organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,3,3-Tetra­fluoro­butane-1,4-diol

aLudwig-Maximilians-Universität, Department Chemie und Biochemie, Butenandtstrasse 5–13 (Haus D), 81377 München, Germany
*Correspondence e-mail: kluef@cup.uni-muenchen.de

(Received 28 November 2008; accepted 2 December 2008; online 6 December 2008)

In the title compound, C4H6F4O2, a partially fluorinated aliphatic diol, cooperative O—H⋯O hydrogen bonds form R22(14) rings, which are connected into infinite layers parallel to the (100) plane by C(7) chains. A C—H⋯F link is also seen.

Related literature

For crystal structures containing 2,2,3,3-tetra­fluoro­butane-1,4-di­oxy units, see: Elias et al. (1994[Elias, A. J., Kirchmeier, R. L. & Shreeve, J. M. (1994). Inorg. Chem. 33, 2727-2734.]); Beşli et al. (2004[Beşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., İbişoğlu, H., Kılıç, A. & Shaw, R. A. (2004). Chem. Eur. J. 10, 4915-4920.], 2005[Beşli, S., Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A. & Shaw, R. A. (2005). Eur. J. Inorg. Chem. 2005, 959-966.], 2006[Beşli, S., Coles, S. J., Davies, D. B., Eaton, R. J., Kılıç, A. & Shaw, R. A. (2006). Polyhedron, 25, 963-974.]). For details on graph-set analysis of hydrogen-bond networks, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C4H6F4O2

  • Mr = 162.09

  • Monoclinic, P 21 /c

  • a = 5.4392 (2) Å

  • b = 8.6935 (3) Å

  • c = 12.4123 (4) Å

  • β = 99.768 (2)°

  • V = 578.42 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 200 (2) K

  • 0.18 × 0.08 × 0.06 mm

Data collection
  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: none

  • 2531 measured reflections

  • 1313 independent reflections

  • 1133 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.085

  • S = 1.04

  • 1313 reflections

  • 97 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.80 (2) 2.001 (19) 2.7972 (14) 171.9 (18)
O2—H2⋯O1ii 0.845 (17) 1.940 (17) 2.7608 (14) 163.6 (17)
C1—H1B⋯F3i 0.99 2.44 3.2343 (15) 137
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z.

Data collection: COLLECT (Hooft, 2004[Hooft, R. W. W. (2004). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

The asymmetric unit of the title compound contains one complete molecule, which is shown in Figure 1.

The molecular packing is dominated by two O—H···O hydrogen bonds. According to graph set theory [Bernstein et al. (1995), Etter et al. (1990)] the descriptors C(7) and R22(14) can be assigned. Together with one C—H···F hydrogen bond [motif C(5)] the first-level (unitary) graph set N1 = C(5)C(7)R22(14) is obtained.

Figure 2 shows a cutout of the layers parallel to the (100) plane which are generated by the O—H···O hydrogen bond framework. The C—H···F bonds which are located within these layers are omitted for clarity.

Due to packing effects and the specific hydrogen bonding interactions the O1—C1—C2—C3—C4—O2 chain adopts a somewhat unusual conformation. The substituents at the C2—C3 fragment are staggered with the CH2OH moieties being gauche to each other. For Newman projections see Fig. 3.

Related literature top

For crystal structures containing 2,2,3,3-tetrafluorobutane-1,4-dioxy units, see: Elias et al. (1994); Beşli et al. (2004, 2005, 2006). For details on graph-set analysis of hydrogen-bond networks, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

The title compound was obtained from Acros Organics. A single-crystal suitable for X-ray diffraction was isolated from the supplied material.

Refinement top

All H atoms were found in difference maps. C-bonded H atoms were positioned geometrically (C—H = 0.99 Å) and treated as riding on their parent atoms [Uiso(H) = 1.2Ueq(C)]. Coordinates of O-bonded H atoms and O—H distances were refined freely [Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: COLLECT (Hooft, 2004); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: SCALEPACK and DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level) for non-H atoms.
[Figure 2] Fig. 2. Hydrogen bonding in (I). [Symmetry codes: (i) x, 1/2-y, 1/2+z; (ii) 1-x, -y, -z; (iii) 1-x, 1/2+y, 1/2-z.]
[Figure 3] Fig. 3. Newman projections along the bonds of the O1—C1—C2—C3—C4—O2 chain.
2,2,3,3-tetrafluorobutane-1,4-diol top
Crystal data top
C4H6F4O2F(000) = 328
Mr = 162.09Dx = 1.861 (1) Mg m3
Monoclinic, P21/cMelting point = 355.3–356.3 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.4392 (2) ÅCell parameters from 7007 reflections
b = 8.6935 (3) Åθ = 3.1–27.5°
c = 12.4123 (4) ŵ = 0.22 mm1
β = 99.768 (2)°T = 200 K
V = 578.42 (3) Å3Block, colourless
Z = 40.18 × 0.08 × 0.06 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
1133 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.020
MONTEL, graded multilayered X-ray optics monochromatorθmax = 27.5°, θmin = 3.3°
Detector resolution: 9 pixels mm-1h = 77
ϕ and ω scansk = 1111
2531 measured reflectionsl = 1616
1313 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: difference Fourier map
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0398P)2 + 0.2156P]
where P = (Fo2 + 2Fc2)/3
1313 reflections(Δ/σ)max < 0.001
97 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C4H6F4O2V = 578.42 (3) Å3
Mr = 162.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.4392 (2) ŵ = 0.22 mm1
b = 8.6935 (3) ÅT = 200 K
c = 12.4123 (4) Å0.18 × 0.08 × 0.06 mm
β = 99.768 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
1133 reflections with I > 2σ(I)
2531 measured reflectionsRint = 0.020
1313 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.38 e Å3
1313 reflectionsΔρmin = 0.25 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.70269 (17)0.39078 (9)0.15846 (6)0.0318 (2)
F21.07701 (15)0.32375 (11)0.13418 (7)0.0343 (2)
F30.81808 (17)0.38903 (11)0.05076 (6)0.0349 (2)
F40.86586 (15)0.14104 (11)0.03922 (6)0.0328 (2)
O10.58505 (19)0.07917 (11)0.18952 (8)0.0256 (2)
H10.528 (4)0.125 (2)0.2357 (16)0.038*
O20.41094 (18)0.23464 (12)0.15572 (7)0.0253 (2)
H20.431 (3)0.143 (2)0.1751 (15)0.038*
C10.8308 (3)0.13254 (16)0.19011 (10)0.0246 (3)
H1A0.92930.05050.16210.030*
H1B0.90990.15560.26620.030*
C20.8355 (2)0.27521 (15)0.12090 (10)0.0216 (3)
C30.7415 (2)0.26145 (14)0.00258 (10)0.0202 (3)
C40.4637 (2)0.24221 (16)0.04003 (10)0.0227 (3)
H4A0.40610.14680.00860.027*
H4B0.37370.33020.01420.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0491 (5)0.0227 (4)0.0240 (4)0.0031 (4)0.0075 (4)0.0057 (3)
F20.0285 (4)0.0452 (5)0.0273 (4)0.0150 (4)0.0012 (3)0.0044 (4)
F30.0445 (5)0.0363 (5)0.0227 (4)0.0187 (4)0.0026 (3)0.0077 (3)
F40.0305 (5)0.0407 (5)0.0275 (4)0.0102 (4)0.0059 (3)0.0101 (4)
O10.0327 (5)0.0239 (5)0.0217 (5)0.0053 (4)0.0091 (4)0.0022 (4)
O20.0325 (5)0.0252 (5)0.0169 (4)0.0018 (4)0.0000 (4)0.0003 (4)
C10.0278 (7)0.0261 (7)0.0203 (6)0.0001 (5)0.0051 (5)0.0028 (5)
C20.0226 (6)0.0231 (6)0.0189 (6)0.0036 (5)0.0035 (5)0.0021 (5)
C30.0252 (6)0.0193 (6)0.0171 (6)0.0024 (5)0.0068 (5)0.0004 (5)
C40.0238 (6)0.0274 (7)0.0165 (6)0.0005 (5)0.0024 (5)0.0001 (5)
Geometric parameters (Å, º) top
F1—C21.3651 (15)C1—C21.5114 (18)
F2—C21.3626 (15)C1—H1A0.9900
F3—C31.3587 (14)C1—H1B0.9900
F4—C31.3656 (14)C2—C31.5360 (17)
O1—C11.4135 (17)C3—C41.5128 (17)
O1—H10.80 (2)C4—H4A0.9900
O2—C41.4173 (15)C4—H4B0.9900
O2—H20.84 (2)
C1—O1—H1108.0 (14)C1—C2—C3117.92 (11)
C4—O2—H2108.6 (13)F3—C3—F4105.84 (9)
O1—C1—C2111.96 (11)F3—C3—C4108.66 (10)
O1—C1—H1A109.2F4—C3—C4109.78 (10)
C2—C1—H1A109.2F3—C3—C2107.49 (10)
O1—C1—H1B109.2F4—C3—C2106.97 (10)
C2—C1—H1B109.2C4—C3—C2117.48 (10)
H1A—C1—H1B107.9O2—C4—C3109.65 (10)
F2—C2—F1106.61 (10)O2—C4—H4A109.7
F2—C2—C1107.13 (10)C3—C4—H4A109.7
F1—C2—C1110.41 (10)O2—C4—H4B109.7
F2—C2—C3107.21 (9)C3—C4—H4B109.7
F1—C2—C3106.98 (10)H4A—C4—H4B108.2
O1—C1—C2—F2175.17 (10)C1—C2—C3—F452.09 (14)
O1—C1—C2—F159.45 (14)F2—C2—C3—C4167.32 (11)
O1—C1—C2—C363.91 (14)F1—C2—C3—C453.27 (14)
F2—C2—C3—F344.50 (13)C1—C2—C3—C471.80 (15)
F1—C2—C3—F369.55 (12)F3—C3—C4—O256.60 (13)
C1—C2—C3—F3165.38 (11)F4—C3—C4—O258.71 (13)
F2—C2—C3—F468.79 (12)C2—C3—C4—O2178.82 (11)
F1—C2—C3—F4177.16 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.80 (2)2.001 (19)2.7972 (14)171.9 (18)
O2—H2···O1ii0.845 (17)1.940 (17)2.7608 (14)163.6 (17)
C1—H1B···F3i0.992.443.2343 (15)137
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC4H6F4O2
Mr162.09
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)5.4392 (2), 8.6935 (3), 12.4123 (4)
β (°) 99.768 (2)
V3)578.42 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.18 × 0.08 × 0.06
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2531, 1313, 1133
Rint0.020
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.085, 1.04
No. of reflections1313
No. of parameters97
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.25

Computer programs: COLLECT (Hooft, 2004), SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK and DENZO (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.80 (2)2.001 (19)2.7972 (14)171.9 (18)
O2—H2···O1ii0.845 (17)1.940 (17)2.7608 (14)163.6 (17)
C1—H1B···F3i0.992.443.2343 (15)137
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

The authors thank Dr Peter Mayer for technical support. MMR thanks the Fonds der Chemischen Industrie (FCI) for a PhD fellowship.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBeşli, S., Coles, S. J., Davies, D. B., Eaton, R. J., Hursthouse, M. B., Kılıç, A. & Shaw, R. A. (2005). Eur. J. Inorg. Chem. 2005, 959–966.  Google Scholar
First citationBeşli, S., Coles, S. J., Davies, D. B., Eaton, R. J., Kılıç, A. & Shaw, R. A. (2006). Polyhedron, 25, 963–974.  Google Scholar
First citationBeşli, S., Coles, S. J., Davies, D. B., Hursthouse, M. B., İbişoğlu, H., Kılıç, A. & Shaw, R. A. (2004). Chem. Eur. J. 10, 4915–4920.  PubMed Google Scholar
First citationElias, A. J., Kirchmeier, R. L. & Shreeve, J. M. (1994). Inorg. Chem. 33, 2727–2734.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHooft, R. W. W. (2004). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds