organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z,E,Z)-1,6-Di-1-naphthyl­hexa-1,3,5-triene

aNanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan, and bTechnical Center, AIST, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
*Correspondence e-mail: y.sonoda@aist.go.jp

(Received 24 December 2008; accepted 7 January 2009; online 14 January 2009)

The title compound, C26H20, lies about an inversion centre. The naphthalene unit and the hexa­triene chain are each approximately planar (maximum deviations of 0.0143 and 0.0042 Å, respectively), and are inclined to one another at a dihedral angle of 49.20 (4)°. The dihedral angle between the two naphthalene ring systems of neighboring mol­ecules is 85.71 (4)°.

Related literature

For the potential use of α,ω-diaryl­polyenes as non-linear optical materials, see: Geskin et al. (2003[Geskin, V. M., Lambert, C. & Brédas, J.-L. (2003). J. Am. Chem. Soc. 125, 15651-15658.]); Rumi et al. (2000[Rumi, M., Ehrlich, J. E., Heikal, A. A., Perry, J. W., Barlow, S., Hu, Z., McCord-Maughon, D., Parker, T. C., Röckel, H., Thayumanavan, S., Marder, S. R., Beljonne, D. & Brédas, J.-L. (2000). J. Am. Chem. Soc. 122, 9500-9510.]). For a study of the relationship between the crystal structure and the photophysical properties of 1,6-diaryl­hexa-1,3,5-trienes, see: Sonoda et al. (2006[Sonoda, Y., Goto, M., Tsuzuki, S. & Tamaoki, N. (2006). J. Phys. Chem. A, 110, 13379-13387.]); Sonoda, Goto et al. (2007[Sonoda, Y., Goto, M., Tsuzuki, S. & Tamaoki, N. (2007). J. Phys. Chem. A, 111, 13441-13451.]). For related structures, see: Aldoshin et al. (1984[Aldoshin, S. M., Alfimov, M. V., Atovmyan, L. O., Kaminsky, V. F., Razumov, V. F. & Rachinsky, A. G. (1984). Mol. Cryst. Liq. Cryst. 108, 1-17.]); Sonoda et al. (2005[Sonoda, Y., Kawanishi, Y., Tsuzuki, S. & Goto, M. (2005). J. Org. Chem. 70, 9755-9763.]); Sonoda, Tsuzuki et al. (2007[Sonoda, Y., Tsuzuki, S., Tamaoki, N. & Goto, M. (2007). Acta Cryst. C63, o196-o200.]).

[Scheme 1]

Experimental

Crystal data
  • C26H20

  • Mr = 332.42

  • Monoclinic, P 21 /n

  • a = 5.0071 (8) Å

  • b = 11.0709 (17) Å

  • c = 16.110 (3) Å

  • β = 96.535 (3)°

  • V = 887.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 203 (2) K

  • 0.30 × 0.10 × 0.05 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.910, Tmax = 0.997

  • 5367 measured reflections

  • 2023 independent reflections

  • 1366 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.114

  • S = 1.01

  • 2023 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

α,ω-Diarylpolyenes are known as fluorescent molecules in solution, and are also attractive because of their potential use as non-linear optical materials (Rumi et al., 2000; Geskin et al., 2003). During an ongoing study on the relationship between the crystal structure and the photophysical properties of 1,6-diarylhexa-1,3,5-trienes (Sonoda et al., 2006; Sonoda, Goto et al., 2007), we obtained the title compound (I), whose structure we report here.

In the present compound, the averaged value of the C—C single bond length in the hexatriene chain is 1.457 Å, that of the C=C double bond length is 1.341 Å, and the resulting bond-length alternation (δr, the difference between the single and double bond lengths) is 0.116 Å. The title compound lies about an inversion centre.

The naphthalene ring and the hexatriene chain are approximately planar, with the maximum deviations of 0.0143 and 0.0042 Å from the least-squares planes, respectively (Fig. 1). The dihedral angle between the ring and the chain is 49.20 (4)°. Thus, the steric hindrance between C9—H and C13—H is minimized by the twisting around the C10—C11 single bond. C—C—C internal bond angles in the hexatriene chain are all somewhat wider than 120°, which also minimizes the steric hindrance.

The structure of (I) can be compared with those of (Z,E,Z)-1,6-diphenylhexa-1,3,5-triene 4,4'-dicarboxylic acid dialkyl esters (Sonoda et al., 2005). In the case of the dimethyl ester, for example, δr is 0.111 Å and other geometrical parameters for the triene chain including C—C—C bond angles are all comparable with the values in (I). Also in this compound, the benzene ring and the triene chain are nearly planar for conjugation. The torsion angle of the single bond between the ring and the chain is 41.0 (2)°, significantly smaller than the C9—C10—C11—C12 angle in (I). This is probably due to the additional steric hindrance between C2—H and C11—H in (I).

For another related structure of (Z)-1,2-di(1-naphthyl)ethylene, the twisting not only around the naphthalene-ethylene single bond but also around the C=C double bond minimize the large steric hindrance between the two hydrogen atoms at the 2-position of the naphthalene ring (Aldoshin et al., 1984). Different from the high planarity of the hexatriene unit in (I), the C—CC—C torsion angle in this compound is 14.6°. While, the torsion angle of 44.1° about the naphthalene-ethylene single bond is similar to or even slightly smaller than the corresponding angle in (I).

In the crystal structure of (I), there are some C—H···π contacts (Fig. 2). The dihedral angle between the two naphthalene rings of the neighboring molecules is 85.71 (4)°.

Related literature top

For the potential use of α,ω-diarylpolyenes as non-linear optical materials, see: Geskin et al. (2003); Rumi et al. (2000). For a study of the relationship between the crystal structure and the photophysical properties of 1,6-diarylhexa-1,3,5-trienes, see: Sonoda et al. (2006); Sonoda, Goto et al. (2007). For related structures, see: Aldoshin et al. (1984); Sonoda et al. (2005). For related literature, see: Sonoda, Tsuzuki et al. (2007). Cg2 is the centroid of the C1/C6–C10 ring.

Experimental top

Compound (I) was synthesized by the Wittig reaction of 1-naphthaldehyde and (E)-but-2-ene-1,4-bis(triphenylphosphonium chloride). The reaction gave a mixture of Z,E,Z and E,E,E isomers (predominantly Z,E,Z), from which the Z,E,Z isomer (I) was crystallized from dichloromethane by slow evaporation at room temperature in the dark. 1H NMR (CDCl3, 300 MHz): δ 7.95–7.99 (2H, m, arom.), 7.80–7.90 (4H, m, arom.), 7.43–7.55 (8H, m, arom.), 6.95 (2H, d, J = 11.1 Hz, triene), 6.72 (2H, dd, J = 7.7, 3.0 Hz, triene), 6.47 (2H, ddd, J = 11.0, 7.8, 3.2 Hz, triene).

Refinement top

All non-hydrogen atoms were refined anisotropically and hydrogen atoms were located by geometric considerations and refined as riding on their carrier atoms [ C—H = 0.94 Å, Ueq = 1.2 Uiso(C) ].

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure and the atom-numbering scheme of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The title compound lies about an inversion centre [(*) -x, -y, -z].
[Figure 2] Fig. 2. A packing diagram of (I) illustrating intermolecular contacts associated with hydrogen atoms H2, H5 and H8 of the naphthalene ring.
(Z,E,Z)-1,6-Di-1-naphthylhexa-1,3,5-triene top
Crystal data top
C26H20F(000) = 352
Mr = 332.42Dx = 1.244 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1467 reflections
a = 5.0071 (8) Åθ = 2.6–27.1°
b = 11.0709 (17) ŵ = 0.07 mm1
c = 16.110 (3) ÅT = 203 K
β = 96.535 (3)°Rectangular, pale yellow
V = 887.2 (3) Å30.30 × 0.10 × 0.05 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2023 independent reflections
Radiation source: rotating unit1366 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.366 pixels mm-1θmax = 28.3°, θmin = 2.2°
ϕ and ω scansh = 66
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 614
Tmin = 0.910, Tmax = 0.997l = 2120
5367 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0527P)2 + 0.1208P]
where P = (Fo2 + 2Fc2)/3
2023 reflections(Δ/σ)max = 0.001
118 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C26H20V = 887.2 (3) Å3
Mr = 332.42Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.0071 (8) ŵ = 0.07 mm1
b = 11.0709 (17) ÅT = 203 K
c = 16.110 (3) Å0.30 × 0.10 × 0.05 mm
β = 96.535 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2023 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1366 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.997Rint = 0.027
5367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.01Δρmax = 0.16 e Å3
2023 reflectionsΔρmin = 0.16 e Å3
118 parameters
Special details top

Experimental. Sheldrick, G. M. (1996). SADABS, program for scaling and correction of area detector data. University of Göttingen, Germany.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0718 (2)0.18611 (12)0.28101 (8)0.0349 (3)
C20.2135 (3)0.10461 (14)0.33764 (9)0.0425 (4)
H20.33830.05110.31830.051*
C30.1719 (3)0.10250 (15)0.42018 (9)0.0506 (4)
H30.27110.04890.45700.061*
C40.0171 (3)0.17947 (16)0.45017 (9)0.0536 (4)
H40.04460.17730.50690.064*
C50.1600 (3)0.25694 (15)0.39761 (9)0.0501 (4)
H50.28940.30680.41820.060*
C60.1188 (3)0.26465 (13)0.31206 (8)0.0399 (3)
C70.2601 (3)0.34839 (14)0.25750 (10)0.0476 (4)
H70.38700.40020.27760.057*
C80.2140 (3)0.35465 (14)0.17611 (10)0.0482 (4)
H80.30630.41200.14060.058*
C90.0295 (3)0.27621 (13)0.14452 (9)0.0428 (4)
H90.00160.28180.08790.051*
C100.1111 (3)0.19160 (13)0.19424 (8)0.0369 (3)
C110.3027 (3)0.10910 (13)0.16049 (8)0.0411 (3)
H110.47330.10200.19110.049*
C120.2587 (3)0.04314 (13)0.09057 (8)0.0407 (3)
H120.40520.00230.07610.049*
C130.0132 (3)0.03363 (13)0.03492 (8)0.0386 (3)
H130.13740.07710.04830.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0329 (6)0.0326 (7)0.0385 (7)0.0064 (6)0.0006 (5)0.0059 (6)
C20.0416 (7)0.0409 (8)0.0441 (8)0.0017 (7)0.0005 (6)0.0029 (7)
C30.0553 (9)0.0523 (10)0.0422 (8)0.0077 (8)0.0030 (7)0.0048 (7)
C40.0622 (10)0.0612 (11)0.0381 (8)0.0137 (9)0.0089 (7)0.0070 (8)
C50.0512 (9)0.0513 (10)0.0492 (9)0.0072 (8)0.0121 (7)0.0165 (8)
C60.0383 (7)0.0377 (8)0.0435 (8)0.0067 (6)0.0034 (6)0.0116 (6)
C70.0439 (8)0.0402 (8)0.0579 (9)0.0055 (7)0.0028 (7)0.0130 (7)
C80.0502 (8)0.0384 (8)0.0533 (9)0.0053 (7)0.0059 (7)0.0020 (7)
C90.0464 (8)0.0419 (8)0.0394 (7)0.0024 (7)0.0017 (6)0.0013 (6)
C100.0346 (7)0.0366 (8)0.0392 (7)0.0057 (6)0.0023 (5)0.0051 (6)
C110.0360 (7)0.0463 (9)0.0409 (7)0.0001 (6)0.0042 (6)0.0021 (7)
C120.0383 (7)0.0434 (8)0.0419 (7)0.0007 (6)0.0110 (6)0.0015 (7)
C130.0388 (7)0.0384 (8)0.0404 (7)0.0014 (6)0.0127 (6)0.0004 (6)
Geometric parameters (Å, º) top
C1—C21.4153 (19)C7—H70.9400
C1—C61.4232 (19)C8—C91.405 (2)
C1—C101.4350 (18)C8—H80.9400
C2—C31.369 (2)C9—C101.3736 (19)
C2—H20.9400C9—H90.9400
C3—C41.400 (2)C10—C111.4727 (19)
C3—H30.9400C11—C121.3395 (19)
C4—C51.351 (2)C11—H110.9400
C4—H40.9400C12—C131.4404 (18)
C5—C61.419 (2)C12—H120.9400
C5—H50.9400C13—C13i1.343 (3)
C6—C71.411 (2)C13—H130.9400
C7—C81.359 (2)
C2—C1—C6118.04 (13)C6—C7—H7119.8
C2—C1—C10122.72 (13)C7—C8—C9120.61 (14)
C6—C1—C10119.24 (12)C7—C8—H8119.7
C3—C2—C1121.08 (14)C9—C8—H8119.7
C3—C2—H2119.5C10—C9—C8121.66 (13)
C1—C2—H2119.5C10—C9—H9119.2
C2—C3—C4120.56 (15)C8—C9—H9119.2
C2—C3—H3119.7C9—C10—C1118.61 (13)
C4—C3—H3119.7C9—C10—C11121.32 (13)
C5—C4—C3120.03 (14)C1—C10—C11120.06 (12)
C5—C4—H4120.0C12—C11—C10126.65 (12)
C3—C4—H4120.0C12—C11—H11116.7
C4—C5—C6121.45 (15)C10—C11—H11116.7
C4—C5—H5119.3C11—C12—C13127.61 (13)
C6—C5—H5119.3C11—C12—H12116.2
C7—C6—C5121.78 (14)C13—C12—H12116.2
C7—C6—C1119.41 (13)C13i—C13—C12123.89 (16)
C5—C6—C1118.81 (14)C13i—C13—H13118.1
C8—C7—C6120.41 (14)C12—C13—H13118.1
C8—C7—H7119.8
C6—C1—C2—C31.0 (2)C6—C7—C8—C91.4 (2)
C10—C1—C2—C3179.57 (13)C7—C8—C9—C100.4 (2)
C1—C2—C3—C41.4 (2)C8—C9—C10—C11.6 (2)
C2—C3—C4—C50.1 (2)C8—C9—C10—C11179.55 (13)
C3—C4—C5—C61.5 (2)C2—C1—C10—C9178.01 (13)
C4—C5—C6—C7177.64 (14)C6—C1—C10—C92.54 (18)
C4—C5—C6—C11.9 (2)C2—C1—C10—C110.90 (19)
C2—C1—C6—C7178.92 (12)C6—C1—C10—C11178.55 (12)
C10—C1—C6—C71.60 (19)C9—C10—C11—C1248.6 (2)
C2—C1—C6—C50.66 (18)C1—C10—C11—C12132.53 (15)
C10—C1—C6—C5178.82 (12)C10—C11—C12—C133.0 (2)
C5—C6—C7—C8179.19 (14)C11—C12—C13—C13i179.04 (17)
C1—C6—C7—C80.4 (2)
Symmetry code: (i) x, y, z.

Experimental details

Crystal data
Chemical formulaC26H20
Mr332.42
Crystal system, space groupMonoclinic, P21/n
Temperature (K)203
a, b, c (Å)5.0071 (8), 11.0709 (17), 16.110 (3)
β (°) 96.535 (3)
V3)887.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.30 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.910, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
5367, 2023, 1366
Rint0.027
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.114, 1.01
No. of reflections2023
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.16

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXTL (Sheldrick, 2008).

 

References

First citationAldoshin, S. M., Alfimov, M. V., Atovmyan, L. O., Kaminsky, V. F., Razumov, V. F. & Rachinsky, A. G. (1984). Mol. Cryst. Liq. Cryst. 108, 1–17.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGeskin, V. M., Lambert, C. & Brédas, J.-L. (2003). J. Am. Chem. Soc. 125, 15651–15658.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRumi, M., Ehrlich, J. E., Heikal, A. A., Perry, J. W., Barlow, S., Hu, Z., McCord-Maughon, D., Parker, T. C., Röckel, H., Thayumanavan, S., Marder, S. R., Beljonne, D. & Brédas, J.-L. (2000). J. Am. Chem. Soc. 122, 9500–9510.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSonoda, Y., Goto, M., Tsuzuki, S. & Tamaoki, N. (2006). J. Phys. Chem. A, 110, 13379–13387.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSonoda, Y., Goto, M., Tsuzuki, S. & Tamaoki, N. (2007). J. Phys. Chem. A, 111, 13441–13451.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSonoda, Y., Kawanishi, Y., Tsuzuki, S. & Goto, M. (2005). J. Org. Chem. 70, 9755–9763.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSonoda, Y., Tsuzuki, S., Tamaoki, N. & Goto, M. (2007). Acta Cryst. C63, o196–o200.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds