metal-organic compounds
Pentacarbonyl-2κ5C-chlorido-1κCl-bis[1(η5)-cyclopentadienyl](μ-1-oxidoethylene-1:2κ2O:C)chromium(0)zirconium(IV)
aDepartment of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa, and bDepartment of Chemistry and Biochemistry, University of Johannesburg, P O Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: ce@sun.ac.za
The title compound, [CrZr(C5H5)2(C2H3O)Cl(CO)5], consists of two metal centres, with a (pentacarbonylchromium)oxymethylcarbene group coordinating as a monodentate ligand to the zirconocene chloride. π-Delocalization through the Zr—O—C=Cr unit is indicated by a short Zr—O distance [2.041 (3) Å] and a nearly linear Zr—O—C angle [170.5 (3)°]. Molecules are aligned with their molecular planes (through Zr, Cl, carbene and Cr) parallel to the ab plane. C—H⋯Cl interactions result in zigzag chains of molecules propagating parallel to the b axis.
Related literature
For related literature regarding catalytic data of the title compound, see: Sinn et al. (1980); Luruli et al. (2004, 2006). For other cases of anionic Fischer-type being used as monodentate ligands, see: Barluenga & Fañanás (2000). For comparable structures, see: Esterhuysen, Nel & Cronje (2008); Esterhuysen, Neveling et al. (2008).
Experimental
Crystal data
|
Refinement
|
Data collection: PWPC (Gomm, 1998); cell PWPC; data reduction: Xtal3.4 (Hall et al., 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: publCIF (Westrip, 2009).
Supporting information
10.1107/S1600536808042621/at2691sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536808042621/at2691Isup2.hkl
A solution of LiCH3 (11 ml, 1.5M in diethylether, 16.5 mmol) in 10 ml diethylether was added to a well stirred suspension of Cr(CO)6 (3.30 g, 15.0 mmol) in 100 ml of diethylether over the period of 1.5 h. The mixture was stripped of solvent in vacuo. The residue was dried for 3 h, extracted with cold (273 K), degassed water (1 × 40 ml, 2 × 20 ml) and the formed solution filtered. The aqueous solution was treated with a solution of [NEt4]Cl (2.49 g, 15 mmol) in cold, degassed water (4 ml) and the formed precipitate was isolated and dried overnight in vacuo. The precipitate was dissolved in warm CH2Cl2 (5 ml) layered with penatne and cooled to 258 K to yield yellow crystals of (CO)5Cr{=C(Me)O}[NEt4]. A solution of 0.61 g (2.0 mmol) of the product in 30 ml of CH2Cl2 was added to a solution of Cp2ZrCl2 (0.58 g, 2.0 mmol) in 70 ml of diethylether at 233 K over a period of 40 min. AgBF4 (0.39 g, 2.0 mmol) was then added to the mixture and stirred for an hour at 233 K. After reaching room temperature the solvent was removed in vacuo and the residue extracted in 5 portions of 10 ml of toluene. The extract was filtered, and the filtrate dried over anhydrous MgSO4. The solution was layered with pentane and kept at 258 K to yield orange crystals suitable for X-ray diffraction analysis.
H atoms were positioned geometrically, with C—H = 0.95 Å and 0.98 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2 or 1.5Ueq(C). Large anisotropy on atoms C16 and C17 suggests the presence of disorder in the C13–C17 Cp ring, however this could not be modeled. Highest peak: 1.03 Å from Zr1; deepest hole: 1.04 Å from Zr1.
Data collection: PWPC (Gomm, 1998); cell
PWPC (Gomm, 1998); data reduction: Xtal3.4 (Hall et al., 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001; Atwood & Barbour, 2003); software used to prepare material for publication: publCIF (Westrip, 2009).[CrZr(C5H5)2(C2H3O)Cl(CO)5] | F(000) = 976 |
Mr = 491.94 | Dx = 1.686 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 48 reflections |
a = 12.7395 (7) Å | θ = 2–17° |
b = 12.1117 (6) Å | µ = 1.27 mm−1 |
c = 12.7859 (7) Å | T = 173 K |
β = 100.826 (5)° | Plate, orange |
V = 1937.71 (18) Å3 | 0.30 × 0.28 × 0.08 mm |
Z = 4 |
Philips PW1100 diffractometer | 2332 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.000 |
Graphite monochromator | θmax = 25.0°, θmin = 2.3° |
ω–2θ scans | h = −15→14 |
Absorption correction: ψ scan (North et al., 1968) | k = 0→14 |
Tmin = 0.68, Tmax = 0.88 | l = 0→15 |
3423 measured reflections | 3 standard reflections every 50 reflections |
3423 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.053P)2] where P = (Fo2 + 2Fc2)/3 |
3423 reflections | (Δ/σ)max < 0.001 |
235 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.58 e Å−3 |
[CrZr(C5H5)2(C2H3O)Cl(CO)5] | V = 1937.71 (18) Å3 |
Mr = 491.94 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.7395 (7) Å | µ = 1.27 mm−1 |
b = 12.1117 (6) Å | T = 173 K |
c = 12.7859 (7) Å | 0.30 × 0.28 × 0.08 mm |
β = 100.826 (5)° |
Philips PW1100 diffractometer | 2332 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.000 |
Tmin = 0.68, Tmax = 0.88 | 3 standard reflections every 50 reflections |
3423 measured reflections | intensity decay: none |
3423 independent reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.109 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.55 e Å−3 |
3423 reflections | Δρmin = −0.58 e Å−3 |
235 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Zr1 | 0.67690 (3) | 0.45977 (3) | 0.79870 (3) | 0.03838 (16) | |
Cr2 | 0.82371 (6) | 0.82936 (6) | 0.79664 (6) | 0.0441 (2) | |
Cl1 | 0.51592 (14) | 0.56328 (16) | 0.80604 (18) | 0.1054 (7) | |
O1 | 0.6062 (3) | 0.7896 (4) | 0.6561 (3) | 0.0785 (12) | |
O2 | 0.7878 (4) | 1.0760 (3) | 0.7936 (4) | 0.1005 (16) | |
O3 | 0.7167 (4) | 0.7914 (4) | 0.9852 (4) | 0.1065 (17) | |
O4 | 0.9358 (4) | 0.8437 (4) | 0.6086 (4) | 0.0886 (14) | |
O5 | 1.0309 (4) | 0.8682 (5) | 0.9517 (4) | 0.1162 (19) | |
O6 | 0.7769 (3) | 0.5916 (3) | 0.8006 (3) | 0.0532 (9) | |
C1 | 0.6880 (4) | 0.8052 (4) | 0.7069 (4) | 0.0492 (12) | |
C2 | 0.8007 (5) | 0.9823 (5) | 0.7944 (4) | 0.0631 (15) | |
C3 | 0.7572 (5) | 0.8072 (5) | 0.9152 (5) | 0.0627 (15) | |
C4 | 0.8933 (4) | 0.8394 (4) | 0.6786 (5) | 0.0566 (13) | |
C5 | 0.9534 (5) | 0.8515 (5) | 0.8931 (5) | 0.0689 (16) | |
C6 | 0.8496 (4) | 0.6625 (4) | 0.7962 (4) | 0.0449 (11) | |
C7 | 0.9547 (4) | 0.6101 (5) | 0.7899 (6) | 0.086 (2) | |
H7A | 1.0080 | 0.6678 | 0.7871 | 0.129* | |
H7B | 0.9469 | 0.5645 | 0.7256 | 0.129* | |
H7C | 0.9780 | 0.5639 | 0.8528 | 0.129* | |
C8 | 0.8066 (5) | 0.4232 (6) | 0.9667 (5) | 0.0733 (18) | |
H8 | 0.8737 | 0.4599 | 0.9772 | 0.088* | |
C9 | 0.7144 (6) | 0.4611 (5) | 0.9977 (4) | 0.0769 (19) | |
H9 | 0.7065 | 0.5287 | 1.0332 | 0.092* | |
C10 | 0.6349 (5) | 0.3814 (6) | 0.9672 (4) | 0.0758 (18) | |
H10 | 0.5635 | 0.3850 | 0.9787 | 0.091* | |
C11 | 0.6779 (6) | 0.2982 (5) | 0.9184 (5) | 0.0762 (19) | |
H11 | 0.6414 | 0.2335 | 0.8893 | 0.091* | |
C12 | 0.7831 (6) | 0.3228 (5) | 0.9179 (5) | 0.0711 (17) | |
H12 | 0.8315 | 0.2779 | 0.8887 | 0.085* | |
C13 | 0.7269 (6) | 0.4442 (6) | 0.6179 (5) | 0.081 (2) | |
H13 | 0.7843 | 0.4867 | 0.6012 | 0.097* | |
C14 | 0.6228 (6) | 0.4758 (6) | 0.6006 (5) | 0.084 (2) | |
H14 | 0.5943 | 0.5445 | 0.5727 | 0.100* | |
C15 | 0.5653 (7) | 0.3857 (10) | 0.6326 (6) | 0.119 (3) | |
H15 | 0.4901 | 0.3814 | 0.6282 | 0.142* | |
C16 | 0.6386 (11) | 0.3060 (7) | 0.6711 (6) | 0.124 (4) | |
H16 | 0.6228 | 0.2365 | 0.6989 | 0.149* | |
C17 | 0.7361 (9) | 0.3420 (7) | 0.6632 (5) | 0.106 (3) | |
H17 | 0.8011 | 0.3027 | 0.6854 | 0.127* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Zr1 | 0.0412 (3) | 0.0306 (2) | 0.0410 (3) | −0.0002 (2) | 0.00175 (18) | 0.0023 (2) |
Cr2 | 0.0464 (5) | 0.0299 (4) | 0.0544 (5) | 0.0011 (3) | 0.0054 (4) | 0.0004 (3) |
Cl1 | 0.0717 (11) | 0.0871 (13) | 0.1666 (19) | 0.0361 (10) | 0.0464 (12) | 0.0408 (12) |
O1 | 0.048 (2) | 0.097 (3) | 0.084 (3) | 0.002 (2) | −0.005 (2) | 0.002 (2) |
O2 | 0.121 (4) | 0.035 (2) | 0.140 (4) | 0.013 (2) | 0.013 (3) | −0.005 (2) |
O3 | 0.134 (5) | 0.122 (4) | 0.076 (3) | 0.023 (4) | 0.053 (3) | 0.009 (3) |
O4 | 0.086 (3) | 0.096 (3) | 0.094 (3) | −0.016 (3) | 0.042 (3) | −0.007 (3) |
O5 | 0.077 (3) | 0.118 (4) | 0.132 (4) | −0.015 (3) | −0.033 (3) | −0.002 (4) |
O6 | 0.052 (2) | 0.0333 (18) | 0.073 (2) | −0.0062 (16) | 0.0079 (17) | −0.0001 (16) |
C1 | 0.058 (3) | 0.039 (3) | 0.054 (3) | 0.008 (2) | 0.018 (3) | 0.005 (2) |
C2 | 0.074 (4) | 0.041 (3) | 0.071 (4) | 0.004 (3) | 0.007 (3) | −0.003 (3) |
C3 | 0.076 (4) | 0.055 (3) | 0.057 (3) | 0.008 (3) | 0.010 (3) | −0.005 (3) |
C4 | 0.054 (3) | 0.045 (3) | 0.071 (4) | −0.008 (3) | 0.014 (3) | 0.000 (3) |
C5 | 0.061 (4) | 0.052 (3) | 0.088 (4) | −0.007 (3) | −0.002 (3) | −0.003 (3) |
C6 | 0.044 (3) | 0.036 (3) | 0.052 (3) | 0.000 (2) | 0.003 (2) | 0.002 (2) |
C7 | 0.048 (3) | 0.049 (3) | 0.160 (7) | 0.008 (3) | 0.016 (4) | 0.004 (4) |
C8 | 0.073 (4) | 0.076 (4) | 0.058 (4) | −0.007 (4) | −0.020 (3) | 0.016 (3) |
C9 | 0.115 (6) | 0.071 (4) | 0.041 (3) | 0.015 (4) | 0.004 (3) | −0.011 (3) |
C10 | 0.083 (5) | 0.099 (5) | 0.047 (3) | −0.006 (4) | 0.019 (3) | 0.015 (3) |
C11 | 0.124 (6) | 0.049 (3) | 0.050 (4) | −0.013 (4) | 0.002 (4) | 0.014 (3) |
C12 | 0.084 (5) | 0.065 (4) | 0.061 (4) | 0.026 (4) | 0.005 (3) | 0.020 (3) |
C13 | 0.104 (6) | 0.093 (5) | 0.048 (3) | −0.021 (4) | 0.019 (4) | −0.003 (3) |
C14 | 0.100 (5) | 0.094 (5) | 0.048 (3) | −0.010 (5) | −0.007 (3) | 0.023 (3) |
C15 | 0.104 (6) | 0.185 (10) | 0.053 (4) | −0.072 (7) | −0.021 (4) | −0.008 (5) |
C16 | 0.232 (12) | 0.088 (6) | 0.047 (4) | −0.088 (8) | 0.009 (6) | −0.022 (4) |
C17 | 0.188 (10) | 0.076 (5) | 0.058 (4) | 0.042 (6) | 0.032 (5) | −0.012 (4) |
Zr1—O6 | 2.041 (3) | C6—C7 | 1.498 (7) |
Zr1—Cl1 | 2.4205 (16) | C7—H7A | 0.9800 |
Zr1—C16 | 2.463 (7) | C7—H7B | 0.9800 |
Zr1—C17 | 2.470 (6) | C7—H7C | 0.9800 |
Zr1—C12 | 2.476 (5) | C8—C12 | 1.373 (8) |
Zr1—C11 | 2.483 (5) | C8—C9 | 1.387 (9) |
Zr1—C15 | 2.490 (6) | C8—H8 | 0.9500 |
Zr1—C8 | 2.492 (5) | C9—C10 | 1.400 (9) |
Zr1—C9 | 2.500 (5) | C9—H9 | 0.9500 |
Zr1—C10 | 2.503 (5) | C10—C11 | 1.354 (9) |
Zr1—C14 | 2.504 (6) | C10—H10 | 0.9500 |
Zr1—C13 | 2.517 (6) | C11—C12 | 1.374 (9) |
Cr2—C2 | 1.875 (6) | C11—H11 | 0.9500 |
Cr2—C5 | 1.885 (6) | C12—H12 | 0.9500 |
Cr2—C3 | 1.889 (6) | C13—C14 | 1.358 (9) |
Cr2—C4 | 1.892 (6) | C13—C17 | 1.362 (9) |
Cr2—C1 | 1.910 (6) | C13—H13 | 0.9500 |
Cr2—C6 | 2.048 (5) | C14—C15 | 1.417 (10) |
O1—C1 | 1.135 (6) | C14—H14 | 0.9500 |
O2—C2 | 1.146 (6) | C15—C16 | 1.368 (13) |
O3—C3 | 1.130 (6) | C15—H15 | 0.9500 |
O4—C4 | 1.131 (6) | C16—C17 | 1.338 (12) |
O5—C5 | 1.141 (7) | C16—H16 | 0.9500 |
O6—C6 | 1.271 (5) | C17—H17 | 0.9500 |
O6—Zr1—Cl1 | 97.24 (10) | C3—Cr2—C6 | 87.6 (2) |
O6—Zr1—C16 | 130.2 (3) | C4—Cr2—C6 | 87.8 (2) |
Cl1—Zr1—C16 | 110.7 (3) | C1—Cr2—C6 | 88.58 (19) |
O6—Zr1—C17 | 100.8 (3) | C6—O6—Zr1 | 170.5 (3) |
Cl1—Zr1—C17 | 134.4 (2) | O1—C1—Cr2 | 178.0 (5) |
C16—Zr1—C17 | 31.5 (3) | O2—C2—Cr2 | 179.2 (6) |
O6—Zr1—C12 | 104.4 (2) | O3—C3—Cr2 | 178.3 (6) |
Cl1—Zr1—C12 | 133.79 (17) | O4—C4—Cr2 | 178.7 (5) |
C16—Zr1—C12 | 85.4 (3) | O5—C5—Cr2 | 177.9 (6) |
C17—Zr1—C12 | 80.9 (2) | O6—C6—C7 | 112.5 (4) |
O6—Zr1—C11 | 132.73 (19) | O6—C6—Cr2 | 123.2 (3) |
Cl1—Zr1—C11 | 106.9 (2) | C7—C6—Cr2 | 124.3 (4) |
C16—Zr1—C11 | 77.9 (3) | C6—C7—H7A | 109.5 |
C17—Zr1—C11 | 90.6 (3) | C6—C7—H7B | 109.5 |
C12—Zr1—C11 | 32.2 (2) | H7A—C7—H7B | 109.5 |
O6—Zr1—C15 | 123.2 (2) | C6—C7—H7C | 109.5 |
Cl1—Zr1—C15 | 82.4 (3) | H7A—C7—H7C | 109.5 |
C16—Zr1—C15 | 32.1 (3) | H7B—C7—H7C | 109.5 |
C17—Zr1—C15 | 52.7 (3) | C12—C8—C9 | 107.3 (6) |
C12—Zr1—C15 | 116.3 (3) | C12—C8—Zr1 | 73.3 (3) |
C11—Zr1—C15 | 100.2 (3) | C9—C8—Zr1 | 74.2 (3) |
O6—Zr1—C8 | 79.46 (18) | C12—C8—H8 | 126.3 |
Cl1—Zr1—C8 | 119.22 (18) | C9—C8—H8 | 126.3 |
C16—Zr1—C8 | 117.0 (3) | Zr1—C8—H8 | 118.2 |
C17—Zr1—C8 | 105.2 (3) | C8—C9—C10 | 107.4 (6) |
C12—Zr1—C8 | 32.1 (2) | C8—C9—Zr1 | 73.5 (3) |
C11—Zr1—C8 | 53.3 (2) | C10—C9—Zr1 | 73.9 (3) |
C15—Zr1—C8 | 148.3 (3) | C8—C9—H9 | 126.3 |
O6—Zr1—C9 | 89.1 (2) | C10—C9—H9 | 126.3 |
Cl1—Zr1—C9 | 87.62 (17) | Zr1—C9—H9 | 118.3 |
C16—Zr1—C9 | 130.9 (3) | C11—C10—C9 | 107.9 (6) |
C17—Zr1—C9 | 133.9 (2) | C11—C10—Zr1 | 73.4 (3) |
C12—Zr1—C9 | 53.1 (2) | C9—C10—Zr1 | 73.6 (3) |
C11—Zr1—C9 | 53.1 (2) | C11—C10—H10 | 126.0 |
C15—Zr1—C9 | 147.1 (3) | C9—C10—H10 | 126.0 |
C8—Zr1—C9 | 32.3 (2) | Zr1—C10—H10 | 118.8 |
O6—Zr1—C10 | 121.38 (19) | C10—C11—C12 | 108.6 (6) |
Cl1—Zr1—C10 | 81.00 (17) | C10—C11—Zr1 | 75.1 (3) |
C16—Zr1—C10 | 103.6 (3) | C12—C11—Zr1 | 73.6 (3) |
C17—Zr1—C10 | 121.9 (3) | C10—C11—H11 | 125.7 |
C12—Zr1—C10 | 52.9 (2) | C12—C11—H11 | 125.7 |
C11—Zr1—C10 | 31.5 (2) | Zr1—C11—H11 | 117.6 |
C15—Zr1—C10 | 114.7 (3) | C8—C12—C11 | 108.7 (6) |
C8—Zr1—C10 | 53.5 (2) | C8—C12—Zr1 | 74.6 (3) |
C9—Zr1—C10 | 32.5 (2) | C11—C12—Zr1 | 74.2 (3) |
O6—Zr1—C14 | 90.23 (19) | C8—C12—H12 | 125.7 |
Cl1—Zr1—C14 | 85.7 (2) | C11—C12—H12 | 125.7 |
C16—Zr1—C14 | 53.6 (3) | Zr1—C12—H12 | 117.5 |
C17—Zr1—C14 | 52.9 (3) | C14—C13—C17 | 109.2 (7) |
C12—Zr1—C14 | 133.6 (2) | C14—C13—Zr1 | 73.8 (4) |
C11—Zr1—C14 | 130.8 (2) | C17—C13—Zr1 | 72.2 (4) |
C15—Zr1—C14 | 33.0 (2) | C14—C13—H13 | 125.4 |
C8—Zr1—C14 | 153.9 (3) | C17—C13—H13 | 125.4 |
C9—Zr1—C14 | 173.1 (2) | Zr1—C13—H13 | 120.3 |
C10—Zr1—C14 | 146.9 (2) | C13—C14—C15 | 106.2 (7) |
O6—Zr1—C13 | 78.71 (18) | C13—C14—Zr1 | 74.9 (3) |
Cl1—Zr1—C13 | 115.91 (19) | C15—C14—Zr1 | 73.0 (3) |
C16—Zr1—C13 | 52.3 (3) | C13—C14—H14 | 126.9 |
C17—Zr1—C13 | 31.7 (2) | C15—C14—H14 | 126.9 |
C12—Zr1—C13 | 108.2 (2) | Zr1—C14—H14 | 117.5 |
C11—Zr1—C13 | 122.3 (2) | C16—C15—C14 | 107.0 (8) |
C15—Zr1—C13 | 52.6 (3) | C16—C15—Zr1 | 72.9 (4) |
C8—Zr1—C13 | 122.5 (3) | C14—C15—Zr1 | 74.1 (4) |
C9—Zr1—C13 | 154.5 (3) | C16—C15—H15 | 126.5 |
C10—Zr1—C13 | 153.4 (2) | C14—C15—H15 | 126.5 |
C14—Zr1—C13 | 31.4 (2) | Zr1—C15—H15 | 118.6 |
C2—Cr2—C5 | 89.1 (2) | C17—C16—C15 | 108.9 (8) |
C2—Cr2—C3 | 93.4 (2) | C17—C16—Zr1 | 74.5 (4) |
C5—Cr2—C3 | 88.0 (3) | C15—C16—Zr1 | 75.0 (5) |
C2—Cr2—C4 | 91.1 (2) | C17—C16—H16 | 125.5 |
C5—Cr2—C4 | 91.6 (3) | C15—C16—H16 | 125.5 |
C3—Cr2—C4 | 175.4 (2) | Zr1—C16—H16 | 116.8 |
C2—Cr2—C1 | 91.2 (2) | C16—C17—C13 | 108.7 (9) |
C5—Cr2—C1 | 176.2 (2) | C16—C17—Zr1 | 74.0 (5) |
C3—Cr2—C1 | 88.2 (2) | C13—C17—Zr1 | 76.1 (4) |
C4—Cr2—C1 | 92.2 (2) | C16—C17—H17 | 125.7 |
C2—Cr2—C6 | 178.9 (2) | C13—C17—H17 | 125.6 |
C5—Cr2—C6 | 91.2 (2) | Zr1—C17—H17 | 116.3 |
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16···Cl1i | 0.95 | 2.74 | 3.581 (8) | 149 |
Symmetry code: (i) −x+1, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | [CrZr(C5H5)2(C2H3O)Cl(CO)5] |
Mr | 491.94 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 173 |
a, b, c (Å) | 12.7395 (7), 12.1117 (6), 12.7859 (7) |
β (°) | 100.826 (5) |
V (Å3) | 1937.71 (18) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.27 |
Crystal size (mm) | 0.30 × 0.28 × 0.08 |
Data collection | |
Diffractometer | Philips PW1100 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.68, 0.88 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3423, 3423, 2332 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.109, 1.06 |
No. of reflections | 3423 |
No. of parameters | 235 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.55, −0.58 |
Computer programs: PWPC (Gomm, 1998), Xtal3.4 (Hall et al., 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001; Atwood & Barbour, 2003), publCIF (Westrip, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
C16—H16···Cl1i | 0.95 | 2.74 | 3.581 (8) | 148.5 |
Symmetry code: (i) −x+1, y−1/2, −z+3/2. |
Footnotes
‡Currently at The Coaching Café, 6 Bright Str, Somerset West, 7130, South Africa.
Acknowledgements
We thank the NRF, the University of Stellenbosch and the University of Johannesburg for financial support.
References
Atwood, J. L. & Barbour, L. J. (2003). Cryst. Growth Des. 3, 3–8. Web of Science CrossRef CAS Google Scholar
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189–191. CrossRef CAS Google Scholar
Barluenga, J. & Fañanás, F. J. (2000). Tetrahedron, 56, 4597–4628. Web of Science CrossRef CAS Google Scholar
Esterhuysen, C., Nel, I. B. J. & Cronje, S. (2008). Acta Cryst. E64, m1150. Web of Science CSD CrossRef IUCr Journals Google Scholar
Esterhuysen, C., Neveling, A., Luruli, N., Kruger, G. J. & Cronje, S. (2008). Acta Cryst. E64, m1252. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gomm, M. (1998). PWPC. Institut für Angewandte Physik, Erlangen, Germany. Google Scholar
Hall, S. R., King, G. S. D. & Stewart, J. M. (1995). Editors. Xtal3.4 Reference Manual. University of Western Australia: Lamb, Perth. Google Scholar
Luruli, N., Grumel, V., Brüll, R., Du Toit, A., Pasch, H., Van Reenen, A. J. & Raubenheimer, H. G. (2004). J. Polym. Sci. [A1], pp. 5121–5133. CrossRef Google Scholar
Luruli, N., Heinz, L. C., Grumel, V., Brüll, R., Pasch, H. & Raubenheimer, H. G. (2006). Polymer, 47, 56–66. Web of Science CrossRef CAS Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sinn, H., Kaminsky, W., Vollmer, H. J. & Woldt, R. (1980). Angew. Chem. Int. Ed. Engl. 19, 390–392. CrossRef Web of Science Google Scholar
Westrip, S. P. (2009). publCIF. In preparation. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Since Cp2TiCl2 was shown to polymerize ethylene when activated by methylaluminoxane, MAO (Sinn et al., 1980), derivatives of this compound have been synthesized where a Cl ligand was replaced by a monodentate anionic Fischer-type carbene ligand (Barluenga and Fañanás, 2000). We have shown that zirconocene equivalents of this family of homogeneous catalysts, Cp2Zr(Cl)OC(R)M(CO)5 (where M = W or Cr), catalyze the oligomerization of 1-pentene, as well as the copolymerization of ethene and 1-pentene, in the presence of MAO (Luruli et al., 2004; Luruli et al., 2006). Herein we report the crystal structure of the title zirconocene complex, (I).
In the molecular structure the Zr—O and O—C distances are similar to those found in the equivalent tungsten pentacarbonyl complex (Esterhuysen, Nel & Cronje, 2008). The Zr—O—C angle, on the other hand, is less linear than the previously published tungsten structure [177.4 (7)°], but similar to the hafnocene complex W(CO)5C(C6H5)OHf(C5H5)2Cl (Esterhuysen, Neveling et al., 2008), where the Hf—O—C angle deviates slightly more from linearity [171.4 (3)°]. These results are indicative of π delocalization through the Zr—O—C = W unit.
Molecules are linked by C—H···Cl interactions into zigzag chains along the b axis. All molecules in a chain point in the same direction, with their molecular planes parallel. Neighbouring chains in the a-direction have the same orientation, thus forming a layer parallel to the ab-plane. Molecules in neighbouring layers in the c-direction have alternating orientations.