metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m129-m130

Tris(2,2′-bi­pyridyl-κ2N,N′)copper(II) sulfate 7.5-hydrate

aState Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, People's Republic of China
*Correspondence e-mail: whuang@nju.edu.cn

(Received 27 November 2008; accepted 24 December 2008; online 8 January 2009)

The title compound, [Cu(C10H8N2)3]SO4·7.5H2O, is a six-coordinate copper(II) complex with a slightly elongated octa­hedral coordination geometry. The pyridyl rings of the three bipyridyl ligands are not coplanar, making dihedral angels of 9.5 (5), 5.2 (4) and 5.8 (5)°. In the crystal, several O—H⋯O and C—H⋯O hydrogen-bonding inter­actions are observed due to the existance of a large number of water mol­ecules and the sulfate dianions.

Related literature

For related compounds, see Anderson (1972[Anderson, O. P. (1972). J. Chem. Soc. Dalton Trans. pp. 2597-2601.]); Wada et al. (1976[Wada, A., Sakabe, N. & Tanaka, J. (1976). Acta Cryst. B32, 1121-1127.]); Liu et al. (1991[Liu, Z. M., Jiang, Z. H., Liao, D. Z., Wang, G. L., Yao, X. K. & Wang, H. G. (1991). Polyhedron, 10, 101-102.]); Majumdar et al. (1998[Majumdar, P., Ghosh, A. K., Falvello, L. R., Peng, S. M. & Goswami, S. (1998). Inorg. Chem. 37, 1651-1654.]); Pavlishchuk et al. (1999[Pavlishchuk, V. V., Kalaida, A. V. & Goreshnik, E. A. (1999). Russ. J. Coord. Chem. 25, 507-510.]); Murphy et al. (2006[Murphy, B., Aljabri, M., Ahmed, A. M., Murphy, G., Hathaway, B. J., Light, M. E., Geilbrich, T. & Hursthouse, M. B. (2006). Dalton Trans. pp. 357-367.]); Huang (2007[Huang, W. (2007). Acta Cryst. E63, m2254.]); Wang et al. (2007[Wang, L., Yang, X.-Y. & Huang, W. (2007). Acta Cryst. E63, m835-m836.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H8N2)3]SO4·7.5H2O

  • Mr = 763.87

  • Monoclinic, C 2/c

  • a = 22.857 (5) Å

  • b = 13.550 (3) Å

  • c = 24.709 (5) Å

  • β = 114.753 (3)°

  • V = 6950 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.76 mm−1

  • T = 291 (2) K

  • 0.16 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.889, Tmax = 0.915

  • 17073 measured reflections

  • 6101 independent reflections

  • 3819 reflections with I > 2σ(I)

  • Rint = 0.118

Refinement
  • R[F2 > 2σ(F2)] = 0.073

  • wR(F2) = 0.209

  • S = 1.02

  • 6101 reflections

  • 447 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.05 e Å−3

  • Δρmin = −0.66 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—N5 2.061 (4)
Cu1—N2 2.076 (4)
Cu1—N1 2.092 (4)
Cu1—N4 2.100 (4)
Cu1—N3 2.173 (4)
Cu1—N6 2.176 (4)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6C⋯O1 0.85 1.98 2.570 (9) 125
O6—H6D⋯O1i 0.85 2.09 2.570 (9) 115
O7—H7A⋯O7ii 0.85 2.46 2.89 (3) 112
O7—H7B⋯O3 0.96 2.04 2.840 (14) 139
O8—H8A⋯O12 0.89 2.21 2.857 (12) 129
O9—H9A⋯O10 0.85 2.20 3.001 (13) 157
O10—H10B⋯O11 0.85 2.23 2.901 (9) 136
O12—H12A⋯O8 0.83 2.54 2.857 (12) 104
C17—H17⋯O6iii 0.93 2.56 3.489 (11) 175
C18—H18⋯O2iv 0.93 2.41 3.174 (12) 139
C28—H28⋯O4i 0.93 2.52 3.215 (9) 132
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structures of tris(2,2'-bipyridyl)copper(II) hexafluoridophosphate (Wang et al., 2007), tetrafluoridoborate (Huang, 2007), perchlorate (Anderson, 1972; Liu et al., 1991; Majumdar et al., 1998; Pavlishchuk et al., 1999), and tetraphenylborate (Murphy et al., 2006) have been previously reported. In addition, a similar structure of tris(2,2'-bipyridyl)nickel(II) sulfate with 7.5 water molecules (Wada et al., 1976) can be found in literature. Herein, we present the crystal structure of the title compound, (I), a tris(2,2'-bipyridyl)copper(II) sulfate which is obtained as a by-product in the preparation of di(2,2'-bipyridyl)copper(II) sulfate.

The atom-numbering scheme of compound (I) is shown in Fig. 1, while selected bond distances and angles are given in Table 1. The coordination geometry of the complex about the six-coordinate Cu(II) center is slightly elongated octahedral. Four shorter Cu—N bonds occupy the equatorial plane, with a mean bond length of 2.083 (4) Å, while two axial Cu—N bonds are a little longer [Cu1—N3 = 2.173 (4) Å and Cu1—N6 = 2.176 (4) Å]. The pyridyl rings of three bipyridyl ligands are not coplanar with the dihedral angels of 9.5 (5)°, 5.2 (4)° and 5.8 (5)°, respectively. In the crystal packing of (I), quite a few O—H···O and C—H···O hydrogen bonding interactions are observed due to the existance of a large number of water molecules and the sulfate dianions.

Related literature top

For related compounds, see Anderson (1972); Wada et al. (1976); Liu et al. (1991); Majumdar et al. (1998); Pavlishchuk et al. (1999); Murphy et al. (2006); Huang (2007); Wang et al. (2007).

Experimental top

The title compound was obtained from a mixed methanol/water solution of NaCl and Cu(NO3)2.3H2O by slow evaporation in air at room temperature.

Single crystals of compound (I) suitable for X-ray diffraction determination were formed from the filtrate as a by-product when CuSO4.5H2O (1.248 g, 5 mmol) was reacted with 2,2'-bipyridine (1.562 g, 10 mmol) in methanol (100 ml) at room temperature for 48 h. Elemental analysis: calculated for C30H39CuN6O11.5S: C 47.21, H 5.15, N 11.01%; found: C 47.11, H 5.20, N 10.89%. Main FT–IR absorptions (KBr plates, cm-1): 3443 (b), 1637 (s), 1606 (m), 1510 (m), 1249 (w), 1116 (s), 778 (s) and 618 (w).

Refinement top

The non-hydrogen atoms were refined anisotropically, whereas the H atoms were placed in geometrically idealized positions (C—H = 0.93 Å and O—H = 0.82–0.96 Å) and refined as riding atoms, with Uiso(H) = 1.2eq(C) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker 2000); cell refinement: SMART (Bruker 2000); data reduction: SAINT (Bruker 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. An ORTEP drawing of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Tris(2,2'-bipyridyl-κ2N,N')copper(II) sulfate 7.5-hydrate top
Crystal data top
[Cu(C10H8N2)3]SO4·7.5H2OF(000) = 3184
Mr = 763.27Dx = 1.459 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3884 reflections
a = 22.857 (5) Åθ = 2.2–23.0°
b = 13.550 (3) ŵ = 0.76 mm1
c = 24.709 (5) ÅT = 291 K
β = 114.753 (3)°Block, red
V = 6950 (2) Å30.16 × 0.14 × 0.12 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6101 independent reflections
Radiation source: fine-focus sealed tube3819 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.118
Detector resolution: 0 pixels mm-1θmax = 25.0°, θmin = 2.0°
ϕ and ω scansh = 2726
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1615
Tmin = 0.889, Tmax = 0.915l = 2029
17073 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.209H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1136P)2]
where P = (Fo2 + 2Fc2)/3
6101 reflections(Δ/σ)max < 0.001
447 parametersΔρmax = 1.05 e Å3
1 restraintΔρmin = 0.66 e Å3
Crystal data top
[Cu(C10H8N2)3]SO4·7.5H2OV = 6950 (2) Å3
Mr = 763.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 22.857 (5) ŵ = 0.76 mm1
b = 13.550 (3) ÅT = 291 K
c = 24.709 (5) Å0.16 × 0.14 × 0.12 mm
β = 114.753 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
6101 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3819 reflections with I > 2σ(I)
Tmin = 0.889, Tmax = 0.915Rint = 0.118
17073 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0731 restraint
wR(F2) = 0.209H-atom parameters constrained
S = 1.02Δρmax = 1.05 e Å3
6101 reflectionsΔρmin = 0.66 e Å3
447 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.42784 (10)0.57281 (13)0.08973 (9)0.0894 (6)
C10.1324 (3)0.4083 (5)0.1408 (2)0.0708 (15)
H10.15290.45240.12550.085*
C20.1067 (3)0.3220 (5)0.1096 (3)0.0824 (18)
H20.10780.31020.07290.099*
C30.0801 (3)0.2555 (5)0.1331 (3)0.0874 (19)
H30.06430.19600.11370.105*
C40.0767 (3)0.2770 (4)0.1864 (3)0.0684 (15)
H40.05770.23260.20290.082*
C50.1016 (2)0.3641 (4)0.2148 (2)0.0498 (12)
C60.0984 (2)0.3943 (4)0.2711 (2)0.0498 (11)
C70.0800 (3)0.3304 (4)0.3051 (2)0.0636 (14)
H70.06830.26580.29270.076*
C80.0795 (3)0.3641 (5)0.3575 (3)0.0728 (16)
H80.06780.32240.38120.087*
C90.0964 (3)0.4602 (5)0.3742 (3)0.0756 (17)
H90.09570.48530.40900.091*
C100.1142 (3)0.5172 (5)0.3392 (2)0.0678 (15)
H100.12600.58210.35100.081*
C110.0271 (3)0.6205 (5)0.1325 (3)0.0721 (16)
H110.03000.55990.11610.087*
C120.0242 (3)0.6800 (5)0.1014 (3)0.0790 (17)
H120.05610.66010.06500.095*
C130.0273 (3)0.7690 (5)0.1253 (3)0.0802 (18)
H130.06150.81110.10450.096*
C140.0183 (3)0.7973 (4)0.1784 (3)0.0705 (15)
H140.01540.85820.19450.085*
C150.0698 (3)0.7343 (4)0.2089 (2)0.0582 (13)
C160.1229 (3)0.7589 (4)0.2661 (2)0.0560 (13)
C170.1249 (3)0.8453 (4)0.2971 (3)0.0715 (16)
H170.09120.89040.28210.086*
C180.1770 (4)0.8635 (5)0.3499 (3)0.0830 (19)
H180.17850.92040.37150.100*
C190.2264 (4)0.7978 (6)0.3705 (3)0.090 (2)
H190.26250.80910.40590.108*
C200.2214 (3)0.7145 (5)0.3375 (3)0.0778 (17)
H200.25530.66970.35130.093*
C210.1931 (3)0.6569 (4)0.1482 (3)0.0675 (15)
H210.15000.67520.13130.081*
C220.2310 (3)0.6824 (4)0.1188 (3)0.0761 (17)
H220.21400.71710.08310.091*
C230.2949 (3)0.6545 (5)0.1444 (3)0.0766 (17)
H230.32160.66900.12560.092*
C240.3184 (3)0.6059 (4)0.1970 (3)0.0657 (15)
H240.36180.58900.21490.079*
C250.2786 (2)0.5809 (4)0.2246 (2)0.0534 (12)
C260.3003 (2)0.5266 (4)0.2811 (2)0.0546 (13)
C270.3634 (3)0.5014 (4)0.3150 (3)0.0696 (15)
H270.39490.51710.30190.084*
C280.3800 (3)0.4535 (4)0.3678 (3)0.0820 (19)
H280.42280.43760.39130.098*
C290.3331 (3)0.4290 (5)0.3860 (3)0.0830 (19)
H290.34340.39590.42180.100*
C300.2710 (3)0.4539 (4)0.3507 (3)0.0740 (17)
H300.23920.43660.36310.089*
Cu10.15887 (3)0.56061 (4)0.24096 (2)0.0490 (3)
N10.1287 (2)0.4300 (3)0.19183 (18)0.0559 (10)
N20.11595 (19)0.4868 (3)0.28857 (17)0.0516 (10)
N30.0741 (2)0.6457 (3)0.1861 (2)0.0590 (11)
N40.1712 (2)0.6944 (3)0.2874 (2)0.0601 (11)
N50.2159 (2)0.6072 (3)0.19974 (19)0.0537 (10)
N60.2534 (2)0.5025 (3)0.29848 (19)0.0585 (11)
O10.4568 (5)0.6078 (7)0.1493 (3)0.200 (4)
O20.3827 (4)0.4996 (4)0.0815 (4)0.174 (3)
O30.3951 (3)0.6614 (4)0.0555 (3)0.137 (2)
O40.4760 (2)0.5401 (4)0.0702 (2)0.1045 (16)
O50.0637 (2)0.7425 (3)0.0186 (2)0.1016 (14)
H5A0.02910.77500.00050.152*
H5B0.09590.77920.02410.152*
O60.50000.5176 (9)0.25000.219 (6)
H6D0.50560.57840.25920.329*0.50
H6C0.47740.50740.21310.329*0.50
O70.2595 (5)0.6476 (14)0.0104 (4)0.351 (10)
H7A0.22530.67490.01230.526*
H7B0.29710.66450.02470.526*
O80.4481 (3)0.9589 (4)1.0027 (3)0.1213 (18)
H8A0.41971.00510.98200.182*
H8B0.44790.90170.99140.182*
O90.6920 (4)0.8321 (7)0.9638 (4)0.205 (3)
H9A0.73280.82640.97860.308*
H9B0.67210.80790.98310.308*
O100.8312 (3)0.8473 (5)0.9860 (3)0.164 (3)
H10C0.84320.89321.01180.245*
H10B0.86500.82380.98450.245*
O110.9604 (2)0.8820 (3)0.9955 (2)0.0963 (14)
H11D0.95130.92961.01310.144*
H11C0.96270.90070.96370.144*
O120.3201 (4)1.0277 (8)0.9727 (3)0.223 (4)
H12A0.32810.96760.97630.335*
H12B0.28661.04560.97620.335*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.1284 (15)0.0786 (12)0.0998 (14)0.0109 (11)0.0858 (13)0.0126 (10)
C10.083 (4)0.079 (4)0.061 (4)0.009 (3)0.040 (3)0.001 (3)
C20.106 (5)0.086 (5)0.064 (4)0.003 (4)0.044 (4)0.016 (4)
C30.099 (5)0.078 (5)0.078 (4)0.001 (4)0.029 (4)0.024 (4)
C40.075 (4)0.060 (4)0.071 (4)0.006 (3)0.031 (3)0.010 (3)
C50.049 (3)0.047 (3)0.049 (3)0.004 (2)0.016 (2)0.003 (2)
C60.050 (3)0.050 (3)0.054 (3)0.006 (2)0.026 (2)0.004 (2)
C70.071 (3)0.055 (3)0.069 (4)0.000 (3)0.034 (3)0.008 (3)
C80.085 (4)0.083 (4)0.066 (4)0.004 (3)0.046 (3)0.014 (3)
C90.084 (4)0.098 (5)0.056 (3)0.000 (4)0.041 (3)0.001 (3)
C100.088 (4)0.063 (4)0.066 (4)0.000 (3)0.045 (3)0.003 (3)
C110.087 (4)0.069 (4)0.076 (4)0.010 (3)0.049 (4)0.016 (3)
C120.071 (4)0.091 (5)0.077 (4)0.010 (4)0.034 (3)0.001 (4)
C130.081 (4)0.081 (5)0.087 (5)0.014 (4)0.044 (4)0.019 (4)
C140.084 (4)0.053 (3)0.089 (4)0.010 (3)0.051 (4)0.003 (3)
C150.073 (3)0.049 (3)0.076 (4)0.004 (3)0.054 (3)0.005 (3)
C160.074 (3)0.044 (3)0.068 (3)0.005 (3)0.048 (3)0.000 (3)
C170.095 (4)0.059 (4)0.079 (4)0.001 (3)0.053 (4)0.003 (3)
C180.124 (6)0.063 (4)0.080 (5)0.013 (4)0.061 (5)0.012 (3)
C190.105 (5)0.093 (5)0.075 (4)0.023 (4)0.041 (4)0.010 (4)
C200.094 (5)0.066 (4)0.083 (5)0.005 (3)0.047 (4)0.002 (3)
C210.070 (3)0.064 (4)0.078 (4)0.007 (3)0.041 (3)0.005 (3)
C220.106 (5)0.067 (4)0.076 (4)0.005 (4)0.059 (4)0.003 (3)
C230.088 (4)0.080 (4)0.087 (4)0.012 (4)0.062 (4)0.004 (4)
C240.058 (3)0.072 (4)0.080 (4)0.006 (3)0.042 (3)0.009 (3)
C250.057 (3)0.051 (3)0.060 (3)0.008 (2)0.033 (3)0.012 (2)
C260.054 (3)0.047 (3)0.070 (3)0.005 (2)0.033 (3)0.013 (3)
C270.059 (3)0.067 (4)0.083 (4)0.001 (3)0.030 (3)0.005 (3)
C280.070 (4)0.075 (4)0.085 (5)0.011 (3)0.017 (4)0.007 (4)
C290.086 (5)0.079 (5)0.078 (4)0.014 (4)0.029 (4)0.018 (3)
C300.082 (4)0.074 (4)0.072 (4)0.005 (3)0.039 (3)0.012 (3)
Cu10.0589 (4)0.0479 (4)0.0492 (4)0.0018 (3)0.0316 (3)0.0012 (3)
N10.066 (3)0.057 (3)0.050 (2)0.001 (2)0.030 (2)0.001 (2)
N20.060 (2)0.055 (3)0.047 (2)0.001 (2)0.0291 (19)0.001 (2)
N30.074 (3)0.051 (3)0.069 (3)0.003 (2)0.048 (3)0.005 (2)
N40.071 (3)0.058 (3)0.062 (3)0.001 (2)0.038 (2)0.001 (2)
N50.062 (3)0.048 (2)0.063 (3)0.002 (2)0.038 (2)0.000 (2)
N60.066 (3)0.051 (3)0.065 (3)0.000 (2)0.033 (2)0.003 (2)
O10.327 (12)0.198 (7)0.112 (5)0.018 (7)0.128 (7)0.025 (5)
O20.206 (7)0.086 (4)0.325 (10)0.045 (4)0.205 (7)0.025 (5)
O30.185 (6)0.076 (3)0.210 (7)0.022 (4)0.143 (5)0.018 (4)
O40.112 (4)0.112 (4)0.118 (4)0.010 (3)0.075 (3)0.006 (3)
O50.101 (3)0.086 (3)0.110 (3)0.002 (3)0.036 (3)0.008 (3)
O60.277 (14)0.159 (10)0.116 (7)0.0000.021 (8)0.000
O70.205 (9)0.75 (3)0.124 (6)0.178 (14)0.096 (6)0.082 (12)
O80.155 (5)0.098 (4)0.145 (5)0.003 (3)0.096 (4)0.009 (3)
O90.188 (7)0.220 (9)0.214 (8)0.002 (7)0.090 (7)0.004 (7)
O100.123 (5)0.180 (6)0.164 (6)0.035 (5)0.037 (4)0.006 (5)
O110.131 (4)0.085 (3)0.090 (3)0.003 (3)0.063 (3)0.006 (3)
O120.201 (8)0.351 (12)0.126 (5)0.137 (8)0.077 (5)0.104 (7)
Geometric parameters (Å, º) top
S1—O21.384 (6)C20—H200.9300
S1—O11.418 (7)C21—N51.338 (7)
S1—O41.444 (5)C21—C221.387 (7)
S1—O31.479 (6)C21—H210.9300
C1—N11.332 (7)C22—C231.377 (9)
C1—C21.389 (8)C22—H220.9300
C1—H10.9300C23—C241.351 (8)
C2—C31.346 (9)C23—H230.9300
C2—H20.9300C24—C251.388 (7)
C3—C41.384 (8)C24—H240.9300
C3—H30.9300C25—N51.350 (6)
C4—C51.369 (7)C25—C261.468 (8)
C4—H40.9300C26—N61.353 (6)
C5—N11.341 (6)C26—C271.374 (7)
C5—C61.481 (7)C27—C281.361 (8)
C6—N21.332 (6)C27—H270.9300
C6—C71.388 (7)C28—C291.364 (9)
C7—C81.378 (8)C28—H280.9300
C7—H70.9300C29—C301.361 (9)
C8—C91.372 (8)C29—H290.9300
C8—H80.9300C30—N61.351 (7)
C9—C101.343 (8)C30—H300.9300
C9—H90.9300Cu1—N52.061 (4)
C10—N21.334 (6)Cu1—N22.076 (4)
C10—H100.9300Cu1—N12.092 (4)
C11—N31.354 (7)Cu1—N42.100 (4)
C11—C121.364 (8)Cu1—N32.173 (4)
C11—H110.9300Cu1—N62.176 (4)
C12—C131.357 (9)O5—H5A0.8500
C12—H120.9300O5—H5B0.8500
C13—C141.345 (8)O6—H6D0.8500
C13—H130.9300O6—H6C0.8500
C14—C151.393 (7)O7—H7A0.8497
C14—H140.9300O7—H7B0.9603
C15—N31.347 (6)O8—H8A0.8927
C15—C161.466 (7)O8—H8B0.8235
C16—N41.332 (6)O9—H9A0.8500
C16—C171.389 (7)O9—H9B0.8500
C17—C181.371 (9)O10—H10C0.8497
C17—H170.9300O10—H10B0.8504
C18—C191.358 (9)O11—H11D0.8499
C18—H180.9300O11—H11C0.8498
C19—C201.369 (9)O12—H12A0.8306
C19—H190.9300O12—H12B0.8433
C20—N41.317 (7)
O2—S1—O1112.8 (5)C23—C22—C21117.7 (6)
O2—S1—O4111.0 (4)C23—C22—H22121.2
O1—S1—O4111.1 (5)C21—C22—H22121.2
O2—S1—O3109.3 (4)C24—C23—C22119.7 (5)
O1—S1—O3103.0 (5)C24—C23—H23120.2
O4—S1—O3109.4 (3)C22—C23—H23120.2
N1—C1—C2122.1 (6)C23—C24—C25120.8 (5)
N1—C1—H1118.9C23—C24—H24119.6
C2—C1—H1118.9C25—C24—H24119.6
C3—C2—C1119.1 (6)N5—C25—C24120.1 (5)
C3—C2—H2120.4N5—C25—C26115.9 (4)
C1—C2—H2120.4C24—C25—C26124.0 (5)
C2—C3—C4119.0 (6)N6—C26—C27121.1 (5)
C2—C3—H3120.5N6—C26—C25115.2 (4)
C4—C3—H3120.5C27—C26—C25123.8 (5)
C5—C4—C3119.5 (6)C28—C27—C26120.2 (6)
C5—C4—H4120.2C28—C27—H27119.9
C3—C4—H4120.2C26—C27—H27119.9
N1—C5—C4121.6 (5)C27—C28—C29119.3 (6)
N1—C5—C6115.3 (4)C27—C28—H28120.4
C4—C5—C6123.1 (5)C29—C28—H28120.4
N2—C6—C7121.2 (4)C30—C29—C28118.8 (6)
N2—C6—C5115.9 (4)C30—C29—H29120.6
C7—C6—C5122.9 (5)C28—C29—H29120.6
C8—C7—C6119.1 (5)N6—C30—C29123.1 (6)
C8—C7—H7120.5N6—C30—H30118.4
C6—C7—H7120.5C29—C30—H30118.4
C9—C8—C7119.0 (5)N5—Cu1—N2166.92 (16)
C9—C8—H8120.5N5—Cu1—N195.46 (16)
C7—C8—H8120.5N2—Cu1—N178.61 (16)
C10—C9—C8118.4 (5)N5—Cu1—N492.11 (16)
C10—C9—H9120.8N2—Cu1—N495.40 (16)
C8—C9—H9120.8N1—Cu1—N4169.44 (17)
N2—C10—C9124.3 (6)N5—Cu1—N396.47 (16)
N2—C10—H10117.9N2—Cu1—N395.70 (15)
C9—C10—H10117.9N1—Cu1—N395.48 (16)
N3—C11—C12123.0 (6)N4—Cu1—N376.32 (18)
N3—C11—H11118.5N5—Cu1—N676.90 (17)
C12—C11—H11118.5N2—Cu1—N691.77 (16)
C13—C12—C11118.0 (6)N1—Cu1—N693.93 (16)
C13—C12—H12121.0N4—Cu1—N694.94 (17)
C11—C12—H12121.0N3—Cu1—N6168.97 (16)
C14—C13—C12121.1 (6)C1—N1—C5118.5 (5)
C14—C13—H13119.4C1—N1—Cu1126.9 (4)
C12—C13—H13119.4C5—N1—Cu1114.6 (3)
C13—C14—C15119.1 (6)C6—N2—C10118.1 (4)
C13—C14—H14120.4C6—N2—Cu1114.8 (3)
C15—C14—H14120.4C10—N2—Cu1126.2 (4)
N3—C15—C14120.9 (5)C15—N3—C11117.8 (5)
N3—C15—C16115.4 (5)C15—N3—Cu1114.5 (4)
C14—C15—C16123.6 (5)C11—N3—Cu1127.7 (4)
N4—C16—C17120.4 (5)C20—N4—C16119.1 (5)
N4—C16—C15116.5 (4)C20—N4—Cu1123.9 (4)
C17—C16—C15123.1 (5)C16—N4—Cu1116.8 (4)
C18—C17—C16119.4 (6)C21—N5—C25118.8 (4)
C18—C17—H17120.3C21—N5—Cu1123.4 (3)
C16—C17—H17120.3C25—N5—Cu1117.7 (3)
C19—C18—C17119.5 (6)C30—N6—C26117.5 (5)
C19—C18—H18120.2C30—N6—Cu1128.2 (4)
C17—C18—H18120.2C26—N6—Cu1114.1 (3)
C18—C19—C20117.9 (7)H5A—O5—H5B109.5
C18—C19—H19121.0H6D—O6—H6C113.6
C20—C19—H19121.0H7A—O7—H7B113.6
N4—C20—C19123.6 (6)H8A—O8—H8B124.6
N4—C20—H20118.2H9A—O9—H9B118.1
C19—C20—H20118.2H10C—O10—H10B107.2
N5—C21—C22123.0 (5)H11D—O11—H11C111.7
N5—C21—H21118.5H12A—O12—H12B116.1
C22—C21—H21118.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6C···O10.851.982.570 (9)125
O6—H6D···O1i0.852.092.570 (9)115
O7—H7A···O7ii0.852.462.89 (3)112
O7—H7B···O30.962.042.840 (14)139
O8—H8A···O120.892.212.857 (12)129
O9—H9A···O100.852.203.001 (13)157
O10—H10B···O110.852.232.901 (9)136
O12—H12A···O80.832.542.857 (12)104
C17—H17···O6iii0.932.563.489 (11)175
C18—H18···O2iv0.932.413.174 (12)139
C20—H20···N60.932.613.210 (8)123
C28—H28···O4i0.932.523.215 (9)132
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+3/2, z; (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C10H8N2)3]SO4·7.5H2O
Mr763.27
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)22.857 (5), 13.550 (3), 24.709 (5)
β (°) 114.753 (3)
V3)6950 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.76
Crystal size (mm)0.16 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.889, 0.915
No. of measured, independent and
observed [I > 2σ(I)] reflections
17073, 6101, 3819
Rint0.118
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.209, 1.02
No. of reflections6101
No. of parameters447
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.05, 0.66

Computer programs: SMART (Bruker 2000), SAINT (Bruker 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N52.061 (4)Cu1—N42.100 (4)
Cu1—N22.076 (4)Cu1—N32.173 (4)
Cu1—N12.092 (4)Cu1—N62.176 (4)
N5—Cu1—N2166.92 (16)N1—Cu1—N395.48 (16)
N5—Cu1—N195.46 (16)N4—Cu1—N376.32 (18)
N2—Cu1—N178.61 (16)N5—Cu1—N676.90 (17)
N5—Cu1—N492.11 (16)N2—Cu1—N691.77 (16)
N2—Cu1—N495.40 (16)N1—Cu1—N693.93 (16)
N1—Cu1—N4169.44 (17)N4—Cu1—N694.94 (17)
N5—Cu1—N396.47 (16)N3—Cu1—N6168.97 (16)
N2—Cu1—N395.70 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6C···O10.851.982.570 (9)125
O6—H6D···O1i0.852.092.570 (9)115
O7—H7A···O7ii0.852.462.89 (3)112
O7—H7B···O30.962.042.840 (14)139
O8—H8A···O120.892.212.857 (12)129
O9—H9A···O100.852.203.001 (13)157
O10—H10B···O110.852.232.901 (9)136
O12—H12A···O80.832.542.857 (12)104
C17—H17···O6iii0.932.563.489 (11)175
C18—H18···O2iv0.932.413.174 (12)139
C20—H20···N60.932.613.210 (8)123
C28—H28···O4i0.932.523.215 (9)132
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+3/2, z; (iii) x1/2, y+1/2, z; (iv) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

WH acknowledges the National Natural Science Foundation of China (grant No. 20871065) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, for financial aid.

References

First citationAnderson, O. P. (1972). J. Chem. Soc. Dalton Trans. pp. 2597–2601.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, W. (2007). Acta Cryst. E63, m2254.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLiu, Z. M., Jiang, Z. H., Liao, D. Z., Wang, G. L., Yao, X. K. & Wang, H. G. (1991). Polyhedron, 10, 101–102.  CSD CrossRef CAS Web of Science Google Scholar
First citationMajumdar, P., Ghosh, A. K., Falvello, L. R., Peng, S. M. & Goswami, S. (1998). Inorg. Chem. 37, 1651–1654.  Web of Science CSD CrossRef CAS Google Scholar
First citationMurphy, B., Aljabri, M., Ahmed, A. M., Murphy, G., Hathaway, B. J., Light, M. E., Geilbrich, T. & Hursthouse, M. B. (2006). Dalton Trans. pp. 357–367.  Web of Science CSD CrossRef Google Scholar
First citationPavlishchuk, V. V., Kalaida, A. V. & Goreshnik, E. A. (1999). Russ. J. Coord. Chem. 25, 507–510.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWada, A., Sakabe, N. & Tanaka, J. (1976). Acta Cryst. B32, 1121–1127.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationWang, L., Yang, X.-Y. & Huang, W. (2007). Acta Cryst. E63, m835–m836.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m129-m130
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds