metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis(phenyl 2-pyridyl ketone oxime)nickel(II) acetone solvate

aJiangsu Key Laboratory for Chemistry of Low-dimensional Materials, Department of Chemistry, Huaiyin Teachers College, Huai'an 223300, People's Republic of China, and bAnhui Key Laboratory of Functional Coordination Compounds, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246003, People's Republic of China
*Correspondence e-mail: liugx@live.com

(Received 24 December 2008; accepted 25 December 2008; online 8 January 2009)

The Ni atom in the title compound, [NiCl2(C12H10N2O)2]·C3H6O, adopts a distorted octa­hedral geometry, being ligated by four N atoms from two different phenyl 2-pyridyl ketone oxime ligands and two Cl atoms. In the crystal structure, inter­molecular O—H⋯Cl hydrogen bonds link the mol­ecules into a chain structure along [010]. There is a ππ contact between the pyridine rings [centroid–centroid distance = 3.824 (5) Å].

Related literature

For related structures, see: Korpi et al. (2005[Korpi, H., Polamo, M., Leskela, M. & Repo, T. (2005). Inorg. Chem. Commun. 8, 1181-1184.]); Pearse et al. (1989[Pearse, G. A., Raithby, P. R. & Lewis, J. (1989). Polyhedron, 8, 301-304.]); Afrati et al. (2005[Afrati, T., Dendrinou-Samara, C., Zaleski, C. M., Kampf, J. W., Pecoraro, V. L. & Kessissoglou, D. P. (2005). Inorg. Chem. Commun. 8, 1173-1176.]); Stamatatos et al. (2006[Stamatatos, T. C., Vlahopoulou, J. C., Sanakis, Y., Raptopoulou, C. P., Psycharis, V., Boudalis, A. K. & Perlepes, S. P. (2006). Inorg. Chem. Commun. 9, 814-818.]); Papatriantafyllopoulou et al. (2007[Papatriantafyllopoulou, C., Aromi, G., Tasiopoulos, A. J., Nastopoulos, V., Raptopoulou, C. P., Teat, S. J., Escuer, A. & Perlepes, S. P. (2007). Eur. J. Inorg. Chem. pp. 2761-2774.]).

[Scheme 1]

Experimental

Crystal data
  • [NiCl2(C12H10N2O)2]·C3H6O

  • Mr = 584.13

  • Triclinic, [P \overline 1]

  • a = 9.0367 (11) Å

  • b = 12.9142 (16) Å

  • c = 13.0664 (16) Å

  • α = 105.4390 (10)°

  • β = 92.232 (2)°

  • γ = 108.183 (2)°

  • V = 1384.0 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 296 (2) K

  • 0.22 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.822, Tmax = 0.866

  • 6839 measured reflections

  • 4761 independent reflections

  • 4002 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.089

  • S = 1.05

  • 4761 reflections

  • 338 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—N3 2.0344 (18)
Ni1—N1 2.0418 (18)
Ni1—N4 2.0879 (17)
Ni1—N2 2.1188 (17)
Ni1—Cl1 2.3944 (6)
Ni1—Cl2 2.4153 (7)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯Cl2 0.82 2.27 2.9582 (18) 142
O1—H1⋯Cl1i 0.82 2.91 3.4612 (16) 127
O1—H1⋯Cl1 0.82 2.37 3.0542 (16) 141
Symmetry code: (i) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridine-2-carbaldehyde oxime ligands usually bind to metals in a bidentate fashion, either chelating one metal center or bridging two metals. Their complexes find application in diverse areas such as functional supramolecular design, magnetic materials and catalysis (Korpi et al., 2005; Pearse et al., 1989; Afrati et al., 2005; Stamatatos et al., 2006). The title compound is a new nickel complex from the reaction of NiCl2 with phenyl-2-pyridyl ketone oxime (ppo). The compound consists of two N,N-chelating ligands and two chloride anion. The two ppo ligands are coordinated to Ni to form two five-membered NiC2N2 rings. The central Ni atom adopts a distorted octahedral geometry (Fig. 1), which are ligated by four N atoms from two different phenyl-2-pyridyl ketone oxime ligand and two Cl atoms. The bond distances Ni—N and Ni—Cl are in the expected ranges of 2.0344 (18)–2.1188 (17) and 2.3944 (6)–2.4153 (7) Å, respectively, and the coordination angles around Ni atom are in the range 76.84 (7)–170.18 (7)°, which are in agreement with the literature values (Papatriantafyllopoulou et al., 2007). In the crystal structure, intermolecular O—H···Cl hydrogen bonds link the molecules into one-dimensional chain structure (Table 2). There is a ππ contact between the pyridine rings, and the distance of centroid to centroid is 3.824 (5) Å.

Related literature top

For related structures, see: Korpi et al. (2005); Pearse et al. (1989); Afrati et al. (2005); Stamatatos et al. (2006); Papatriantafyllopoulou et al. (2007).

Experimental top

A colourless solution of phenyl-2-pyridyl ketone oxime (0.197 g, 1.00 mmol) in acetone (10 ml) was slowly added to a slurry of LiOH.H2O (0.042 g, 1.00 mmol) in MeOH (5 ml); the hydroxide soon dissolved. The solution was then added to a slurry of NiCl2.6H2O (0.297 g, 1.00 mmol) in MeOH (10 ml) and the resulting green solution was stirred for 1 h at room temperature. A small quantity of undissolved material was removed by filtration. The filtrate was allowed to stand undisturbed in a closed flask for a period of 4–5 d. Dark cyan crystals appeared which were collected by filtration, washed with cold MeOH (1 ml) and ice-cold Et2O (2 ml), and dried in air [Yield: 52%].

Refinement top

All H atoms were placed in calculated positions, with O—H = 0.82 Å, Uiso(H) = 1.5Ueq(O), C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic and C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for CH3 atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids. The solvent molecule and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Dichloridobis(phenyl 2-pyridyl ketone oxime)nickel(II) acetone solvate top
Crystal data top
[NiCl2(C12H10N2O)2]·C3H6OZ = 2
Mr = 584.13F(000) = 604
Triclinic, P1Dx = 1.402 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0367 (11) ÅCell parameters from 3432 reflections
b = 12.9142 (16) Åθ = 2.4–27.6°
c = 13.0664 (16) ŵ = 0.93 mm1
α = 105.439 (1)°T = 296 K
β = 92.232 (2)°Block, dark cyan
γ = 108.183 (2)°0.22 × 0.18 × 0.16 mm
V = 1384.0 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4761 independent reflections
Radiation source: sealed tube4002 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 106
Tmin = 0.822, Tmax = 0.866k = 1015
6839 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0472P)2]
where P = (Fo2 + 2Fc2)/3
4761 reflections(Δ/σ)max < 0.001
338 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[NiCl2(C12H10N2O)2]·C3H6Oγ = 108.183 (2)°
Mr = 584.13V = 1384.0 (3) Å3
Triclinic, P1Z = 2
a = 9.0367 (11) ÅMo Kα radiation
b = 12.9142 (16) ŵ = 0.93 mm1
c = 13.0664 (16) ÅT = 296 K
α = 105.439 (1)°0.22 × 0.18 × 0.16 mm
β = 92.232 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4761 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4002 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.866Rint = 0.021
6839 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.05Δρmax = 0.26 e Å3
4761 reflectionsΔρmin = 0.39 e Å3
338 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms. The highest peak is located 1.10 Å from atom Cl1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.34978 (3)0.11803 (2)0.295182 (19)0.03252 (11)
Cl10.43421 (6)0.11649 (4)0.47059 (4)0.03838 (15)
Cl20.61388 (7)0.19661 (5)0.25662 (5)0.04710 (16)
O10.3728 (2)0.11019 (13)0.29824 (12)0.0508 (4)
H10.40280.06940.36020.076*
O20.45576 (19)0.36884 (13)0.31744 (15)0.0519 (4)
H20.53450.35090.30690.078*
O30.8381 (3)0.7143 (2)0.2311 (2)0.0984 (8)
N10.3351 (2)0.04856 (15)0.23669 (13)0.0373 (4)
N20.2672 (2)0.07731 (16)0.13055 (14)0.0380 (4)
N30.3367 (2)0.27794 (14)0.33148 (14)0.0367 (4)
N40.1224 (2)0.09447 (14)0.33492 (13)0.0327 (4)
C10.2320 (3)0.1443 (2)0.07928 (19)0.0488 (6)
H1A0.23650.21690.11900.059*
C20.1888 (3)0.1112 (2)0.0308 (2)0.0579 (7)
H2A0.16520.16040.06430.070*
C30.1820 (3)0.0046 (3)0.0884 (2)0.0629 (8)
H30.15550.01930.16240.076*
C40.2143 (3)0.0681 (2)0.03703 (18)0.0527 (6)
H40.20730.14160.07560.063*
C50.2575 (3)0.02919 (19)0.07348 (17)0.0395 (5)
C60.2956 (2)0.10087 (18)0.13567 (16)0.0368 (5)
C70.2878 (3)0.21931 (19)0.08362 (17)0.0416 (5)
C80.1900 (3)0.3086 (2)0.1158 (2)0.0586 (7)
H80.12930.29390.17010.070*
C90.1835 (4)0.4189 (2)0.0668 (2)0.0736 (9)
H90.11870.47840.08870.088*
C100.2724 (4)0.4419 (2)0.0146 (2)0.0737 (9)
H100.26670.51660.04760.088*
C110.3686 (4)0.3545 (2)0.0462 (2)0.0672 (8)
H110.42910.36990.10060.081*
C120.3768 (3)0.2433 (2)0.00211 (18)0.0501 (6)
H120.44240.18430.02020.060*
C130.0213 (3)0.00010 (18)0.34823 (17)0.0396 (5)
H130.04740.06610.33160.047*
C140.1203 (3)0.0034 (2)0.38561 (19)0.0464 (6)
H140.18760.07070.39420.056*
C150.1606 (3)0.0934 (2)0.40997 (18)0.0463 (6)
H150.25580.09260.43490.056*
C160.0576 (3)0.1920 (2)0.39698 (17)0.0413 (5)
H160.08260.25870.41290.050*
C170.0833 (2)0.19055 (17)0.36005 (15)0.0322 (5)
C180.2045 (2)0.29384 (17)0.34868 (16)0.0348 (5)
C190.1721 (3)0.40061 (18)0.35581 (17)0.0387 (5)
C200.0436 (3)0.3987 (2)0.2929 (2)0.0516 (6)
H200.02420.32980.24810.062*
C210.0160 (4)0.4993 (2)0.2966 (2)0.0644 (8)
H210.07020.49770.25410.077*
C220.1154 (4)0.6011 (2)0.3627 (2)0.0652 (8)
H220.09710.66840.36410.078*
C230.2412 (4)0.6044 (2)0.4266 (2)0.0614 (7)
H230.30730.67360.47190.074*
C240.2703 (3)0.50456 (19)0.42393 (19)0.0496 (6)
H240.35570.50700.46780.060*
C250.5679 (5)0.6853 (5)0.2243 (3)0.145 (2)
H25A0.57950.70500.15860.217*
H25B0.53360.73970.27420.217*
H25C0.49150.61060.21050.217*
C260.7191 (4)0.6861 (2)0.2698 (2)0.0583 (7)
C270.7140 (4)0.6509 (3)0.3687 (3)0.0836 (10)
H27A0.81840.65970.39680.125*
H27B0.64890.57240.35270.125*
H27C0.67140.69750.42080.125*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03109 (17)0.04030 (18)0.02937 (16)0.01737 (13)0.00755 (12)0.00847 (12)
Cl10.0403 (3)0.0461 (3)0.0298 (3)0.0176 (2)0.0057 (2)0.0091 (2)
Cl20.0343 (3)0.0692 (4)0.0458 (3)0.0239 (3)0.0149 (3)0.0207 (3)
O10.0746 (13)0.0499 (10)0.0325 (8)0.0323 (9)0.0012 (8)0.0069 (7)
O20.0356 (10)0.0444 (9)0.0774 (12)0.0109 (8)0.0200 (9)0.0219 (8)
O30.0952 (19)0.0966 (17)0.1112 (19)0.0373 (14)0.0510 (16)0.0313 (14)
N10.0432 (11)0.0461 (10)0.0289 (10)0.0238 (9)0.0058 (8)0.0106 (8)
N20.0323 (10)0.0534 (11)0.0329 (10)0.0193 (9)0.0071 (8)0.0139 (8)
N30.0315 (10)0.0380 (10)0.0407 (10)0.0110 (8)0.0092 (8)0.0119 (8)
N40.0311 (10)0.0380 (10)0.0303 (9)0.0151 (8)0.0043 (7)0.0081 (7)
C10.0470 (15)0.0607 (15)0.0455 (14)0.0250 (12)0.0089 (11)0.0179 (12)
C20.0610 (18)0.0815 (19)0.0443 (15)0.0328 (15)0.0056 (13)0.0294 (14)
C30.0678 (19)0.093 (2)0.0307 (13)0.0324 (16)0.0005 (12)0.0163 (14)
C40.0563 (17)0.0718 (17)0.0315 (12)0.0300 (14)0.0017 (11)0.0081 (12)
C50.0318 (12)0.0545 (14)0.0316 (12)0.0171 (11)0.0052 (9)0.0085 (10)
C60.0321 (12)0.0482 (13)0.0306 (11)0.0163 (10)0.0076 (9)0.0081 (10)
C70.0412 (14)0.0467 (13)0.0305 (12)0.0147 (11)0.0003 (10)0.0016 (10)
C80.0563 (17)0.0578 (17)0.0501 (15)0.0099 (13)0.0131 (13)0.0068 (12)
C90.084 (2)0.0482 (17)0.069 (2)0.0041 (15)0.0085 (17)0.0073 (14)
C100.109 (3)0.0476 (16)0.0538 (17)0.0278 (17)0.0028 (17)0.0041 (13)
C110.094 (2)0.0696 (19)0.0435 (15)0.0437 (18)0.0186 (15)0.0057 (13)
C120.0602 (17)0.0531 (15)0.0385 (13)0.0252 (13)0.0129 (12)0.0076 (11)
C130.0404 (13)0.0410 (12)0.0396 (12)0.0156 (11)0.0067 (10)0.0130 (10)
C140.0387 (14)0.0510 (14)0.0494 (14)0.0098 (11)0.0110 (11)0.0198 (11)
C150.0319 (13)0.0618 (15)0.0475 (14)0.0174 (11)0.0137 (11)0.0165 (12)
C160.0348 (13)0.0499 (14)0.0420 (13)0.0215 (11)0.0093 (10)0.0088 (10)
C170.0311 (12)0.0379 (11)0.0268 (10)0.0131 (9)0.0026 (9)0.0064 (8)
C180.0328 (12)0.0382 (11)0.0319 (11)0.0141 (10)0.0039 (9)0.0053 (9)
C190.0379 (13)0.0387 (12)0.0421 (12)0.0174 (10)0.0123 (10)0.0098 (10)
C200.0562 (16)0.0506 (14)0.0491 (14)0.0266 (13)0.0020 (12)0.0073 (11)
C210.077 (2)0.0723 (19)0.0619 (18)0.0486 (17)0.0068 (15)0.0216 (15)
C220.086 (2)0.0531 (17)0.0743 (19)0.0423 (16)0.0262 (17)0.0230 (15)
C230.0629 (19)0.0396 (14)0.0752 (19)0.0170 (13)0.0205 (15)0.0050 (13)
C240.0458 (15)0.0444 (14)0.0553 (15)0.0162 (11)0.0096 (12)0.0077 (11)
C250.119 (4)0.261 (6)0.089 (3)0.113 (4)0.001 (3)0.051 (3)
C260.0649 (19)0.0529 (16)0.0536 (16)0.0272 (14)0.0089 (15)0.0010 (12)
C270.090 (3)0.101 (2)0.073 (2)0.049 (2)0.0144 (18)0.0263 (18)
Geometric parameters (Å, º) top
Ni1—N32.0344 (18)C10—H100.9300
Ni1—N12.0418 (18)C11—C121.384 (3)
Ni1—N42.0879 (17)C11—H110.9300
Ni1—N22.1188 (17)C12—H120.9300
Ni1—Cl12.3944 (6)C13—C141.379 (3)
Ni1—Cl22.4153 (7)C13—H130.9300
O1—N11.373 (2)C14—C151.370 (3)
O1—H10.8200C14—H140.9300
O2—N31.383 (2)C15—C161.381 (3)
O2—H20.8200C15—H150.9300
O3—C261.200 (3)C16—C171.382 (3)
N1—C61.290 (3)C16—H160.9300
N2—C11.328 (3)C17—C181.486 (3)
N2—C51.352 (3)C18—C191.477 (3)
N3—C181.292 (3)C19—C201.386 (3)
N4—C131.335 (3)C19—C241.393 (3)
N4—C171.356 (3)C20—C211.386 (3)
C1—C21.389 (3)C20—H200.9300
C1—H1A0.9300C21—C221.371 (4)
C2—C31.363 (4)C21—H210.9300
C2—H2A0.9300C22—C231.367 (4)
C3—C41.381 (4)C22—H220.9300
C3—H30.9300C23—C241.386 (3)
C4—C51.392 (3)C23—H230.9300
C4—H40.9300C24—H240.9300
C5—C61.488 (3)C25—C261.464 (5)
C6—C71.477 (3)C25—H25A0.9600
C7—C121.387 (3)C25—H25B0.9600
C7—C81.392 (3)C25—H25C0.9600
C8—C91.380 (4)C26—C271.477 (4)
C8—H80.9300C27—H27A0.9600
C9—C101.382 (4)C27—H27B0.9600
C9—H90.9300C27—H27C0.9600
C10—C111.365 (4)
N3—Ni1—N1170.18 (7)C9—C10—H10120.1
N3—Ni1—N476.84 (7)C10—C11—C12120.4 (3)
N1—Ni1—N499.25 (7)C10—C11—H11119.8
N3—Ni1—N294.03 (7)C12—C11—H11119.8
N1—Ni1—N276.92 (7)C11—C12—C7120.3 (2)
N4—Ni1—N291.16 (7)C11—C12—H12119.9
N3—Ni1—Cl199.43 (5)C7—C12—H12119.9
N1—Ni1—Cl189.47 (5)N4—C13—C14122.8 (2)
N4—Ni1—Cl189.49 (5)N4—C13—H13118.6
N2—Ni1—Cl1166.31 (5)C14—C13—H13118.6
N3—Ni1—Cl287.94 (5)C15—C14—C13119.2 (2)
N1—Ni1—Cl295.62 (6)C15—C14—H14120.4
N4—Ni1—Cl2164.76 (5)C13—C14—H14120.4
N2—Ni1—Cl288.97 (5)C14—C15—C16119.0 (2)
Cl1—Ni1—Cl293.97 (2)C14—C15—H15120.5
N1—O1—H1109.5C16—C15—H15120.5
N3—O2—H2109.5C15—C16—C17119.2 (2)
C6—N1—O1115.73 (17)C15—C16—H16120.4
C6—N1—Ni1120.35 (15)C17—C16—H16120.4
O1—N1—Ni1123.85 (12)N4—C17—C16121.86 (19)
C1—N2—C5118.66 (19)N4—C17—C18115.20 (18)
C1—N2—Ni1127.91 (16)C16—C17—C18122.9 (2)
C5—N2—Ni1113.37 (14)N3—C18—C19125.41 (19)
C18—N3—O2116.43 (18)N3—C18—C17112.33 (19)
C18—N3—Ni1120.22 (14)C19—C18—C17122.25 (18)
O2—N3—Ni1122.03 (13)C20—C19—C24118.9 (2)
C13—N4—C17117.97 (18)C20—C19—C18120.0 (2)
C13—N4—Ni1127.23 (15)C24—C19—C18121.1 (2)
C17—N4—Ni1114.43 (13)C19—C20—C21120.2 (2)
N2—C1—C2123.1 (2)C19—C20—H20119.9
N2—C1—H1A118.4C21—C20—H20119.9
C2—C1—H1A118.4C22—C21—C20120.2 (3)
C3—C2—C1118.1 (2)C22—C21—H21119.9
C3—C2—H2A121.0C20—C21—H21119.9
C1—C2—H2A121.0C23—C22—C21120.4 (3)
C2—C3—C4120.1 (2)C23—C22—H22119.8
C2—C3—H3119.9C21—C22—H22119.8
C4—C3—H3119.9C22—C23—C24120.1 (3)
C3—C4—C5118.7 (2)C22—C23—H23119.9
C3—C4—H4120.6C24—C23—H23119.9
C5—C4—H4120.6C23—C24—C19120.2 (2)
N2—C5—C4121.2 (2)C23—C24—H24119.9
N2—C5—C6116.14 (18)C19—C24—H24119.9
C4—C5—C6122.6 (2)C26—C25—H25A109.5
N1—C6—C7125.2 (2)C26—C25—H25B109.5
N1—C6—C5113.03 (19)H25A—C25—H25B109.5
C7—C6—C5121.78 (18)C26—C25—H25C109.5
C12—C7—C8119.1 (2)H25A—C25—H25C109.5
C12—C7—C6120.7 (2)H25B—C25—H25C109.5
C8—C7—C6120.2 (2)O3—C26—C25123.1 (3)
C9—C8—C7119.8 (3)O3—C26—C27122.5 (3)
C9—C8—H8120.1C25—C26—C27114.4 (3)
C7—C8—H8120.1C26—C27—H27A109.5
C8—C9—C10120.7 (3)C26—C27—H27B109.5
C8—C9—H9119.7H27A—C27—H27B109.5
C10—C9—H9119.7C26—C27—H27C109.5
C11—C10—C9119.7 (3)H27A—C27—H27C109.5
C11—C10—H10120.1H27B—C27—H27C109.5
N3—Ni1—N1—C626.9 (5)O1—N1—C6—C70.3 (3)
N4—Ni1—N1—C692.66 (17)Ni1—N1—C6—C7177.24 (16)
N2—Ni1—N1—C63.62 (17)O1—N1—C6—C5179.56 (17)
Cl1—Ni1—N1—C6177.94 (17)Ni1—N1—C6—C52.7 (3)
Cl2—Ni1—N1—C684.00 (17)N2—C5—C6—N10.9 (3)
N3—Ni1—N1—O1156.4 (4)C4—C5—C6—N1179.0 (2)
N4—Ni1—N1—O190.70 (17)N2—C5—C6—C7179.2 (2)
N2—Ni1—N1—O1179.74 (18)C4—C5—C6—C70.9 (3)
Cl1—Ni1—N1—O11.30 (16)N1—C6—C7—C12121.8 (3)
Cl2—Ni1—N1—O192.64 (16)C5—C6—C7—C1258.1 (3)
N3—Ni1—N2—C13.12 (19)N1—C6—C7—C858.4 (3)
N1—Ni1—N2—C1179.2 (2)C5—C6—C7—C8121.7 (2)
N4—Ni1—N2—C180.01 (19)C12—C7—C8—C90.2 (4)
Cl1—Ni1—N2—C1172.62 (17)C6—C7—C8—C9179.9 (2)
Cl2—Ni1—N2—C184.74 (18)C7—C8—C9—C100.4 (5)
N3—Ni1—N2—C5179.93 (15)C8—C9—C10—C110.6 (5)
N1—Ni1—N2—C53.81 (14)C9—C10—C11—C120.5 (5)
N4—Ni1—N2—C5103.04 (15)C10—C11—C12—C70.3 (4)
Cl1—Ni1—N2—C510.4 (3)C8—C7—C12—C110.2 (4)
Cl2—Ni1—N2—C592.21 (14)C6—C7—C12—C11180.0 (2)
N1—Ni1—N3—C1859.8 (5)C17—N4—C13—C140.4 (3)
N4—Ni1—N3—C187.67 (16)Ni1—N4—C13—C14172.90 (16)
N2—Ni1—N3—C1882.58 (17)N4—C13—C14—C150.3 (3)
Cl1—Ni1—N3—C1894.92 (16)C13—C14—C15—C160.4 (3)
Cl2—Ni1—N3—C18171.40 (16)C14—C15—C16—C170.1 (3)
N1—Ni1—N3—O2106.6 (4)C13—N4—C17—C160.9 (3)
N4—Ni1—N3—O2174.12 (17)Ni1—N4—C17—C16174.40 (16)
N2—Ni1—N3—O283.87 (16)C13—N4—C17—C18177.00 (17)
Cl1—Ni1—N3—O298.64 (15)Ni1—N4—C17—C183.5 (2)
Cl2—Ni1—N3—O24.95 (15)C15—C16—C17—N40.8 (3)
N3—Ni1—N4—C13171.15 (18)C15—C16—C17—C18176.94 (19)
N1—Ni1—N4—C1318.03 (18)O2—N3—C18—C190.9 (3)
N2—Ni1—N4—C1394.97 (17)Ni1—N3—C18—C19168.04 (16)
Cl1—Ni1—N4—C1371.35 (16)O2—N3—C18—C17178.61 (16)
Cl2—Ni1—N4—C13174.69 (13)Ni1—N3—C18—C1711.4 (2)
N3—Ni1—N4—C171.61 (13)N4—C17—C18—N39.5 (3)
N1—Ni1—N4—C17169.20 (13)C16—C17—C18—N3168.4 (2)
N2—Ni1—N4—C1792.26 (14)N4—C17—C18—C19170.02 (18)
Cl1—Ni1—N4—C17101.42 (13)C16—C17—C18—C1912.1 (3)
Cl2—Ni1—N4—C171.9 (3)N3—C18—C19—C20127.1 (3)
C5—N2—C1—C21.4 (3)C17—C18—C19—C2052.4 (3)
Ni1—N2—C1—C2175.42 (19)N3—C18—C19—C2451.9 (3)
N2—C1—C2—C30.2 (4)C17—C18—C19—C24128.6 (2)
C1—C2—C3—C41.3 (4)C24—C19—C20—C211.3 (4)
C2—C3—C4—C51.6 (4)C18—C19—C20—C21177.7 (2)
C1—N2—C5—C41.1 (3)C19—C20—C21—C220.2 (4)
Ni1—N2—C5—C4176.19 (18)C20—C21—C22—C230.9 (4)
C1—N2—C5—C6178.99 (19)C21—C22—C23—C240.8 (4)
Ni1—N2—C5—C63.7 (2)C22—C23—C24—C190.3 (4)
C3—C4—C5—N20.4 (4)C20—C19—C24—C231.4 (4)
C3—C4—C5—C6179.5 (2)C18—C19—C24—C23177.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl20.822.272.9582 (18)142
O1—H1···Cl1i0.822.913.4612 (16)127
O1—H1···Cl10.822.373.0542 (16)141
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[NiCl2(C12H10N2O)2]·C3H6O
Mr584.13
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.0367 (11), 12.9142 (16), 13.0664 (16)
α, β, γ (°)105.439 (1), 92.232 (2), 108.183 (2)
V3)1384.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.22 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.822, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
6839, 4761, 4002
Rint0.021
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.089, 1.05
No. of reflections4761
No. of parameters338
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.39

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—N32.0344 (18)Ni1—N22.1188 (17)
Ni1—N12.0418 (18)Ni1—Cl12.3944 (6)
Ni1—N42.0879 (17)Ni1—Cl22.4153 (7)
N3—Ni1—N1170.18 (7)N4—Ni1—Cl189.49 (5)
N3—Ni1—N476.84 (7)N2—Ni1—Cl1166.31 (5)
N1—Ni1—N499.25 (7)N3—Ni1—Cl287.94 (5)
N3—Ni1—N294.03 (7)N1—Ni1—Cl295.62 (6)
N1—Ni1—N276.92 (7)N4—Ni1—Cl2164.76 (5)
N4—Ni1—N291.16 (7)N2—Ni1—Cl288.97 (5)
N3—Ni1—Cl199.43 (5)Cl1—Ni1—Cl293.97 (2)
N1—Ni1—Cl189.47 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···Cl20.822.272.9582 (18)142.0
O1—H1···Cl1i0.822.913.4612 (16)126.9
O1—H1···Cl10.822.373.0542 (16)141.1
Symmetry code: (i) x+1, y, z+1.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20731004), the Natural Science Foundation for Outstanding Scholars of Anhui Province, China (grant No. 044-J-04011) and the Natural Science Foundation of the Education Commission of Anhui Province, China (grant Nos. KJ2007B092 and KJ2008B004).

References

First citationAfrati, T., Dendrinou-Samara, C., Zaleski, C. M., Kampf, J. W., Pecoraro, V. L. & Kessissoglou, D. P. (2005). Inorg. Chem. Commun. 8, 1173–1176.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKorpi, H., Polamo, M., Leskela, M. & Repo, T. (2005). Inorg. Chem. Commun. 8, 1181–1184.  Web of Science CSD CrossRef CAS Google Scholar
First citationPapatriantafyllopoulou, C., Aromi, G., Tasiopoulos, A. J., Nastopoulos, V., Raptopoulou, C. P., Teat, S. J., Escuer, A. & Perlepes, S. P. (2007). Eur. J. Inorg. Chem. pp. 2761–2774.  Web of Science CSD CrossRef Google Scholar
First citationPearse, G. A., Raithby, P. R. & Lewis, J. (1989). Polyhedron, 8, 301–304.  CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStamatatos, T. C., Vlahopoulou, J. C., Sanakis, Y., Raptopoulou, C. P., Psycharis, V., Boudalis, A. K. & Perlepes, S. P. (2006). Inorg. Chem. Commun. 9, 814–818.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds