organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Ethyl-3-(2-thienylmeth­yl)-Δ2-1,2,4-triazoline-5-thione

aDepartment of Organic Chemistry, Faculty of Pharmacy, Medical University, 20081 Lublin, Poland, and bDepartment of General and Coordination Chemistry, Faculty of Chemistry, Maria Curie-Skłodowska University, 20031 Lublin, Poland
*Correspondence e-mail: lmazur2@op.pl

(Received 16 December 2008; accepted 6 January 2009; online 10 January 2009)

The title compound, C9H11N3S2, exists in the thione form in the crystal structure. The central triazole ring is almost perpendicular to the thio­phene ring which is disordered over two orientations [dihedral angles of 88.5 (7) and 85.7 (8)° for the two orientations]. The crystal structure is stabilized by strong inter­molecular N—H⋯S hydrogen bonds, forming centrosymmetric dimers, and by some weak C—H⋯S inter­actions.

Related literature

For background on the applications of 1,2,4-triazole and its derivatives, see: Ünver et al. (2006[Ünver, Y., Ustabaş, R., Çoruh, U., Sancak, K. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o3938-o3939.]); Dobosz et al. (2002[Dobosz, M., Sruga, M., Chodkowska, A., Jagiello-Wojtowicz, E., Stepniak, K. & Koziol, A. E. (2002). Acta Pol. Pharm. 59, 281-290.]); Jian et al. (2005[Jian, F.-F., Bai, Z.-S., Li, K. & Xiao, H.-L. (2005). Acta Cryst. E61, o393-o395.]); Maliszewska-Guz et al. (2005[Maliszewska-Guz, A., Wujec, M., Pitucha, M., Dobosz, M., Chodkowska, A., Jagiello-Wojtowicz, E., Mazur, L. & Koziol, A. E. (2005). Collect. Czech. Chem. Commun. 70, 51-62.]); Al-Soud et al. (2004[Al-Soud, Y. A., Al-Dweri, M. N. & Al-Masoudi, N. A. (2004). Farmaco, 59, 775-783.]); Amir & Shikha (2004[Amir, M. & Shikha, K. (2004). Eur. J. Med. Chem. 39, 535-545.]); Collin et al. (2003[Collin, X., Sauleau, A. & Coulon, J. (2003). Bioorg. Med. Chem. Lett. 13, 2601-2605.]); Demirayak et al. (2000[Demirayak, S., Benkli, K. & Güven, K. (2000). Eur. J. Med. Chem. 35, 1037-1040.]); Palaska et al. (2002[Palaska, E., Sahin, G., Kelicen, P., Durlu, T. N. & Altinok, G. (2002). Farmaco, 57, 101-107.]); Shivarama et al. (2006[Shivarama, H. B., Sooryanarayana, R. B., Sarojini, B. K., Akberali, P. M. & Suchetha, K. N. (2006). Eur. J. Med. Chem. 41, 657-663.]). For details of the synthesis, see: Wujec et al. (2004[Wujec, M., Pitucha, M., Dobosz, M., Kosikowska, U. & Malm, A. (2004). Acta Pharm. 54, 251-260.], 2007[Wujec, M., Kosikowska, U., Paneth, P. & Malm, A. (2007). Heterocycles, 71, 2617-2626.]). For related structures, see: Yilmaz et al. (2005[Yilmaz, V. T., Kazak, C., Ağar, E., Kahveci, B. & Guven, K. (2005). Acta Cryst. C61, o101-o104.]).

[Scheme 1]

Experimental

Crystal data
  • C9H11N3S2

  • Mr = 225.33

  • Monoclinic, P 21 /c

  • a = 6.813 (1) Å

  • b = 17.119 (2) Å

  • c = 9.846 (1) Å

  • β = 100.88 (1)°

  • V = 1127.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 295 (2) K

  • 0.47 × 0.30 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: none

  • 2735 measured reflections

  • 2592 independent reflections

  • 1130 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.052

  • wR(F2) = 0.111

  • S = 0.98

  • 2592 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.86 2.44 3.287 (3) 169
C6—H6a⋯S1ii 0.97 2.99 3.949 (4) 172
C9—H9⋯S1iii 0.93 2.97 3.659 (4) 132
C8′—H8′⋯S2iv 0.93 3.02 3.928 (7) 166
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x+1, y, z; (iii) [x+1, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+2.

Data collection: CrysAlis CCD (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2005[Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97 and enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Supporting information


Comment top

1,2,4-Triazole and its derivatives represent one of the most biologically active classes of compounds possessing a wide spectrum of activities, such as antimicrobial, fungicidal, anti-inflammatory, antiviral, antitumor or analgesic activity (Al-Soud et al., 2004; Amir & Shikha, 2004; Collin et al., 2003; Demirayak et al., 2000; Maliszewska-Guz et al., 2005; Palaska et al., 2002; Shivarama et al., 2006; Wujec et al. 2007). The 1,2,4-triazole nucleus has been incorporated into a wide variety of therapeutically important drugs e.g. Fluconazole, Itraconazole, Anastrazole, Ribavirin. In recent years 1,2,4-triazole finds an important place in medicinal chemistry as material for the preparation of antibacterial agents (Demirayak et al., 2000). In this context, we described the synthesis and antibacterial activity of a series of 1,2,4-triazoline-5-thione derivatives (Wujec et al. 2004). In the present paper we report the structure of one of them: 4-ethyl-3-(thiophene-2-yl-methyl)-Δ2-1,2,4-triazoline-5-thione (I). This compound inhibite the growth of Trichophyton spp.

In the title compound (Fig. 1), the C5—S1 bond length [1.673 (2) Å] is within the values observed for a C=S double bond. In the planar 1,2,4-triazole ring the C3=N2 bond is clearly double, being much shorter then the other C—N bonds. This distance is also comparable to literature data (Yilmaz et al., 2005). The thiophene ring is disordered over two orientatians with respect to the C6—C7 bond; the dihedral angles between the triazole and the thiophene rings for the two orientations of the second one are 88.5 (7) and 85.7 (8)°. Atoms C6 and C11 lie in the plane of triazole, whereas the ethyl atom C12 is signifficantly displaced from the plane of central system as indicate from the torsion angle C5—N4—C11—C12, being of 83.3 (3)°.

The crystal structure is stabilized by strong intermolecular N1—H1···S1 hydrogen bonds, forming centrosymmetric dimers (Fig. 2), together with some weak C—H···S interactions (Table 1).

Related literature top

For background on the applications of 1,2,4-triazole and its derivatives, see: Ünver et al. (2006); Dobosz et al. (2002); Jian et al. (2005); Maliszewska-Guz et al. (2005); Al-Soud et al. (2004); Amir & Shikha (2004); Collin et al. (2003); Demirayak et al. (2000); Palaska et al. (2002); Shivarama et al. (2006). For details of the synthesis, see: Wujec et al. (2004, 2007). For a related structure, see: Yilmaz et al. (2005).

Experimental top

4-Ethyl-3-(thiophene-2-yl-methyl)-Δ2-1,2,4-triazoline-5-thione was synthesized according to the method which was described in a previous paper (Wujec et al., 2004). Prism-shaped colourless single crystals, suitable for X-ray diffraction measurements, were obtained by the slow evaporation of a 2-propanol solution of the compound.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with N1—H1 distance of 0.86Å and C—H bond distances in the range 0.93 - 0.97 Å. The displacement parameters of the H atoms were Uiso(H) = 1.2 Ueq(C/N). The thiophene ring is disordered over two positions related by a 180° rotation around the C6—C7 bond. This disorder gives rise to two positions for each of the S2 and C8 atoms; the refinement of their occupancies showed that one of these positions is predominant, with an occupancy of 0.538 (4) for S2 and C8 atoms [the other one is with an occupancy of 0.462 (6) for S2' and C8' atoms]. The positions of C9 and C10 are effectively not affected by the disorder.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED (Oxford Diffraction, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. Both disordered components are shown.
[Figure 2] Fig. 2. The molecular packing of (I), viewed down the a axis. Dashed lines indicate hydrogen bonds.
4-Ethyl-3-(2-thienylmethyl)-Δ2-1,2,4-triazoline-5-thione top
Crystal data top
C9H11N3S2F(000) = 472
Mr = 225.33Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 69 reflections
a = 6.813 (1) Åθ = 6–14°
b = 17.119 (2) ŵ = 0.44 mm1
c = 9.846 (1) ÅT = 295 K
β = 100.88 (1)°Prism, colourless
V = 1127.7 (2) Å30.47 × 0.30 × 0.16 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer
Rint = 0.026
Radiation source: fine-focus sealed tubeθmax = 27.6°, θmin = 3.9°
Graphite monochromatorh = 88
ω–2θ scansk = 022
2735 measured reflectionsl = 012
2592 independent reflections3 standard reflections every 100 reflections
1130 reflections with I > 2σ(I) intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.2245P]
where P = (Fo2 + 2Fc2)/3
2592 reflections(Δ/σ)max = 0.002
147 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C9H11N3S2V = 1127.7 (2) Å3
Mr = 225.33Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.813 (1) ŵ = 0.44 mm1
b = 17.119 (2) ÅT = 295 K
c = 9.846 (1) Å0.47 × 0.30 × 0.16 mm
β = 100.88 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
Rint = 0.026
2735 measured reflections3 standard reflections every 100 reflections
2592 independent reflections intensity decay: 0.1%
1130 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0520 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 0.98Δρmax = 0.16 e Å3
2592 reflectionsΔρmin = 0.17 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.2725 (3)0.49647 (12)0.6098 (2)0.0563 (6)
H10.16840.46750.58680.068*
N20.4538 (3)0.46832 (13)0.6760 (2)0.0598 (6)
C30.5669 (4)0.52970 (16)0.6930 (3)0.0547 (7)
N40.4644 (3)0.59498 (12)0.6394 (2)0.0504 (5)
C50.2730 (3)0.57271 (16)0.5846 (2)0.0501 (6)
S10.08621 (10)0.62899 (4)0.50362 (7)0.0654 (3)
C60.7818 (4)0.52769 (17)0.7589 (3)0.0703 (8)
H6A0.86010.54690.69330.084*
H6B0.82050.47390.77990.084*
S20.7156 (9)0.5621 (3)1.0253 (6)0.0683 (11)0.538 (6)
C80.982 (3)0.6272 (12)0.921 (2)0.123 (10)0.538 (6)
H81.07600.63810.86620.148*0.538 (6)
C8'0.757 (3)0.5727 (13)1.003 (2)0.079 (9)0.462 (6)
H8'0.65490.53831.01380.094*0.462 (6)
S2'1.0016 (7)0.6482 (5)0.9087 (7)0.0949 (14)0.462 (6)
C70.8316 (5)0.57473 (19)0.8885 (3)0.0588 (8)
C90.9766 (6)0.6655 (2)1.0589 (5)0.1017 (13)
H91.05360.70771.09740.122*
C100.8435 (6)0.6283 (2)1.1134 (3)0.0885 (10)
H100.82410.64031.20200.106*
C110.5372 (4)0.67518 (16)0.6362 (3)0.0670 (8)
H11A0.47820.69900.54850.080*
H11B0.68100.67440.64250.080*
C120.4875 (5)0.72417 (17)0.7527 (3)0.0815 (9)
H12A0.53690.77630.74620.098*
H12B0.54880.70170.83970.098*
H12C0.34520.72570.74630.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0502 (12)0.0529 (14)0.0614 (14)0.0035 (10)0.0008 (10)0.0031 (11)
N20.0522 (13)0.0619 (14)0.0620 (15)0.0057 (11)0.0022 (11)0.0059 (12)
C30.0486 (15)0.0655 (17)0.0495 (16)0.0044 (14)0.0081 (12)0.0053 (15)
N40.0448 (12)0.0561 (13)0.0489 (12)0.0051 (11)0.0056 (9)0.0040 (10)
C50.0512 (15)0.0537 (16)0.0441 (14)0.0029 (12)0.0056 (12)0.0055 (13)
S10.0578 (4)0.0571 (4)0.0739 (5)0.0009 (3)0.0067 (3)0.0003 (4)
C60.0456 (16)0.088 (2)0.075 (2)0.0055 (15)0.0052 (14)0.0120 (17)
S20.070 (2)0.0744 (16)0.0589 (15)0.0131 (15)0.0081 (15)0.0015 (13)
C80.159 (19)0.120 (15)0.102 (10)0.015 (11)0.056 (10)0.031 (9)
C8'0.057 (9)0.096 (10)0.084 (15)0.022 (6)0.015 (6)0.018 (7)
S2'0.0717 (17)0.110 (3)0.097 (3)0.0346 (17)0.0010 (15)0.010 (2)
C70.0398 (15)0.0610 (19)0.071 (2)0.0056 (14)0.0015 (15)0.0057 (17)
C90.104 (3)0.072 (2)0.109 (3)0.029 (2)0.033 (2)0.008 (2)
C100.116 (3)0.081 (2)0.061 (2)0.006 (2)0.002 (2)0.002 (2)
C110.0566 (17)0.0687 (19)0.0731 (19)0.0165 (14)0.0055 (14)0.0078 (17)
C120.079 (2)0.0605 (18)0.098 (2)0.0082 (15)0.0005 (17)0.0105 (18)
Geometric parameters (Å, º) top
N1—C51.329 (3)C8—H80.9300
N1—N21.370 (3)C8'—C71.32 (2)
N1—H10.8600C8'—C101.48 (2)
N2—C31.295 (3)C8'—H8'0.9300
C3—N41.370 (3)S2'—C91.549 (10)
C3—C61.485 (3)S2'—C71.695 (6)
N4—C51.368 (3)C9—C101.304 (5)
N4—C111.462 (3)C9—H90.9300
C5—S11.673 (2)C10—H100.9300
C6—C71.493 (4)C11—C121.510 (4)
C6—H6A0.9700C11—H11A0.9700
C6—H6B0.9700C11—H11B0.9700
S2—C101.584 (7)C12—H12A0.9600
S2—C71.699 (6)C12—H12B0.9600
C8—C71.355 (17)C12—H12C0.9600
C8—C91.51 (2)
C5—N1—N2113.6 (2)C8—C7—C6126.8 (11)
C5—N1—H1123.2C8'—C7—S2'106.5 (10)
N2—N1—H1123.2C6—C7—S2'122.7 (4)
C3—N2—N1103.7 (2)C8—C7—S2110.0 (11)
N2—C3—N4111.4 (2)C6—C7—S2123.0 (3)
N2—C3—C6123.4 (2)S2'—C7—S2114.3 (4)
N4—C3—C6125.2 (3)C10—C9—C8107.1 (7)
C5—N4—C3107.7 (2)C10—C9—S2'120.6 (4)
C5—N4—C11123.7 (2)C10—C9—H9126.5
C3—N4—C11128.6 (2)C8—C9—H9126.5
N1—C5—N4103.6 (2)S2'—C9—H9112.5
N1—C5—S1128.8 (2)C9—C10—C8'103.1 (8)
N4—C5—S1127.6 (2)C9—C10—S2118.6 (4)
C3—C6—C7114.1 (2)C9—C10—H10120.7
C3—C6—H6A108.7C8'—C10—H10136.2
C7—C6—H6A108.7S2—C10—H10120.7
C3—C6—H6B108.7N4—C11—C12112.3 (2)
C7—C6—H6B108.7N4—C11—H11A109.1
H6A—C6—H6B107.6C12—C11—H11A109.1
C10—S2—C793.0 (4)N4—C11—H11B109.1
C7—C8—C9110.7 (14)C12—C11—H11B109.1
C7—C8—H8124.7H11A—C11—H11B107.9
C9—C8—H8124.7C11—C12—H12A109.5
C7—C8'—C10116.3 (13)C11—C12—H12B109.5
C7—C8'—H8'121.9H12A—C12—H12B109.5
C10—C8'—H8'121.9C11—C12—H12C109.5
C9—S2'—C793.4 (4)H12A—C12—H12C109.5
C8'—C7—C8102.3 (15)H12B—C12—H12C109.5
C8'—C7—C6130.7 (10)
C5—N1—N2—C30.8 (3)C3—C6—C7—S2'122.1 (4)
N1—N2—C3—N40.4 (3)C3—C6—C7—S254.9 (4)
N1—N2—C3—C6178.8 (2)C9—S2'—C7—C8'3.9 (11)
N2—C3—N4—C50.1 (3)C9—S2'—C7—C858 (9)
C6—C3—N4—C5178.2 (2)C9—S2'—C7—C6178.6 (3)
N2—C3—N4—C11179.4 (2)C9—S2'—C7—S24.1 (5)
C6—C3—N4—C111.0 (4)C10—S2—C7—C8'2 (9)
N2—N1—C5—N40.9 (3)C10—S2—C7—C85.2 (10)
N2—N1—C5—S1178.5 (2)C10—S2—C7—C6179.8 (2)
C3—N4—C5—N10.6 (3)C10—S2—C7—S2'2.9 (4)
C11—N4—C5—N1179.9 (2)C7—C8—C9—C108.5 (15)
C3—N4—C5—S1178.8 (2)C7—C8—C9—S2'145 (4)
C11—N4—C5—S10.5 (3)C7—S2'—C9—C104.2 (5)
N2—C3—C6—C7117.9 (3)C7—S2'—C9—C825 (3)
N4—C3—C6—C763.9 (4)C8—C9—C10—C8'5.0 (13)
C10—C8'—C7—C85 (2)S2'—C9—C10—C8'2.8 (11)
C10—C8'—C7—C6179.6 (7)C8—C9—C10—S24.9 (9)
C10—C8'—C7—S2'3.2 (19)S2'—C9—C10—S22.9 (6)
C10—C8'—C7—S2178 (11)C7—C8'—C10—C90.6 (19)
C9—C8—C7—C8'7.5 (18)C7—C8'—C10—S2179 (6)
C9—C8—C7—C6177.2 (6)C7—S2—C10—C90.2 (4)
C9—C8—C7—S2'113 (9)C7—S2—C10—C8'1 (4)
C9—C8—C7—S28.4 (15)C5—N4—C11—C1283.3 (3)
C3—C6—C7—C8'54.7 (14)C3—N4—C11—C1297.5 (3)
C3—C6—C7—C8131.4 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.443.287 (3)169
C6—H6a···S1ii0.972.993.949 (4)172
C9—H9···S1iii0.932.973.659 (4)132
C8—H8···S2iv0.933.023.928 (7)166
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC9H11N3S2
Mr225.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)6.813 (1), 17.119 (2), 9.846 (1)
β (°) 100.88 (1)
V3)1127.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.47 × 0.30 × 0.16
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2735, 2592, 1130
Rint0.026
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.111, 0.98
No. of reflections2592
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: CrysAlis CCD (Oxford Diffraction, 2005), CrysAlis RED (Oxford Diffraction, 2005), SHELXS97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.862.443.287 (3)169
C6—H6a···S1ii0.972.993.949 (4)172
C9—H9···S1iii0.932.973.659 (4)132
C8'—H8'···S2iv0.933.023.928 (7)166
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x+1, y+3/2, z+1/2; (iv) x+1, y+1, z+2.
 

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationAl-Soud, Y. A., Al-Dweri, M. N. & Al-Masoudi, N. A. (2004). Farmaco, 59, 775–783.  CrossRef PubMed CAS Google Scholar
First citationAmir, M. & Shikha, K. (2004). Eur. J. Med. Chem. 39, 535–545.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCollin, X., Sauleau, A. & Coulon, J. (2003). Bioorg. Med. Chem. Lett. 13, 2601–2605.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDemirayak, S., Benkli, K. & Güven, K. (2000). Eur. J. Med. Chem. 35, 1037–1040.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDobosz, M., Sruga, M., Chodkowska, A., Jagiello-Wojtowicz, E., Stepniak, K. & Koziol, A. E. (2002). Acta Pol. Pharm. 59, 281–290.  PubMed CAS Google Scholar
First citationJian, F.-F., Bai, Z.-S., Li, K. & Xiao, H.-L. (2005). Acta Cryst. E61, o393–o395.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMaliszewska-Guz, A., Wujec, M., Pitucha, M., Dobosz, M., Chodkowska, A., Jagiello-Wojtowicz, E., Mazur, L. & Koziol, A. E. (2005). Collect. Czech. Chem. Commun. 70, 51–62.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2005). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPalaska, E., Sahin, G., Kelicen, P., Durlu, T. N. & Altinok, G. (2002). Farmaco, 57, 101–107.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShivarama, H. B., Sooryanarayana, R. B., Sarojini, B. K., Akberali, P. M. & Suchetha, K. N. (2006). Eur. J. Med. Chem. 41, 657–663.  PubMed Google Scholar
First citationÜnver, Y., Ustabaş, R., Çoruh, U., Sancak, K. & Vázquez-López, E. M. (2006). Acta Cryst. E62, o3938–o3939.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWujec, M., Kosikowska, U., Paneth, P. & Malm, A. (2007). Heterocycles, 71, 2617–2626.  CrossRef CAS Google Scholar
First citationWujec, M., Pitucha, M., Dobosz, M., Kosikowska, U. & Malm, A. (2004). Acta Pharm. 54, 251–260.  PubMed CAS Google Scholar
First citationYilmaz, V. T., Kazak, C., Ağar, E., Kahveci, B. & Guven, K. (2005). Acta Cryst. C61, o101–o104.  CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds