Experimental
Data collection
Enraf–Nonius CAD-4 diffractometer Absorption correction: none 6130 measured reflections 4039 independent reflections 3498 reflections with I > 2σ(I) Rint = 0.013 3 standard reflections every 100 reflections intensity decay: none
|
Ni1—O4i | 1.9851 (19) | Ni1—O2 | 1.992 (2) | Ni1—O3i | 1.998 (2) | Ni1—O1 | 2.0029 (19) | Ni1—O2W | 2.060 (2) | Ni1—O1W | 2.065 (2) | Symmetry code: (i) -x+1, -y+1, -z. | |
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A | O1W—H1W1⋯O3ii | 0.85 | 2.48 | 2.817 (5) | 104 | O1W—H1W1⋯O1iii | 0.85 | 2.11 | 2.932 (2) | 162 | O3W—H1W3⋯N2iv | 0.85 | 2.04 | 2.865 (6) | 164 | O2W—H2W2⋯O5i | 0.85 | 1.87 | 2.700 (4) | 164 | Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) -x, -y+1, -z; (iv) -x+2, -y+1, -z+1. | |
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
A mixture of DMTD (1.5 g, 0.01 mol) and sodium ethoxide (1.36 g,0.02 mol) was stirred with ethanol (50 mL) at room temperature for 30 min, then nickel acetyl acetonate (2.57 g, 0.01 mol) were added and heated to reflux about 4 h, yielded sky-blue precipitate, affording the title compound (3.34 g, yield 31%).Single crystals suitable for X-ray measurements were obtained by recrystallization from the mixture solvent of water and DMF (the mol ratio 1:5) at room temperature.
H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H and C—H distances of 0.85 and 0.96 Å, respectively, andwith Uiso(H) = 1.2 or 1.5Ueq of the parent atoms.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CAD-4 Software (Enraf–Nonius, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).
bis{µ-3,3'-(1,3,4-thiadiazole-2,5- diyldithio)bis[pentanedionato(1-)]}bis[diaquanickel(II)] dimethylformamide disolvate trihydrate
top Crystal data top [Ni2(C12H12N2O4S3)(H2O)4]·2C3H7NO·3H2O | Z = 1 |
Mr = 1078.56 | F(000) = 562 |
Triclinic, P1 | Dx = 1.550 Mg m−3 |
Hall symbol: -P 1 | Melting point: 554.6 K |
a = 10.582 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 11.469 (1) Å | Cell parameters from 25 reflections |
c = 12.136 (2) Å | θ = 4–14° |
α = 102.30 (3)° | µ = 1.16 mm−1 |
β = 107.21 (1)° | T = 295 K |
γ = 116.26 (3)° | Block, green |
V = 1155.6 (6) Å3 | 0.23 × 0.20 × 0.16 mm |
Data collection top Enraf–Nonius CAD-4 diffractometer | Rint = 0.013 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 1.9° |
Graphite monochromator | h = −11→12 |
ω scans | k = −13→13 |
6130 measured reflections | l = −14→10 |
4039 independent reflections | 3 standard reflections every 100 reflections |
3498 reflections with I > 2σ(I) | intensity decay: none |
Refinement top Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0451P)2 + 0.9813P] where P = (Fo2 + 2Fc2)/3 |
4039 reflections | (Δ/σ)max < 0.001 |
284 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.60 e Å−3 |
Crystal data top [Ni2(C12H12N2O4S3)(H2O)4]·2C3H7NO·3H2O | γ = 116.26 (3)° |
Mr = 1078.56 | V = 1155.6 (6) Å3 |
Triclinic, P1 | Z = 1 |
a = 10.582 (2) Å | Mo Kα radiation |
b = 11.469 (1) Å | µ = 1.16 mm−1 |
c = 12.136 (2) Å | T = 295 K |
α = 102.30 (3)° | 0.23 × 0.20 × 0.16 mm |
β = 107.21 (1)° | |
Data collection top Enraf–Nonius CAD-4 diffractometer | Rint = 0.013 |
6130 measured reflections | 3 standard reflections every 100 reflections |
4039 independent reflections | intensity decay: none |
3498 reflections with I > 2σ(I) | |
Refinement top R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.095 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.47 e Å−3 |
4039 reflections | Δρmin = −0.60 e Å−3 |
284 parameters | |
Special details top Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Ni1 | 0.26742 (4) | 0.62302 (4) | 0.03339 (3) | 0.03044 (12) | |
S1 | 0.57596 (10) | 0.85228 (10) | 0.50283 (7) | 0.0503 (2) | |
S2 | 0.96862 (10) | 0.64320 (10) | 0.43743 (7) | 0.0517 (2) | |
S5 | 0.70843 (10) | 0.70555 (9) | 0.37703 (7) | 0.0483 (2) | |
O1 | 0.2162 (2) | 0.5835 (2) | 0.17277 (17) | 0.0363 (4) | |
O2 | 0.4302 (3) | 0.8227 (2) | 0.15619 (19) | 0.0444 (5) | |
O1W | 0.1000 (3) | 0.6732 (2) | −0.0185 (2) | 0.0483 (5) | |
H1W1 | 0.0024 | 0.6117 | −0.0648 | 0.058* | |
H2W1 | 0.1129 | 0.7547 | −0.0008 | 0.058* | |
O3 | 0.8900 (2) | 0.5791 (2) | 0.08790 (18) | 0.0372 (4) | |
O2W | 0.4322 (2) | 0.5712 (2) | 0.08969 (19) | 0.0413 (5) | |
H1W2 | 0.4835 | 0.5644 | 0.1540 | 0.050* | |
H2W2 | 0.4945 | 0.6091 | 0.0590 | 0.050* | |
O4 | 0.6766 (2) | 0.3368 (2) | 0.10243 (18) | 0.0401 (5) | |
N1 | 0.8243 (3) | 0.8407 (3) | 0.6137 (2) | 0.0542 (7) | |
N2 | 0.9174 (3) | 0.7907 (3) | 0.5975 (2) | 0.0529 (7) | |
C1 | 0.5014 (4) | 0.8636 (3) | 0.2726 (3) | 0.0396 (7) | |
C2 | 0.4545 (3) | 0.7796 (3) | 0.3404 (3) | 0.0375 (6) | |
C3 | 0.3124 (3) | 0.6462 (3) | 0.2874 (3) | 0.0359 (6) | |
C4 | 0.6446 (5) | 1.0111 (4) | 0.3393 (4) | 0.0639 (10) | |
H4A | 0.6582 | 1.0525 | 0.2795 | 0.096* | |
H4B | 0.7353 | 1.0081 | 0.3800 | 0.096* | |
H4C | 0.6324 | 1.0672 | 0.4012 | 0.096* | |
C5 | 0.2640 (4) | 0.5707 (4) | 0.3676 (3) | 0.0580 (9) | |
H5A | 0.1646 | 0.4824 | 0.3160 | 0.087* | |
H5B | 0.2543 | 0.6286 | 0.4303 | 0.087* | |
H5C | 0.3419 | 0.5524 | 0.4081 | 0.087* | |
C6 | 0.7117 (4) | 0.8037 (3) | 0.5087 (3) | 0.0412 (7) | |
C7 | 0.8711 (4) | 0.7194 (3) | 0.4804 (3) | 0.0410 (7) | |
C8 | 0.9326 (3) | 0.6343 (3) | 0.2039 (3) | 0.0370 (6) | |
C9 | 0.8698 (3) | 0.5594 (3) | 0.2722 (3) | 0.0376 (6) | |
C10 | 0.7436 (3) | 0.4150 (3) | 0.2166 (3) | 0.0364 (6) | |
C11 | 1.0570 (4) | 0.7901 (3) | 0.2674 (3) | 0.0622 (10) | |
H11A | 1.0861 | 0.8227 | 0.2069 | 0.093* | |
H11B | 1.1477 | 0.8063 | 0.3335 | 0.093* | |
H11C | 1.0169 | 0.8410 | 0.3025 | 0.093* | |
C12 | 0.6796 (5) | 0.3461 (4) | 0.2957 (3) | 0.0558 (9) | |
H12A | 0.5956 | 0.2490 | 0.2436 | 0.084* | |
H12B | 0.6404 | 0.3956 | 0.3341 | 0.084* | |
H12C | 0.7617 | 0.3495 | 0.3600 | 0.084* | |
O5 | 0.3257 (3) | 0.2918 (3) | −0.0367 (3) | 0.0627 (7) | |
N6 | 0.2517 (4) | 0.1686 (4) | 0.0772 (4) | 0.0702 (9) | |
C13 | 0.2358 (8) | 0.2730 (6) | 0.1515 (6) | 0.110 (2) | |
H13A | 0.2517 | 0.3453 | 0.1194 | 0.165* | |
H13B | 0.3128 | 0.3150 | 0.2376 | 0.165* | |
H13C | 0.1322 | 0.2280 | 0.1469 | 0.165* | |
C14 | 0.2237 (8) | 0.0463 (5) | 0.1088 (6) | 0.1039 (18) | |
H14A | 0.2292 | −0.0190 | 0.0491 | 0.156* | |
H14B | 0.1214 | −0.0001 | 0.1063 | 0.156* | |
H14C | 0.3023 | 0.0774 | 0.1918 | 0.156* | |
C15 | 0.2982 (5) | 0.1897 (4) | −0.0082 (4) | 0.0663 (11) | |
H15A | 0.2931 | 0.1006 | −0.0592 | 0.079* | |
O3W | 0.8641 (5) | 0.1907 (5) | 0.1821 (4) | 0.1309 (16) | |
H1W3 | 0.9173 | 0.1787 | 0.2412 | 0.157* | |
H2W3 | 0.8417 | 0.2476 | 0.2148 | 0.157* | |
O4W | 0.4494 (6) | −0.0168 (7) | −0.0250 (7) | 0.089 (2) | 0.50 |
H1W4 | 0.3783 | −0.0739 | −0.0101 | 0.107* | 0.50 |
H2W4 | 0.4044 | −0.0037 | −0.0875 | 0.107* | 0.50 |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Ni1 | 0.0302 (2) | 0.0303 (2) | 0.02522 (19) | 0.01252 (15) | 0.01182 (15) | 0.01108 (14) |
S1 | 0.0508 (5) | 0.0655 (5) | 0.0274 (4) | 0.0360 (4) | 0.0116 (3) | 0.0044 (4) |
S2 | 0.0520 (5) | 0.0692 (6) | 0.0281 (4) | 0.0411 (5) | 0.0063 (3) | 0.0073 (4) |
S5 | 0.0499 (5) | 0.0640 (5) | 0.0237 (4) | 0.0367 (4) | 0.0069 (3) | 0.0057 (3) |
O1 | 0.0323 (10) | 0.0410 (11) | 0.0295 (10) | 0.0144 (9) | 0.0148 (8) | 0.0145 (9) |
O2 | 0.0502 (13) | 0.0328 (11) | 0.0331 (11) | 0.0141 (10) | 0.0126 (10) | 0.0118 (9) |
O1W | 0.0495 (13) | 0.0527 (13) | 0.0606 (14) | 0.0344 (11) | 0.0284 (11) | 0.0324 (11) |
O3 | 0.0346 (10) | 0.0328 (10) | 0.0341 (11) | 0.0126 (9) | 0.0138 (9) | 0.0116 (9) |
O2W | 0.0397 (11) | 0.0540 (13) | 0.0381 (11) | 0.0274 (10) | 0.0205 (9) | 0.0226 (10) |
O4 | 0.0414 (11) | 0.0387 (11) | 0.0293 (11) | 0.0135 (9) | 0.0155 (9) | 0.0138 (9) |
N1 | 0.0613 (18) | 0.0711 (19) | 0.0285 (14) | 0.0439 (16) | 0.0124 (13) | 0.0096 (13) |
N2 | 0.0566 (17) | 0.0703 (19) | 0.0276 (13) | 0.0420 (16) | 0.0089 (12) | 0.0090 (13) |
C1 | 0.0405 (16) | 0.0349 (15) | 0.0353 (16) | 0.0201 (13) | 0.0132 (13) | 0.0062 (13) |
C2 | 0.0397 (16) | 0.0431 (16) | 0.0258 (14) | 0.0239 (14) | 0.0119 (12) | 0.0077 (12) |
C3 | 0.0388 (16) | 0.0457 (16) | 0.0306 (15) | 0.0266 (14) | 0.0181 (13) | 0.0155 (13) |
C4 | 0.061 (2) | 0.0381 (18) | 0.053 (2) | 0.0113 (17) | 0.0108 (18) | 0.0078 (16) |
C5 | 0.059 (2) | 0.071 (2) | 0.0419 (19) | 0.0280 (19) | 0.0273 (17) | 0.0299 (18) |
C6 | 0.0438 (17) | 0.0480 (18) | 0.0274 (15) | 0.0252 (15) | 0.0131 (13) | 0.0105 (13) |
C7 | 0.0420 (16) | 0.0460 (17) | 0.0269 (15) | 0.0235 (14) | 0.0093 (13) | 0.0100 (13) |
C8 | 0.0336 (15) | 0.0366 (15) | 0.0350 (16) | 0.0193 (13) | 0.0112 (12) | 0.0098 (13) |
C9 | 0.0381 (16) | 0.0434 (16) | 0.0263 (14) | 0.0242 (14) | 0.0090 (12) | 0.0085 (12) |
C10 | 0.0410 (16) | 0.0472 (17) | 0.0290 (15) | 0.0275 (14) | 0.0164 (13) | 0.0192 (13) |
C11 | 0.061 (2) | 0.0355 (18) | 0.052 (2) | 0.0108 (17) | 0.0151 (18) | 0.0028 (15) |
C12 | 0.071 (2) | 0.062 (2) | 0.0417 (18) | 0.0329 (19) | 0.0325 (18) | 0.0279 (17) |
O5 | 0.0641 (16) | 0.0535 (15) | 0.095 (2) | 0.0349 (13) | 0.0507 (15) | 0.0428 (14) |
N6 | 0.076 (2) | 0.062 (2) | 0.094 (3) | 0.0371 (18) | 0.052 (2) | 0.0472 (19) |
C13 | 0.160 (6) | 0.112 (4) | 0.141 (5) | 0.095 (4) | 0.115 (5) | 0.077 (4) |
C14 | 0.151 (5) | 0.073 (3) | 0.122 (4) | 0.061 (3) | 0.082 (4) | 0.064 (3) |
C15 | 0.071 (3) | 0.052 (2) | 0.087 (3) | 0.033 (2) | 0.045 (2) | 0.031 (2) |
O3W | 0.143 (4) | 0.201 (5) | 0.117 (3) | 0.117 (4) | 0.066 (3) | 0.113 (3) |
O4W | 0.063 (5) | 0.068 (4) | 0.109 (6) | 0.023 (5) | 0.018 (4) | 0.046 (4) |
Geometric parameters (Å, º) top Ni1—O4i | 1.9851 (19) | C4—H4C | 0.9600 |
Ni1—O2 | 1.992 (2) | C5—H5A | 0.9600 |
Ni1—O3i | 1.998 (2) | C5—H5B | 0.9600 |
Ni1—O1 | 2.0029 (19) | C5—H5C | 0.9600 |
Ni1—O2W | 2.060 (2) | C8—C9 | 1.411 (4) |
Ni1—O1W | 2.065 (2) | C8—C11 | 1.500 (4) |
S1—C6 | 1.745 (3) | C9—C10 | 1.419 (4) |
S1—C2 | 1.756 (3) | C10—C12 | 1.496 (4) |
S2—C7 | 1.739 (3) | C11—H11A | 0.9600 |
S2—C9 | 1.757 (3) | C11—H11B | 0.9600 |
S5—C7 | 1.720 (3) | C11—H11C | 0.9600 |
S5—C6 | 1.728 (3) | C12—H12A | 0.9600 |
O1—C3 | 1.256 (3) | C12—H12B | 0.9600 |
O2—C1 | 1.248 (4) | C12—H12C | 0.9600 |
O1W—H1W1 | 0.8500 | O5—C15 | 1.228 (4) |
O1W—H2W1 | 0.8500 | N6—C15 | 1.295 (5) |
O3—C8 | 1.256 (3) | N6—C13 | 1.443 (6) |
O3—Ni1i | 1.998 (2) | N6—C14 | 1.460 (5) |
O2W—H1W2 | 0.8500 | C13—H13A | 0.9600 |
O2W—H2W2 | 0.8501 | C13—H13B | 0.9600 |
O4—C10 | 1.247 (3) | C13—H13C | 0.9600 |
O4—Ni1i | 1.9851 (19) | C14—H14A | 0.9600 |
N1—C6 | 1.284 (4) | C14—H14B | 0.9600 |
N1—N2 | 1.381 (4) | C14—H14C | 0.9600 |
N2—C7 | 1.290 (4) | C15—H15A | 1.0463 |
C1—C2 | 1.418 (4) | O3W—H1W3 | 0.8498 |
C1—C4 | 1.495 (5) | O3W—H2W3 | 0.8500 |
C2—C3 | 1.410 (4) | O4W—O4Wii | 0.901 (10) |
C3—C5 | 1.490 (4) | O4W—H1W4 | 0.8500 |
C4—H4A | 0.9600 | O4W—H2W4 | 0.8500 |
C4—H4B | 0.9600 | | |
| | | |
O4i—Ni1—O2 | 91.40 (9) | H5B—C5—H5C | 109.5 |
O4i—Ni1—O3i | 88.63 (9) | N1—C6—S5 | 114.8 (2) |
O2—Ni1—O3i | 177.92 (9) | N1—C6—S1 | 121.4 (2) |
O4i—Ni1—O1 | 178.59 (8) | S5—C6—S1 | 123.82 (17) |
O2—Ni1—O1 | 87.98 (9) | N2—C7—S5 | 114.7 (2) |
O3i—Ni1—O1 | 91.95 (9) | N2—C7—S2 | 120.5 (2) |
O4i—Ni1—O2W | 91.54 (9) | S5—C7—S2 | 124.88 (17) |
O2—Ni1—O2W | 88.80 (9) | O3—C8—C9 | 124.0 (3) |
O3i—Ni1—O2W | 89.12 (9) | O3—C8—C11 | 114.9 (3) |
O1—Ni1—O2W | 87.18 (8) | C9—C8—C11 | 121.0 (3) |
O4i—Ni1—O1W | 90.39 (9) | C8—C9—C10 | 124.1 (3) |
O2—Ni1—O1W | 91.24 (10) | C8—C9—S2 | 117.8 (2) |
O3i—Ni1—O1W | 90.85 (10) | C10—C9—S2 | 117.7 (2) |
O1—Ni1—O1W | 90.90 (9) | O4—C10—C9 | 124.8 (3) |
O2W—Ni1—O1W | 178.07 (8) | O4—C10—C12 | 114.8 (3) |
C6—S1—C2 | 102.53 (14) | C9—C10—C12 | 120.4 (3) |
C7—S2—C9 | 105.44 (14) | C8—C11—H11A | 109.5 |
C7—S5—C6 | 86.11 (15) | C8—C11—H11B | 109.5 |
C3—O1—Ni1 | 124.99 (18) | H11A—C11—H11B | 109.5 |
C1—O2—Ni1 | 126.2 (2) | C8—C11—H11C | 109.5 |
Ni1—O1W—H1W1 | 123.7 | H11A—C11—H11C | 109.5 |
Ni1—O1W—H2W1 | 128.6 | H11B—C11—H11C | 109.5 |
H1W1—O1W—H2W1 | 107.7 | C10—C12—H12A | 109.5 |
C8—O3—Ni1i | 128.97 (19) | C10—C12—H12B | 109.5 |
Ni1—O2W—H1W2 | 139.2 | H12A—C12—H12B | 109.5 |
Ni1—O2W—H2W2 | 104.0 | C10—C12—H12C | 109.5 |
H1W2—O2W—H2W2 | 107.7 | H12A—C12—H12C | 109.5 |
C10—O4—Ni1i | 128.75 (19) | H12B—C12—H12C | 109.5 |
C6—N1—N2 | 112.1 (3) | C15—N6—C13 | 120.0 (4) |
C7—N2—N1 | 112.3 (3) | C15—N6—C14 | 122.7 (4) |
O2—C1—C2 | 124.1 (3) | C13—N6—C14 | 117.2 (4) |
O2—C1—C4 | 115.3 (3) | N6—C13—H13A | 109.5 |
C2—C1—C4 | 120.6 (3) | N6—C13—H13B | 109.5 |
C3—C2—C1 | 124.2 (3) | H13A—C13—H13B | 109.5 |
C3—C2—S1 | 118.3 (2) | N6—C13—H13C | 109.5 |
C1—C2—S1 | 117.4 (2) | H13A—C13—H13C | 109.5 |
O1—C3—C2 | 124.1 (3) | H13B—C13—H13C | 109.5 |
O1—C3—C5 | 114.9 (3) | N6—C14—H14A | 109.5 |
C2—C3—C5 | 120.9 (3) | N6—C14—H14B | 109.5 |
C1—C4—H4A | 109.5 | H14A—C14—H14B | 109.5 |
C1—C4—H4B | 109.5 | N6—C14—H14C | 109.5 |
H4A—C4—H4B | 109.5 | H14A—C14—H14C | 109.5 |
C1—C4—H4C | 109.5 | H14B—C14—H14C | 109.5 |
H4A—C4—H4C | 109.5 | O5—C15—N6 | 125.1 (4) |
H4B—C4—H4C | 109.5 | O5—C15—H15A | 123.6 |
C3—C5—H5A | 109.5 | N6—C15—H15A | 110.6 |
C3—C5—H5B | 109.5 | H1W3—O3W—H2W3 | 107.7 |
H5A—C5—H5B | 109.5 | O4Wii—O4W—H1W4 | 118.3 |
C3—C5—H5C | 109.5 | O4Wii—O4W—H2W4 | 134.0 |
H5A—C5—H5C | 109.5 | H1W4—O4W—H2W4 | 107.7 |
| | | |
O2—Ni1—O1—C3 | −29.7 (2) | C7—S5—C6—S1 | −179.8 (2) |
O3i—Ni1—O1—C3 | 148.2 (2) | C2—S1—C6—N1 | 178.6 (3) |
O2W—Ni1—O1—C3 | 59.2 (2) | C2—S1—C6—S5 | −0.7 (3) |
O1W—Ni1—O1—C3 | −121.0 (2) | N1—N2—C7—S5 | 0.0 (4) |
O4i—Ni1—O2—C1 | −151.7 (3) | N1—N2—C7—S2 | −178.8 (2) |
O1—Ni1—O2—C1 | 27.1 (3) | C6—S5—C7—N2 | −0.4 (3) |
O2W—Ni1—O2—C1 | −60.1 (3) | C6—S5—C7—S2 | 178.3 (2) |
O1W—Ni1—O2—C1 | 117.9 (3) | C9—S2—C7—N2 | −179.4 (3) |
C6—N1—N2—C7 | 0.7 (4) | C9—S2—C7—S5 | 1.9 (3) |
Ni1—O2—C1—C2 | −14.5 (4) | Ni1i—O3—C8—C9 | −1.8 (4) |
Ni1—O2—C1—C4 | 165.2 (2) | Ni1i—O3—C8—C11 | 178.8 (2) |
O2—C1—C2—C3 | −7.7 (5) | O3—C8—C9—C10 | −4.6 (5) |
C4—C1—C2—C3 | 172.7 (3) | C11—C8—C9—C10 | 174.8 (3) |
O2—C1—C2—S1 | 176.6 (2) | O3—C8—C9—S2 | 167.6 (2) |
C4—C1—C2—S1 | −3.0 (4) | C11—C8—C9—S2 | −13.0 (4) |
C6—S1—C2—C3 | 96.7 (2) | C7—S2—C9—C8 | 96.1 (3) |
C6—S1—C2—C1 | −87.3 (3) | C7—S2—C9—C10 | −91.2 (3) |
Ni1—O1—C3—C2 | 20.1 (4) | Ni1i—O4—C10—C9 | 6.6 (4) |
Ni1—O1—C3—C5 | −161.4 (2) | Ni1i—O4—C10—C12 | −174.2 (2) |
C1—C2—C3—O1 | 4.4 (5) | C8—C9—C10—O4 | 2.1 (5) |
S1—C2—C3—O1 | −179.9 (2) | S2—C9—C10—O4 | −170.1 (2) |
C1—C2—C3—C5 | −173.9 (3) | C8—C9—C10—C12 | −177.1 (3) |
S1—C2—C3—C5 | 1.7 (4) | S2—C9—C10—C12 | 10.7 (4) |
N2—N1—C6—S5 | −1.1 (4) | C13—N6—C15—O5 | −3.0 (7) |
N2—N1—C6—S1 | 179.6 (2) | C14—N6—C15—O5 | −178.7 (5) |
C7—S5—C6—N1 | 0.9 (3) | | |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y, −z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O3iii | 0.85 | 2.48 | 2.817 (5) | 104 |
O1W—H1W1···O1iv | 0.85 | 2.11 | 2.932 (2) | 162 |
O3W—H1W3···N2v | 0.85 | 2.04 | 2.865 (6) | 164 |
O2W—H2W2···O5i | 0.85 | 1.87 | 2.700 (4) | 164 |
Symmetry codes: (i) −x+1, −y+1, −z; (iii) x−1, y, z; (iv) −x, −y+1, −z; (v) −x+2, −y+1, −z+1. |
Experimental details
Crystal data |
Chemical formula | [Ni2(C12H12N2O4S3)(H2O)4]·2C3H7NO·3H2O |
Mr | 1078.56 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 295 |
a, b, c (Å) | 10.582 (2), 11.469 (1), 12.136 (2) |
α, β, γ (°) | 102.30 (3), 107.21 (1), 116.26 (3) |
V (Å3) | 1155.6 (6) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.16 |
Crystal size (mm) | 0.23 × 0.20 × 0.16 |
|
Data collection |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6130, 4039, 3498 |
Rint | 0.013 |
(sin θ/λ)max (Å−1) | 0.595 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.035, 0.095, 1.03 |
No. of reflections | 4039 |
No. of parameters | 284 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.47, −0.60 |
Selected geometric parameters (Å, º) topNi1—O4i | 1.9851 (19) | Ni1—O1 | 2.0029 (19) |
Ni1—O2 | 1.992 (2) | Ni1—O2W | 2.060 (2) |
Ni1—O3i | 1.998 (2) | Ni1—O1W | 2.065 (2) |
| | | |
O4i—Ni1—O3i | 88.63 (9) | O2—Ni1—O1W | 91.24 (10) |
O2—Ni1—O1 | 87.98 (9) | O2W—Ni1—O1W | 178.07 (8) |
O4i—Ni1—O1W | 90.39 (9) | | |
Symmetry code: (i) −x+1, −y+1, −z. |
Hydrogen-bond geometry (Å, º) top D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O3ii | 0.85 | 2.48 | 2.817 (5) | 104 |
O1W—H1W1···O1iii | 0.85 | 2.11 | 2.932 (2) | 162 |
O3W—H1W3···N2iv | 0.85 | 2.04 | 2.865 (6) | 164 |
O2W—H2W2···O5i | 0.85 | 1.87 | 2.700 (4) | 164 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1, y, z; (iii) −x, −y+1, −z; (iv) −x+2, −y+1, −z+1. |
Acknowledgements
The authors thank the Natural Science Foundation of Shandong Province (No. Z2007B01).
References
Enraf–Nonius. (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Gaynor, D., Starikova, Z. A., Ostrovsky, S., Haase, W. & Nolan, K. B. (2002). Chem. Commun. pp. 506–507. Web of Science CSD CrossRef Google Scholar
Shan, N., Vickers, S. J., Adams, H., Ward, M. D. & Thomas, J. A. (2004). Angew. Chem. Int. Ed. 43, 3938–3941. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Weng, Z., Teo, S., Koh, L. L. & Hor, T. S. A. (2004). Organometallics, 23, 3603–3609. Web of Science CSD CrossRef CAS Google Scholar
Zhang, X. F., Chen, H., Ma, C. B., Chen, C. N. & Liu, Q. T. (2006). Dalton Trans. pp. 4047–4055. Web of Science CSD CrossRef Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
| CRYSTALLOGRAPHIC COMMUNICATIONS |
ISSN: 2056-9890
Open
access
The design and study of various metal-containing macrocycles and cages is one of the most active and interesting areas in modern supramolecular chemistry. The appealing structures of the metallamacrocycles can act as highly specific hosts used for selective recognition of neutral molecules, cations and anions. and switchable electron-transfer (Shan et al., 2004), catalysis (Weng et al., 2004) and magnetism (Gaynor et al., 2002) have also been reported as the possible applications. Among the metallamacrocyclic complexes, dimetal macrocyclic complexes have attracted great interest in recent years and become an important type of metallamacrocycles. Herein, the title compound has been synthesized and we report its crystal structure.
The crystal structure are composed of the dimetal macrocyclic complexe and the solvent molecules of DMF and water (Fig.1). Accompanying the formation of the C—S bond, nickel acetyl acetonate [Ni(acac)2] and 2,5-dimercapto-1,3,4-thiadiazole (DMTD) construct a 24-membered dimetal macrocyclic complex. The symmetrical center exists within the dimetal macrocyclic structure. The Ni(II) ion is chelated by the acetyl acetonate (acac) groups forming two non-planar six-membered chelating rings. The acac oxygen atoms which occupied the equatorial plane of the octahedral metal with rather small dihedral angles between the O1—Ni—O2 and O3—Ni—O4 planes is 2.4 (1)°, which is similar to those reported previously (Zhang et al., 2006). The dihedral angles between the thiadiazole ring and the acac-S planes is 85.9 (2)°. Two solvent ligands of water molecules are located at opposed positions with one extending to the inner space of the macrocycle, the plane which they located are nearly perpendicular to the plane of Ni(acac)2.
The intermolecular hydrogen bonds of O—H..O and O—H..N are present in the crystal structure. Two solvent molecules of DMF connect to the 24-membered macrocycle structure via two hydrogen bonds of O2W—H2W2···O5. The one-dimensional infinite chains formed through the hydrogen bonds of O1W—H1W1···O1 and O1W—H1W1..O3 (Fig.2.). The two-dimensional sheets constructed through the H-bonding interactions of O1W-H2W1..O3W and O4W—H1W4···O3W. Then, the upper N2 atoms of DMTD and the lower O3W atoms of water connect together to form the three-dimensional network structure via the hydrogen bond of O3W—H1W3..N2 (Fig. 3).