metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis­{μ-3,3′-(1,3,4-thia­diazole-2,5-diyl­di­thio)bis­­[penta­ne­dionato(1−)]}bis­­[di­aqua­nickel(II)] di­methyl­formamide disolvate trihydrate

aNew Materials and Function Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: ffj2003@163169.net

(Received 19 December 2008; accepted 23 December 2008; online 17 January 2009)

The title compound, [Ni2(C12H12N2O4S3)(H2O)4]·2C3H7NO·3H2O, is made up of a centrosymmetric, bimetallic complex containing a 24-membered macrocyclic ring, two dimethyl­formamide and three water solvent mol­ecules. The Ni atom adopts a slightly distorted NiO6 octahedral geometry arising from two O,O-bidentate ligands and two water molecules. There are inter­molecular O—H⋯O and O—H⋯N inter­actions in the crystal structure. One of the uncoordinated water molecules is diordered over two sets of sites of equal occupancy.

Related literature

For background to metallamacrocycles, see: Gaynor et al. (2002[Gaynor, D., Starikova, Z. A., Ostrovsky, S., Haase, W. & Nolan, K. B. (2002). Chem. Commun. pp. 506-507.]); Shan et al. (2004[Shan, N., Vickers, S. J., Adams, H., Ward, M. D. & Thomas, J. A. (2004). Angew. Chem. Int. Ed. 43, 3938-3941.]); Weng et al. (2004[Weng, Z., Teo, S., Koh, L. L. & Hor, T. S. A. (2004). Organometallics, 23, 3603-3609.]); Zhang et al. (2006[Zhang, X. F., Chen, H., Ma, C. B., Chen, C. N. & Liu, Q. T. (2006). Dalton Trans. pp. 4047-4055.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni2(C12H12N2O4S3)(H2O)4]·2C3H7NO·3H2O

  • Mr = 1078.56

  • Triclinic, [P \overline 1]

  • a = 10.582 (2) Å

  • b = 11.469 (1) Å

  • c = 12.136 (2) Å

  • α = 102.30 (3)°

  • β = 107.21 (1)°

  • γ = 116.26 (3)°

  • V = 1155.6 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 295 (2) K

  • 0.23 × 0.20 × 0.16 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 6130 measured reflections

  • 4039 independent reflections

  • 3498 reflections with I > 2σ(I)

  • Rint = 0.013

  • 3 standard reflections every 100 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.095

  • S = 1.03

  • 4039 reflections

  • 284 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected bond lengths (Å)

Ni1—O4i 1.9851 (19)
Ni1—O2 1.992 (2)
Ni1—O3i 1.998 (2)
Ni1—O1 2.0029 (19)
Ni1—O2W 2.060 (2)
Ni1—O1W 2.065 (2)
Symmetry code: (i) -x+1, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W1⋯O3ii 0.85 2.48 2.817 (5) 104
O1W—H1W1⋯O1iii 0.85 2.11 2.932 (2) 162
O3W—H1W3⋯N2iv 0.85 2.04 2.865 (6) 164
O2W—H2W2⋯O5i 0.85 1.87 2.700 (4) 164
Symmetry codes: (i) -x+1, -y+1, -z; (ii) x-1, y, z; (iii) -x, -y+1, -z; (iv) -x+2, -y+1, -z+1.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius. (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL/PC (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The design and study of various metal-containing macrocycles and cages is one of the most active and interesting areas in modern supramolecular chemistry. The appealing structures of the metallamacrocycles can act as highly specific hosts used for selective recognition of neutral molecules, cations and anions. and switchable electron-transfer (Shan et al., 2004), catalysis (Weng et al., 2004) and magnetism (Gaynor et al., 2002) have also been reported as the possible applications. Among the metallamacrocyclic complexes, dimetal macrocyclic complexes have attracted great interest in recent years and become an important type of metallamacrocycles. Herein, the title compound has been synthesized and we report its crystal structure.

The crystal structure are composed of the dimetal macrocyclic complexe and the solvent molecules of DMF and water (Fig.1). Accompanying the formation of the C—S bond, nickel acetyl acetonate [Ni(acac)2] and 2,5-dimercapto-1,3,4-thiadiazole (DMTD) construct a 24-membered dimetal macrocyclic complex. The symmetrical center exists within the dimetal macrocyclic structure. The Ni(II) ion is chelated by the acetyl acetonate (acac) groups forming two non-planar six-membered chelating rings. The acac oxygen atoms which occupied the equatorial plane of the octahedral metal with rather small dihedral angles between the O1—Ni—O2 and O3—Ni—O4 planes is 2.4 (1)°, which is similar to those reported previously (Zhang et al., 2006). The dihedral angles between the thiadiazole ring and the acac-S planes is 85.9 (2)°. Two solvent ligands of water molecules are located at opposed positions with one extending to the inner space of the macrocycle, the plane which they located are nearly perpendicular to the plane of Ni(acac)2.

The intermolecular hydrogen bonds of O—H..O and O—H..N are present in the crystal structure. Two solvent molecules of DMF connect to the 24-membered macrocycle structure via two hydrogen bonds of O2W—H2W2···O5. The one-dimensional infinite chains formed through the hydrogen bonds of O1W—H1W1···O1 and O1W—H1W1..O3 (Fig.2.). The two-dimensional sheets constructed through the H-bonding interactions of O1W-H2W1..O3W and O4W—H1W4···O3W. Then, the upper N2 atoms of DMTD and the lower O3W atoms of water connect together to form the three-dimensional network structure via the hydrogen bond of O3W—H1W3..N2 (Fig. 3).

Related literature top

For background to metallamacrocycles, see: Gaynor et al. (2002); Shan et al. (2004); Weng et al. (2004); Zhang et al. (2006).

Experimental top

A mixture of DMTD (1.5 g, 0.01 mol) and sodium ethoxide (1.36 g,0.02 mol) was stirred with ethanol (50 mL) at room temperature for 30 min, then nickel acetyl acetonate (2.57 g, 0.01 mol) were added and heated to reflux about 4 h, yielded sky-blue precipitate, affording the title compound (3.34 g, yield 31%).Single crystals suitable for X-ray measurements were obtained by recrystallization from the mixture solvent of water and DMF (the mol ratio 1:5) at room temperature.

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H and C—H distances of 0.85 and 0.96 Å, respectively, andwith Uiso(H) = 1.2 or 1.5Ueq of the parent atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CAD-4 Software (Enraf–Nonius, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Sheldrick, 2008); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labeling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view of the one-dimensional infinite hydrogen bonds chain. The green lines for hydrogen bonds in the plane, the hydrogen atoms are omited for clarity, the same hereafter.
[Figure 3] Fig. 3. The three-dimensional network structures formed via hydrogen bonds along a-directions. The blue lines for O3W—H1W3..N2, For clarity, the solvent molecules of DMF and H atoms are not shown.
bis{µ-3,3'-(1,3,4-thiadiazole-2,5- diyldithio)bis[pentanedionato(1-)]}bis[diaquanickel(II)] dimethylformamide disolvate trihydrate top
Crystal data top
[Ni2(C12H12N2O4S3)(H2O)4]·2C3H7NO·3H2OZ = 1
Mr = 1078.56F(000) = 562
Triclinic, P1Dx = 1.550 Mg m3
Hall symbol: -P 1Melting point: 554.6 K
a = 10.582 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.469 (1) ÅCell parameters from 25 reflections
c = 12.136 (2) Åθ = 4–14°
α = 102.30 (3)°µ = 1.16 mm1
β = 107.21 (1)°T = 295 K
γ = 116.26 (3)°Block, green
V = 1155.6 (6) Å30.23 × 0.20 × 0.16 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.013
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.9°
Graphite monochromatorh = 1112
ω scansk = 1313
6130 measured reflectionsl = 1410
4039 independent reflections3 standard reflections every 100 reflections
3498 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.9813P]
where P = (Fo2 + 2Fc2)/3
4039 reflections(Δ/σ)max < 0.001
284 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Ni2(C12H12N2O4S3)(H2O)4]·2C3H7NO·3H2Oγ = 116.26 (3)°
Mr = 1078.56V = 1155.6 (6) Å3
Triclinic, P1Z = 1
a = 10.582 (2) ÅMo Kα radiation
b = 11.469 (1) ŵ = 1.16 mm1
c = 12.136 (2) ÅT = 295 K
α = 102.30 (3)°0.23 × 0.20 × 0.16 mm
β = 107.21 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.013
6130 measured reflections3 standard reflections every 100 reflections
4039 independent reflections intensity decay: none
3498 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.03Δρmax = 0.47 e Å3
4039 reflectionsΔρmin = 0.60 e Å3
284 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.26742 (4)0.62302 (4)0.03339 (3)0.03044 (12)
S10.57596 (10)0.85228 (10)0.50283 (7)0.0503 (2)
S20.96862 (10)0.64320 (10)0.43743 (7)0.0517 (2)
S50.70843 (10)0.70555 (9)0.37703 (7)0.0483 (2)
O10.2162 (2)0.5835 (2)0.17277 (17)0.0363 (4)
O20.4302 (3)0.8227 (2)0.15619 (19)0.0444 (5)
O1W0.1000 (3)0.6732 (2)0.0185 (2)0.0483 (5)
H1W10.00240.61170.06480.058*
H2W10.11290.75470.00080.058*
O30.8900 (2)0.5791 (2)0.08790 (18)0.0372 (4)
O2W0.4322 (2)0.5712 (2)0.08969 (19)0.0413 (5)
H1W20.48350.56440.15400.050*
H2W20.49450.60910.05900.050*
O40.6766 (2)0.3368 (2)0.10243 (18)0.0401 (5)
N10.8243 (3)0.8407 (3)0.6137 (2)0.0542 (7)
N20.9174 (3)0.7907 (3)0.5975 (2)0.0529 (7)
C10.5014 (4)0.8636 (3)0.2726 (3)0.0396 (7)
C20.4545 (3)0.7796 (3)0.3404 (3)0.0375 (6)
C30.3124 (3)0.6462 (3)0.2874 (3)0.0359 (6)
C40.6446 (5)1.0111 (4)0.3393 (4)0.0639 (10)
H4A0.65821.05250.27950.096*
H4B0.73531.00810.38000.096*
H4C0.63241.06720.40120.096*
C50.2640 (4)0.5707 (4)0.3676 (3)0.0580 (9)
H5A0.16460.48240.31600.087*
H5B0.25430.62860.43030.087*
H5C0.34190.55240.40810.087*
C60.7117 (4)0.8037 (3)0.5087 (3)0.0412 (7)
C70.8711 (4)0.7194 (3)0.4804 (3)0.0410 (7)
C80.9326 (3)0.6343 (3)0.2039 (3)0.0370 (6)
C90.8698 (3)0.5594 (3)0.2722 (3)0.0376 (6)
C100.7436 (3)0.4150 (3)0.2166 (3)0.0364 (6)
C111.0570 (4)0.7901 (3)0.2674 (3)0.0622 (10)
H11A1.08610.82270.20690.093*
H11B1.14770.80630.33350.093*
H11C1.01690.84100.30250.093*
C120.6796 (5)0.3461 (4)0.2957 (3)0.0558 (9)
H12A0.59560.24900.24360.084*
H12B0.64040.39560.33410.084*
H12C0.76170.34950.36000.084*
O50.3257 (3)0.2918 (3)0.0367 (3)0.0627 (7)
N60.2517 (4)0.1686 (4)0.0772 (4)0.0702 (9)
C130.2358 (8)0.2730 (6)0.1515 (6)0.110 (2)
H13A0.25170.34530.11940.165*
H13B0.31280.31500.23760.165*
H13C0.13220.22800.14690.165*
C140.2237 (8)0.0463 (5)0.1088 (6)0.1039 (18)
H14A0.22920.01900.04910.156*
H14B0.12140.00010.10630.156*
H14C0.30230.07740.19180.156*
C150.2982 (5)0.1897 (4)0.0082 (4)0.0663 (11)
H15A0.29310.10060.05920.079*
O3W0.8641 (5)0.1907 (5)0.1821 (4)0.1309 (16)
H1W30.91730.17870.24120.157*
H2W30.84170.24760.21480.157*
O4W0.4494 (6)0.0168 (7)0.0250 (7)0.089 (2)0.50
H1W40.37830.07390.01010.107*0.50
H2W40.40440.00370.08750.107*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0302 (2)0.0303 (2)0.02522 (19)0.01252 (15)0.01182 (15)0.01108 (14)
S10.0508 (5)0.0655 (5)0.0274 (4)0.0360 (4)0.0116 (3)0.0044 (4)
S20.0520 (5)0.0692 (6)0.0281 (4)0.0411 (5)0.0063 (3)0.0073 (4)
S50.0499 (5)0.0640 (5)0.0237 (4)0.0367 (4)0.0069 (3)0.0057 (3)
O10.0323 (10)0.0410 (11)0.0295 (10)0.0144 (9)0.0148 (8)0.0145 (9)
O20.0502 (13)0.0328 (11)0.0331 (11)0.0141 (10)0.0126 (10)0.0118 (9)
O1W0.0495 (13)0.0527 (13)0.0606 (14)0.0344 (11)0.0284 (11)0.0324 (11)
O30.0346 (10)0.0328 (10)0.0341 (11)0.0126 (9)0.0138 (9)0.0116 (9)
O2W0.0397 (11)0.0540 (13)0.0381 (11)0.0274 (10)0.0205 (9)0.0226 (10)
O40.0414 (11)0.0387 (11)0.0293 (11)0.0135 (9)0.0155 (9)0.0138 (9)
N10.0613 (18)0.0711 (19)0.0285 (14)0.0439 (16)0.0124 (13)0.0096 (13)
N20.0566 (17)0.0703 (19)0.0276 (13)0.0420 (16)0.0089 (12)0.0090 (13)
C10.0405 (16)0.0349 (15)0.0353 (16)0.0201 (13)0.0132 (13)0.0062 (13)
C20.0397 (16)0.0431 (16)0.0258 (14)0.0239 (14)0.0119 (12)0.0077 (12)
C30.0388 (16)0.0457 (16)0.0306 (15)0.0266 (14)0.0181 (13)0.0155 (13)
C40.061 (2)0.0381 (18)0.053 (2)0.0113 (17)0.0108 (18)0.0078 (16)
C50.059 (2)0.071 (2)0.0419 (19)0.0280 (19)0.0273 (17)0.0299 (18)
C60.0438 (17)0.0480 (18)0.0274 (15)0.0252 (15)0.0131 (13)0.0105 (13)
C70.0420 (16)0.0460 (17)0.0269 (15)0.0235 (14)0.0093 (13)0.0100 (13)
C80.0336 (15)0.0366 (15)0.0350 (16)0.0193 (13)0.0112 (12)0.0098 (13)
C90.0381 (16)0.0434 (16)0.0263 (14)0.0242 (14)0.0090 (12)0.0085 (12)
C100.0410 (16)0.0472 (17)0.0290 (15)0.0275 (14)0.0164 (13)0.0192 (13)
C110.061 (2)0.0355 (18)0.052 (2)0.0108 (17)0.0151 (18)0.0028 (15)
C120.071 (2)0.062 (2)0.0417 (18)0.0329 (19)0.0325 (18)0.0279 (17)
O50.0641 (16)0.0535 (15)0.095 (2)0.0349 (13)0.0507 (15)0.0428 (14)
N60.076 (2)0.062 (2)0.094 (3)0.0371 (18)0.052 (2)0.0472 (19)
C130.160 (6)0.112 (4)0.141 (5)0.095 (4)0.115 (5)0.077 (4)
C140.151 (5)0.073 (3)0.122 (4)0.061 (3)0.082 (4)0.064 (3)
C150.071 (3)0.052 (2)0.087 (3)0.033 (2)0.045 (2)0.031 (2)
O3W0.143 (4)0.201 (5)0.117 (3)0.117 (4)0.066 (3)0.113 (3)
O4W0.063 (5)0.068 (4)0.109 (6)0.023 (5)0.018 (4)0.046 (4)
Geometric parameters (Å, º) top
Ni1—O4i1.9851 (19)C4—H4C0.9600
Ni1—O21.992 (2)C5—H5A0.9600
Ni1—O3i1.998 (2)C5—H5B0.9600
Ni1—O12.0029 (19)C5—H5C0.9600
Ni1—O2W2.060 (2)C8—C91.411 (4)
Ni1—O1W2.065 (2)C8—C111.500 (4)
S1—C61.745 (3)C9—C101.419 (4)
S1—C21.756 (3)C10—C121.496 (4)
S2—C71.739 (3)C11—H11A0.9600
S2—C91.757 (3)C11—H11B0.9600
S5—C71.720 (3)C11—H11C0.9600
S5—C61.728 (3)C12—H12A0.9600
O1—C31.256 (3)C12—H12B0.9600
O2—C11.248 (4)C12—H12C0.9600
O1W—H1W10.8500O5—C151.228 (4)
O1W—H2W10.8500N6—C151.295 (5)
O3—C81.256 (3)N6—C131.443 (6)
O3—Ni1i1.998 (2)N6—C141.460 (5)
O2W—H1W20.8500C13—H13A0.9600
O2W—H2W20.8501C13—H13B0.9600
O4—C101.247 (3)C13—H13C0.9600
O4—Ni1i1.9851 (19)C14—H14A0.9600
N1—C61.284 (4)C14—H14B0.9600
N1—N21.381 (4)C14—H14C0.9600
N2—C71.290 (4)C15—H15A1.0463
C1—C21.418 (4)O3W—H1W30.8498
C1—C41.495 (5)O3W—H2W30.8500
C2—C31.410 (4)O4W—O4Wii0.901 (10)
C3—C51.490 (4)O4W—H1W40.8500
C4—H4A0.9600O4W—H2W40.8500
C4—H4B0.9600
O4i—Ni1—O291.40 (9)H5B—C5—H5C109.5
O4i—Ni1—O3i88.63 (9)N1—C6—S5114.8 (2)
O2—Ni1—O3i177.92 (9)N1—C6—S1121.4 (2)
O4i—Ni1—O1178.59 (8)S5—C6—S1123.82 (17)
O2—Ni1—O187.98 (9)N2—C7—S5114.7 (2)
O3i—Ni1—O191.95 (9)N2—C7—S2120.5 (2)
O4i—Ni1—O2W91.54 (9)S5—C7—S2124.88 (17)
O2—Ni1—O2W88.80 (9)O3—C8—C9124.0 (3)
O3i—Ni1—O2W89.12 (9)O3—C8—C11114.9 (3)
O1—Ni1—O2W87.18 (8)C9—C8—C11121.0 (3)
O4i—Ni1—O1W90.39 (9)C8—C9—C10124.1 (3)
O2—Ni1—O1W91.24 (10)C8—C9—S2117.8 (2)
O3i—Ni1—O1W90.85 (10)C10—C9—S2117.7 (2)
O1—Ni1—O1W90.90 (9)O4—C10—C9124.8 (3)
O2W—Ni1—O1W178.07 (8)O4—C10—C12114.8 (3)
C6—S1—C2102.53 (14)C9—C10—C12120.4 (3)
C7—S2—C9105.44 (14)C8—C11—H11A109.5
C7—S5—C686.11 (15)C8—C11—H11B109.5
C3—O1—Ni1124.99 (18)H11A—C11—H11B109.5
C1—O2—Ni1126.2 (2)C8—C11—H11C109.5
Ni1—O1W—H1W1123.7H11A—C11—H11C109.5
Ni1—O1W—H2W1128.6H11B—C11—H11C109.5
H1W1—O1W—H2W1107.7C10—C12—H12A109.5
C8—O3—Ni1i128.97 (19)C10—C12—H12B109.5
Ni1—O2W—H1W2139.2H12A—C12—H12B109.5
Ni1—O2W—H2W2104.0C10—C12—H12C109.5
H1W2—O2W—H2W2107.7H12A—C12—H12C109.5
C10—O4—Ni1i128.75 (19)H12B—C12—H12C109.5
C6—N1—N2112.1 (3)C15—N6—C13120.0 (4)
C7—N2—N1112.3 (3)C15—N6—C14122.7 (4)
O2—C1—C2124.1 (3)C13—N6—C14117.2 (4)
O2—C1—C4115.3 (3)N6—C13—H13A109.5
C2—C1—C4120.6 (3)N6—C13—H13B109.5
C3—C2—C1124.2 (3)H13A—C13—H13B109.5
C3—C2—S1118.3 (2)N6—C13—H13C109.5
C1—C2—S1117.4 (2)H13A—C13—H13C109.5
O1—C3—C2124.1 (3)H13B—C13—H13C109.5
O1—C3—C5114.9 (3)N6—C14—H14A109.5
C2—C3—C5120.9 (3)N6—C14—H14B109.5
C1—C4—H4A109.5H14A—C14—H14B109.5
C1—C4—H4B109.5N6—C14—H14C109.5
H4A—C4—H4B109.5H14A—C14—H14C109.5
C1—C4—H4C109.5H14B—C14—H14C109.5
H4A—C4—H4C109.5O5—C15—N6125.1 (4)
H4B—C4—H4C109.5O5—C15—H15A123.6
C3—C5—H5A109.5N6—C15—H15A110.6
C3—C5—H5B109.5H1W3—O3W—H2W3107.7
H5A—C5—H5B109.5O4Wii—O4W—H1W4118.3
C3—C5—H5C109.5O4Wii—O4W—H2W4134.0
H5A—C5—H5C109.5H1W4—O4W—H2W4107.7
O2—Ni1—O1—C329.7 (2)C7—S5—C6—S1179.8 (2)
O3i—Ni1—O1—C3148.2 (2)C2—S1—C6—N1178.6 (3)
O2W—Ni1—O1—C359.2 (2)C2—S1—C6—S50.7 (3)
O1W—Ni1—O1—C3121.0 (2)N1—N2—C7—S50.0 (4)
O4i—Ni1—O2—C1151.7 (3)N1—N2—C7—S2178.8 (2)
O1—Ni1—O2—C127.1 (3)C6—S5—C7—N20.4 (3)
O2W—Ni1—O2—C160.1 (3)C6—S5—C7—S2178.3 (2)
O1W—Ni1—O2—C1117.9 (3)C9—S2—C7—N2179.4 (3)
C6—N1—N2—C70.7 (4)C9—S2—C7—S51.9 (3)
Ni1—O2—C1—C214.5 (4)Ni1i—O3—C8—C91.8 (4)
Ni1—O2—C1—C4165.2 (2)Ni1i—O3—C8—C11178.8 (2)
O2—C1—C2—C37.7 (5)O3—C8—C9—C104.6 (5)
C4—C1—C2—C3172.7 (3)C11—C8—C9—C10174.8 (3)
O2—C1—C2—S1176.6 (2)O3—C8—C9—S2167.6 (2)
C4—C1—C2—S13.0 (4)C11—C8—C9—S213.0 (4)
C6—S1—C2—C396.7 (2)C7—S2—C9—C896.1 (3)
C6—S1—C2—C187.3 (3)C7—S2—C9—C1091.2 (3)
Ni1—O1—C3—C220.1 (4)Ni1i—O4—C10—C96.6 (4)
Ni1—O1—C3—C5161.4 (2)Ni1i—O4—C10—C12174.2 (2)
C1—C2—C3—O14.4 (5)C8—C9—C10—O42.1 (5)
S1—C2—C3—O1179.9 (2)S2—C9—C10—O4170.1 (2)
C1—C2—C3—C5173.9 (3)C8—C9—C10—C12177.1 (3)
S1—C2—C3—C51.7 (4)S2—C9—C10—C1210.7 (4)
N2—N1—C6—S51.1 (4)C13—N6—C15—O53.0 (7)
N2—N1—C6—S1179.6 (2)C14—N6—C15—O5178.7 (5)
C7—S5—C6—N10.9 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3iii0.852.482.817 (5)104
O1W—H1W1···O1iv0.852.112.932 (2)162
O3W—H1W3···N2v0.852.042.865 (6)164
O2W—H2W2···O5i0.851.872.700 (4)164
Symmetry codes: (i) x+1, y+1, z; (iii) x1, y, z; (iv) x, y+1, z; (v) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni2(C12H12N2O4S3)(H2O)4]·2C3H7NO·3H2O
Mr1078.56
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)10.582 (2), 11.469 (1), 12.136 (2)
α, β, γ (°)102.30 (3), 107.21 (1), 116.26 (3)
V3)1155.6 (6)
Z1
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.23 × 0.20 × 0.16
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6130, 4039, 3498
Rint0.013
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.03
No. of reflections4039
No. of parameters284
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.60

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Sheldrick, 2008), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Ni1—O4i1.9851 (19)Ni1—O12.0029 (19)
Ni1—O21.992 (2)Ni1—O2W2.060 (2)
Ni1—O3i1.998 (2)Ni1—O1W2.065 (2)
O4i—Ni1—O3i88.63 (9)O2—Ni1—O1W91.24 (10)
O2—Ni1—O187.98 (9)O2W—Ni1—O1W178.07 (8)
O4i—Ni1—O1W90.39 (9)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O3ii0.852.482.817 (5)104
O1W—H1W1···O1iii0.852.112.932 (2)162
O3W—H1W3···N2iv0.852.042.865 (6)164
O2W—H2W2···O5i0.851.872.700 (4)164
Symmetry codes: (i) x+1, y+1, z; (ii) x1, y, z; (iii) x, y+1, z; (iv) x+2, y+1, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province (No. Z2007B01).

References

First citationEnraf–Nonius. (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGaynor, D., Starikova, Z. A., Ostrovsky, S., Haase, W. & Nolan, K. B. (2002). Chem. Commun. pp. 506–507.  Web of Science CSD CrossRef Google Scholar
First citationShan, N., Vickers, S. J., Adams, H., Ward, M. D. & Thomas, J. A. (2004). Angew. Chem. Int. Ed. 43, 3938–3941.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeng, Z., Teo, S., Koh, L. L. & Hor, T. S. A. (2004). Organometallics, 23, 3603–3609.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, X. F., Chen, H., Ma, C. B., Chen, C. N. & Liu, Q. T. (2006). Dalton Trans. pp. 4047–4055.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds