 (10)
C7B0.0185 (13)0.0158 (12)0.0217 (14)0.0000 (10)0.0013 (10)0.0013 (10)
C8B0.0238 (15)0.0142 (12)0.0249 (15)0.0005 (11)0.0006 (12)0.0030 (11)
C9B0.0216 (14)0.0154 (12)0.0209 (14)0.0012 (10)0.0016 (11)0.0021 (10)
C10B0.0244 (15)0.0152 (12)0.0226 (14)0.0020 (11)0.0082 (12)0.0005 (11)
C11B0.0215 (14)0.0156 (13)0.0264 (15)0.0030 (11)0.0075 (12)0.0014 (11)
C12B0.0196 (14)0.0163 (13)0.0220 (14)0.0040 (10)0.0017 (11)0.0008 (10)
C13B0.0188 (15)0.0271 (16)0.0328 (18)0.0033 (12)0.0009 (13)0.0065 (14)
C14B0.0232 (16)0.0313 (18)0.0315 (18)0.0018 (14)0.0026 (14)0.0079 (14)
C15B0.0260 (16)0.0242 (15)0.0226 (15)0.0061 (13)0.0005 (12)0.0027 (12)
C16B0.0244 (15)0.0179 (13)0.0209 (14)0.0020 (11)0.0034 (11)0.0026 (11)
C17B0.0234 (14)0.0118 (11)0.0223 (14)0.0022 (10)0.0038 (11)0.0011 (10)
C18B0.047 (2)0.0244 (17)0.0244 (16)0.0090 (16)0.0100 (16)0.0029 (13)
C19B0.0211 (16)0.0275 (17)0.041 (2)0.0001 (13)0.0013 (14)0.0073 (15)
C20B0.0352 (19)0.0304 (18)0.0233 (16)0.0035 (15)0.0110 (14)0.0004 (13)
C21B0.0323 (19)0.0149 (14)0.046 (2)0.0030 (13)0.0013 (17)0.0026 (14)
Geometric parameters (Å, º) top
O1A—C1A1.349 (4)O1B—C1B1.347 (4)
O1A—H1A0.8400O1B—H1B0.8400
O2A—C17A1.346 (4)O2B—C17B1.362 (4)
O2A—H2A0.8400O2B—H2B0.8400
O3A—C2A1.369 (4)O3B—C2B1.367 (4)
O3A—C21A1.430 (4)O3B—C21B1.431 (5)
O4A—C16A1.362 (4)O4B—C16B1.360 (4)
O4A—C20A1.431 (4)O4B—C20B1.427 (5)
N1A—C7A1.287 (4)N1B—C7B1.283 (4)
N1A—C8A1.454 (4)N1B—C8B1.460 (4)
N2A—C11A1.280 (5)N2B—C11B1.279 (4)
N2A—C10A1.461 (4)N2B—C10B1.462 (4)
C1A—C2A1.406 (4)C1B—C2B1.412 (4)
C1A—C6A1.407 (5)C1B—C6B1.413 (4)
C2A—C3A1.382 (5)C2B—C3B1.394 (5)
C3A—C4A1.406 (5)C3B—C4B1.404 (5)
C3A—H3AA0.9500C3B—H3BA0.9500
C4A—C5A1.390 (5)C4B—C5B1.376 (5)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.409 (4)C5B—C6B1.407 (5)
C5A—H5AA0.9500C5B—H5BA0.9500
C6A—C7A1.460 (4)C6B—C7B1.458 (5)
C7A—H7AA0.9500C7B—H7BA0.9500
C8A—C9A1.546 (5)C8B—C9B1.533 (5)
C8A—H8AA0.9900C8B—H8BA0.9900
C8A—H8AB0.9900C8B—H8BB0.9900
C9A—C19A1.526 (5)C9B—C19B1.530 (5)
C9A—C18A1.530 (5)C9B—C10B1.537 (4)
C9A—C10A1.535 (4)C9B—C18B1.540 (5)
C10A—H10A0.9900C10B—H10C0.9900
C10A—H10B0.9900C10B—H10D0.9900
C11A—C12A1.461 (4)C11B—C12B1.464 (5)
C11A—H11A0.9500C11B—H11B0.9500
C12A—C13A1.401 (5)C12B—C17B1.395 (5)
C12A—C17A1.406 (5)C12B—C13B1.407 (5)
C13A—C14A1.378 (5)C13B—C14B1.382 (6)
C13A—H13A0.9500C13B—H13B0.9500
C14A—C15A1.392 (6)C14B—C15B1.393 (6)
C14A—H14A0.9500C14B—H14B0.9500
C15A—C16A1.385 (5)C15B—C16B1.381 (5)
C15A—H15A0.9500C15B—H15B0.9500
C16A—C17A1.416 (4)C16B—C17B1.422 (5)
C18A—H18A0.9800C18B—H18D0.9800
C18A—H18B0.9800C18B—H18E0.9800
C18A—H18C0.9800C18B—H18F0.9800
C19A—H19A0.9800C19B—H19D0.9800
C19A—H19B0.9800C19B—H19E0.9800
C19A—H19C0.9800C19B—H19F0.9800
C20A—H20A0.9800C20B—H20D0.9800
C20A—H20B0.9800C20B—H20E0.9800
C20A—H20C0.9800C20B—H20F0.9800
C21A—H21A0.9800C21B—H21D0.9800
C21A—H21B0.9800C21B—H21E0.9800
C21A—H21C0.9800C21B—H21F0.9800
C1A···C7B3.298 (5)C7A···C5B3.393 (5)
C6A···C6B3.300 (5)C7A···C6B3.267 (5)
C6A···C7B3.250 (3)
C1A—O1A—H1A109.5C1B—O1B—H1B109.5
C17A—O2A—H2A109.5C17B—O2B—H2B109.5
C2A—O3A—C21A115.4 (3)C2B—O3B—C21B115.9 (3)
C16A—O4A—C20A116.0 (3)C16B—O4B—C20B115.9 (3)
C7A—N1A—C8A119.2 (3)C7B—N1B—C8B119.2 (3)
C11A—N2A—C10A118.0 (3)C11B—N2B—C10B118.4 (3)
O1A—C1A—C2A118.7 (3)O1B—C1B—C2B118.3 (3)
O1A—C1A—C6A121.7 (3)O1B—C1B—C6B122.3 (3)
C2A—C1A—C6A119.6 (3)C2B—C1B—C6B119.4 (3)
O3A—C2A—C3A125.5 (3)O3B—C2B—C3B125.4 (3)
O3A—C2A—C1A114.3 (3)O3B—C2B—C1B114.7 (3)
C3A—C2A—C1A120.2 (3)C3B—C2B—C1B119.9 (3)
C2A—C3A—C4A120.5 (3)C2B—C3B—C4B120.1 (3)
C2A—C3A—H3AA119.7C2B—C3B—H3BA120.0
C4A—C3A—H3AA119.7C4B—C3B—H3BA120.0
C5A—C4A—C3A119.8 (3)C5B—C4B—C3B120.7 (3)
C5A—C4A—H4AA120.1C5B—C4B—H4BA119.7
C3A—C4A—H4AA120.1C3B—C4B—H4BA119.7
C4A—C5A—C6A120.2 (3)C4B—C5B—C6B120.2 (3)
C4A—C5A—H5AA119.9C4B—C5B—H5BA119.9
C6A—C5A—H5AA119.9C6B—C5B—H5BA119.9
C1A—C6A—C5A119.6 (3)C5B—C6B—C1B119.8 (3)
C1A—C6A—C7A120.4 (3)C5B—C6B—C7B120.6 (3)
C5A—C6A—C7A120.0 (3)C1B—C6B—C7B119.6 (3)
N1A—C7A—C6A121.5 (3)N1B—C7B—C6B122.4 (3)
N1A—C7A—H7AA119.3N1B—C7B—H7BA118.8
C6A—C7A—H7AA119.3C6B—C7B—H7BA118.8
N1A—C8A—C9A111.0 (3)N1B—C8B—C9B110.9 (3)
N1A—C8A—H8AA109.4N1B—C8B—H8BA109.5
C9A—C8A—H8AA109.4C9B—C8B—H8BA109.5
N1A—C8A—H8AB109.4N1B—C8B—H8BB109.5
C9A—C8A—H8AB109.4C9B—C8B—H8BB109.5
H8AA—C8A—H8AB108.0H8BA—C8B—H8BB108.0
C19A—C9A—C18A110.5 (3)C19B—C9B—C8B109.8 (3)
C19A—C9A—C10A110.3 (3)C19B—C9B—C10B110.4 (3)
C18A—C9A—C10A107.5 (3)C8B—C9B—C10B108.7 (3)
C19A—C9A—C8A110.3 (3)C19B—C9B—C18B110.8 (3)
C18A—C9A—C8A110.2 (3)C8B—C9B—C18B110.2 (3)
C10A—C9A—C8A108.0 (3)C10B—C9B—C18B106.8 (3)
N2A—C10A—C9A113.5 (3)N2B—C10B—C9B113.6 (3)
N2A—C10A—H10A108.9N2B—C10B—H10C108.9
C9A—C10A—H10A108.9C9B—C10B—H10C108.9
N2A—C10A—H10B108.9N2B—C10B—H10D108.9
C9A—C10A—H10B108.9C9B—C10B—H10D108.9
H10A—C10A—H10B107.7H10C—C10B—H10D107.7
N2A—C11A—C12A122.4 (3)N2B—C11B—C12B122.1 (3)
N2A—C11A—H11A118.8N2B—C11B—H11B118.9
C12A—C11A—H11A118.8C12B—C11B—H11B118.9
C13A—C12A—C17A120.2 (3)C17B—C12B—C13B119.9 (3)
C13A—C12A—C11A119.4 (3)C17B—C12B—C11B120.7 (3)
C17A—C12A—C11A120.4 (3)C13B—C12B—C11B119.4 (3)
C14A—C13A—C12A119.8 (3)C14B—C13B—C12B119.9 (4)
C14A—C13A—H13A120.1C14B—C13B—H13B120.0
C12A—C13A—H13A120.1C12B—C13B—H13B120.0
C13A—C14A—C15A120.8 (4)C13B—C14B—C15B120.1 (4)
C13A—C14A—H14A119.6C13B—C14B—H14B119.9
C15A—C14A—H14A119.6C15B—C14B—H14B119.9
C16A—C15A—C14A120.3 (3)C16B—C15B—C14B121.2 (3)
C16A—C15A—H15A119.9C16B—C15B—H15B119.4
C14A—C15A—H15A119.9C14B—C15B—H15B119.4
O4A—C16A—C15A124.7 (3)O4B—C16B—C15B126.2 (3)
O4A—C16A—C17A115.3 (3)O4B—C16B—C17B114.7 (3)
C15A—C16A—C17A120.0 (3)C15B—C16B—C17B119.1 (3)
O2A—C17A—C12A123.1 (3)O2B—C17B—C12B122.5 (3)
O2A—C17A—C16A118.0 (3)O2B—C17B—C16B117.8 (3)
C12A—C17A—C16A118.9 (3)C12B—C17B—C16B119.7 (3)
C9A—C18A—H18A109.5C9B—C18B—H18D109.5
C9A—C18A—H18B109.5C9B—C18B—H18E109.5
H18A—C18A—H18B109.5H18D—C18B—H18E109.5
C9A—C18A—H18C109.5C9B—C18B—H18F109.5
H18A—C18A—H18C109.5H18D—C18B—H18F109.5
H18B—C18A—H18C109.5H18E—C18B—H18F109.5
C9A—C19A—H19A109.5C9B—C19B—H19D109.5
C9A—C19A—H19B109.5C9B—C19B—H19E109.5
H19A—C19A—H19B109.5H19D—C19B—H19E109.5
C9A—C19A—H19C109.5C9B—C19B—H19F109.5
H19A—C19A—H19C109.5H19D—C19B—H19F109.5
H19B—C19A—H19C109.5H19E—C19B—H19F109.5
O4A—C20A—H20A109.5O4B—C20B—H20D109.5
O4A—C20A—H20B109.5O4B—C20B—H20E109.5
H20A—C20A—H20B109.5H20D—C20B—H20E109.5
O4A—C20A—H20C109.5O4B—C20B—H20F109.5
H20A—C20A—H20C109.5H20D—C20B—H20F109.5
H20B—C20A—H20C109.5H20E—C20B—H20F109.5
O3A—C21A—H21A109.5O3B—C21B—H21D109.5
O3A—C21A—H21B109.5O3B—C21B—H21E109.5
H21A—C21A—H21B109.5H21D—C21B—H21E109.5
O3A—C21A—H21C109.5O3B—C21B—H21F109.5
H21A—C21A—H21C109.5H21D—C21B—H21F109.5
H21B—C21A—H21C109.5H21E—C21B—H21F109.5
C21A—O3A—C2A—C3A1.4 (5)C21B—O3B—C2B—C3B4.6 (5)
C21A—O3A—C2A—C1A179.3 (3)C21B—O3B—C2B—C1B175.4 (3)
O1A—C1A—C2A—O3A2.0 (4)O1B—C1B—C2B—O3B0.6 (4)
C6A—C1A—C2A—O3A178.6 (3)C6B—C1B—C2B—O3B179.3 (3)
O1A—C1A—C2A—C3A178.6 (3)O1B—C1B—C2B—C3B179.4 (3)
C6A—C1A—C2A—C3A0.7 (5)C6B—C1B—C2B—C3B0.7 (5)
O3A—C2A—C3A—C4A179.9 (3)O3B—C2B—C3B—C4B179.8 (3)
C1A—C2A—C3A—C4A0.6 (5)C1B—C2B—C3B—C4B0.2 (5)
C2A—C3A—C4A—C5A1.4 (5)C2B—C3B—C4B—C5B1.0 (6)
C3A—C4A—C5A—C6A1.0 (5)C3B—C4B—C5B—C6B0.9 (6)
O1A—C1A—C6A—C5A178.1 (3)C4B—C5B—C6B—C1B0.1 (5)
C2A—C1A—C6A—C5A1.2 (5)C4B—C5B—C6B—C7B179.7 (3)
O1A—C1A—C6A—C7A0.6 (5)O1B—C1B—C6B—C5B179.3 (3)
C2A—C1A—C6A—C7A179.9 (3)C2B—C1B—C6B—C5B0.9 (5)
C4A—C5A—C6A—C1A0.3 (5)O1B—C1B—C6B—C7B0.3 (5)
C4A—C5A—C6A—C7A179.1 (3)C2B—C1B—C6B—C7B179.5 (3)
C8A—N1A—C7A—C6A178.3 (3)C8B—N1B—C7B—C6B178.1 (3)
C1A—C6A—C7A—N1A0.8 (5)C5B—C6B—C7B—N1B179.1 (3)
C5A—C6A—C7A—N1A177.9 (3)C1B—C6B—C7B—N1B1.3 (5)
C7A—N1A—C8A—C9A125.4 (3)C7B—N1B—C8B—C9B128.7 (3)
N1A—C8A—C9A—C19A67.3 (4)N1B—C8B—C9B—C19B67.9 (4)
N1A—C8A—C9A—C18A55.0 (4)N1B—C8B—C9B—C10B171.2 (3)
N1A—C8A—C9A—C10A172.1 (3)N1B—C8B—C9B—C18B54.4 (4)
C11A—N2A—C10A—C9A130.8 (3)C11B—N2B—C10B—C9B134.3 (3)
C19A—C9A—C10A—N2A55.8 (4)C19B—C9B—C10B—N2B54.7 (4)
C18A—C9A—C10A—N2A176.4 (3)C8B—C9B—C10B—N2B65.8 (4)
C8A—C9A—C10A—N2A64.8 (4)C18B—C9B—C10B—N2B175.3 (3)
C10A—N2A—C11A—C12A178.6 (3)C10B—N2B—C11B—C12B177.8 (3)
N2A—C11A—C12A—C13A178.2 (3)N2B—C11B—C12B—C17B1.5 (5)
N2A—C11A—C12A—C17A1.6 (5)N2B—C11B—C12B—C13B179.7 (3)
C17A—C12A—C13A—C14A1.4 (6)C17B—C12B—C13B—C14B0.2 (6)
C11A—C12A—C13A—C14A178.8 (4)C11B—C12B—C13B—C14B178.7 (3)
C12A—C13A—C14A—C15A0.7 (6)C12B—C13B—C14B—C15B0.6 (6)
C13A—C14A—C15A—C16A0.7 (6)C13B—C14B—C15B—C16B1.4 (6)
C20A—O4A—C16A—C15A1.0 (5)C20B—O4B—C16B—C15B0.4 (5)
C20A—O4A—C16A—C17A178.6 (3)C20B—O4B—C16B—C17B178.6 (3)
C14A—C15A—C16A—O4A178.2 (4)C14B—C15B—C16B—O4B176.8 (4)
C14A—C15A—C16A—C17A1.4 (5)C14B—C15B—C16B—C17B1.3 (5)
C13A—C12A—C17A—O2A178.7 (3)C13B—C12B—C17B—O2B179.3 (3)
C11A—C12A—C17A—O2A1.1 (5)C11B—C12B—C17B—O2B1.8 (5)
C13A—C12A—C17A—C16A0.7 (5)C13B—C12B—C17B—C16B0.2 (5)
C11A—C12A—C17A—C16A179.5 (3)C11B—C12B—C17B—C16B178.6 (3)
O4A—C16A—C17A—O2A0.5 (5)O4B—C16B—C17B—O2B1.7 (4)
C15A—C16A—C17A—O2A179.8 (3)C15B—C16B—C17B—O2B180.0 (3)
O4A—C16A—C17A—C12A179.0 (3)O4B—C16B—C17B—C12B177.8 (3)
C15A—C16A—C17A—C12A0.7 (5)C15B—C16B—C17B—C12B0.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1A0.841.822.570 (4)148
O1B—H1B···N1B0.841.852.581 (4)144
O2A—H2A···N2A0.841.892.625 (4)145
O2B—H2B···N2B0.841.872.607 (4)146
C5B—H5BA···O1Bi0.952.593.233 (4)125
C18A—H18C···N1A0.982.562.900 (5)100
C18B—H18F···N1B0.982.542.889 (5)101
C18A—H18C···N1A0.982.562.900 (5)101
C19A—H19C···N1A0.982.713.021 (5)99
C19A—H19A···N2A0.982.632.950 (5)100
C19B—H19F···N1B0.982.703.012 (5)99
C19B—H19D···N2B0.982.632.946 (5)99
C8B—H8BA···N2B0.992.753.021 (5)96
C10A—H10B···Cg1ii0.992.733.481 (4)133
C10B—H10D···Cg2iii0.992.793.524 (4)131
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC21H26N2O4
Mr370.44
Crystal system, space groupMonoclinic, Cc
Temperature (K)100
a, b, c (Å)6.8859 (3), 30.8090 (14), 18.8611 (9)
β (°) 96.102 (3)
V3)3978.7 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.45 × 0.38 × 0.26
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.962, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
55368, 7045, 6422
Rint0.050
(sin θ/λ)max1)0.752
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.070, 0.202, 1.07
No. of reflections7045
No. of parameters495
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.37

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Selected interatomic distances (Å) top
C1A···C7B3.298 (5)C7A···C5B3.393 (5)
C6A···C6B3.300 (5)C7A···C6B3.267 (5)
C6A···C7B3.250 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1A0.84001.82002.570 (4)148.00
O1B—H1B···N1B0.84001.85002.581 (4)144.00
O2A—H2A···N2A0.84001.89002.625 (4)145.00
O2B—H2B···N2B0.84001.87002.607 (4)146.00
C5B—H5BA···O1Bi0.95002.59003.233 (4)125.00
C18A—H18C···N1A0.98002.56002.900 (5)100.00
C18B—H18F···N1B0.98002.54002.889 (5)101.00
C18A—H18C···N1A0.98002.56002.900 (5)100.49
C19A—H19C···N1A0.98002.71003.021 (5)98.68
C19A—H19A···N2A0.98002.63002.950 (5)99.48
C19B—H19F···N1B0.98002.70003.012 (5)99.02
C19B—H19D···N2B0.98002.63002.946 (5)99.21
C8B—H8BA···N2B0.99002.75003.021 (5)95.98
C10A—H10B···Cg1ii0.99002.73003.481 (4)133.00
C10B—H10D···Cg2iii0.99002.79003.524 (4)131.00
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z.
 

Footnotes

Additional correspondence author, e-mail: hkargar@pnu.ac.ir.

Acknowledgements

The authors thank the Malaysian Government and Universiti Sains Malaysia for an RU research grant (No. 101/PKIMIA/815002) and facilities. HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for a Science Fund grant (No. 305/PFIZIK/613312). RK thanks Universiti Sains Malaysia for a postdoctoral research fellowship. HK thanks PNU for partial financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBomfim, J. A. S., Wardell, J. L., Low, J. N., Skakle, J. M. S. & Glidewell, C. (2005). Acta Cryst. C61, o53–o56.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalligaris, M. & Randaccio, L. (1987). Comprehensive Coordination Chemistry, Vol. 2, edited by G. Wilkinson, pp. 715–738. London: Pergamon.  Google Scholar
First citationGlidewell, C., Low, J. N., Skakle, J. M. S. & Wardell, J. L. (2006). Acta Cryst. C62, o1–o4.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationLi, Y.-G., Zhu, H.-L., Chen, X.-Z. & Song, Y. (2005). Acta Cryst. E61, o4156–o4157.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, Y.-X., You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, o1707–o1708.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 1| January 2009| Pages o20-o21
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds