organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

8-Phenyl-10-oxa-8-aza­tri­cyclo­[4.3.0.12,5]decane-7,9-dione

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, People's Republic of China
*Correspondence e-mail: sky51@zjnu.cn

(Received 25 December 2008; accepted 5 January 2009; online 10 January 2009)

The reaction of aniline with norcantharidin produced the imide title compound, C14H13NO3, which shows no significant hydrogen bonds in the crystal structure. The dihedral angle between the phenyl and pyrrolidine rings is 48.48 (6)°.

Related literature

For the use of norcantharidin in synthesis see: Hill et al. (2007[Hill, T. A., Stewart, S. G., Ackland, S. P., Gilbert, J., Sauer, B., Sakoff, J. A. & McCluskey, A. (2007). Bioorg. Med. Chem. 15, 6126-6134.]). For background, see: Wang (1989[Wang, G.-S. (1989). J. Ethnopharmacol. 26, 147-162.]).

[Scheme 1]

Experimental

Crystal data
  • C14H13NO3

  • Mr = 243.25

  • Monoclinic, P 21 /c

  • a = 9.5914 (4) Å

  • b = 8.4345 (3) Å

  • c = 14.4101 (6) Å

  • β = 93.468 (3)°

  • V = 1163.62 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 (2) K

  • 0.32 × 0.25 × 0.04 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.971, Tmax = 0.996

  • 18085 measured reflections

  • 2699 independent reflections

  • 1898 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.177

  • S = 0.61

  • 2699 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10B⋯O2i 0.97 2.59 3.502 (3) 156
Symmetry code: (i) -x, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Norcantharidin are a variety of pharmacologically important compounds such as protein kinase inhibitors and antitumor properties (Wang, 1989). We have designed, synthesized and crystallized several norcantharidin derivatives to study their anticancer properties. In order to study on the relationship between the activity of norcantharidin and the importance of aromatic ring linked to the carboxyl, the norcantharidin derivative was synthesized and its crystal structure is reported here.

X-ray crystallography confirmed the molecular structure and the atom connectivity for the title compound, as illustrated in Fig. 1. In the compound, the dihedral angle between the mean planes of pyrrolidine (C7/C8/C13/C14/N1) rings and the phenyl (C1—C6) is 48.48 (6)°. It exhibits no unusual crystal packing features, and each molecule acts as a donor and acceptor for one C10—H10B···O2 weak intermolecular hydrogen bonds.

Related literature top

For the use of norcantharidin in synthesis see: Hill et al. (2007). For background, see: Wang (1989).

Experimental top

The title compound was synthesized by the condensation of norcantharidin (1 mmol) with aniline (1 mmol) in DMF (10 mL). After refluxing for 3 h, the reaction mixture was left to stand for two weeks, colourless crystals were isolated.

Refinement top

The H atoms bonded to C atoms were positioned geometrically and refined using a riding model [C—H = 0.93 - 0.98 Å, Uiso(H) = 1.2Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability.
8-Phenyl-10-oxa-8-azatricyclo[4.3.0.12,5]decane-7,9-dione top
Crystal data top
C14H13NO3F(000) = 512
Mr = 243.25Dx = 1.389 Mg m3
Dm = 1.389 Mg m3
Dm measured by not measured
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3324 reflections
a = 9.5914 (4) Åθ = 2.1–27.7°
b = 8.4345 (3) ŵ = 0.10 mm1
c = 14.4101 (6) ÅT = 296 K
β = 93.468 (3)°Sheet, colourless
V = 1163.62 (8) Å30.32 × 0.25 × 0.04 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2699 independent reflections
Radiation source: fine-focus sealed tube1898 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 27.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.971, Tmax = 0.996k = 1110
18085 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.177H-atom parameters constrained
S = 0.61 w = 1/[σ2(Fo2) + (0.1908P)2 + 0.6671P]
where P = (Fo2 + 2Fc2)/3
2699 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C14H13NO3V = 1163.62 (8) Å3
Mr = 243.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5914 (4) ŵ = 0.10 mm1
b = 8.4345 (3) ÅT = 296 K
c = 14.4101 (6) Å0.32 × 0.25 × 0.04 mm
β = 93.468 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2699 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1898 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.996Rint = 0.041
18085 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 0.61Δρmax = 0.16 e Å3
2699 reflectionsΔρmin = 0.17 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.10268 (15)0.22038 (16)0.69370 (9)0.0418 (4)
O10.04620 (15)0.1156 (2)0.79702 (10)0.0655 (4)
O20.19084 (14)0.33610 (17)0.56481 (9)0.0579 (4)
O30.13027 (14)0.06451 (14)0.54810 (10)0.0526 (4)
C10.32246 (19)0.0814 (2)0.68510 (13)0.0513 (4)
H1A0.30260.06650.62170.062*
C20.4439 (2)0.0209 (3)0.72752 (17)0.0620 (5)
H2A0.50550.03580.69270.074*
C30.4743 (2)0.0442 (3)0.82150 (17)0.0646 (6)
H3A0.55620.00340.84990.078*
C40.3832 (2)0.1278 (2)0.87295 (15)0.0599 (5)
H4A0.40420.14350.93610.072*
C50.2603 (2)0.1891 (2)0.83178 (13)0.0493 (4)
H5A0.19890.24570.86680.059*
C60.23040 (18)0.16445 (19)0.73715 (12)0.0421 (4)
C70.09220 (19)0.29901 (19)0.60787 (11)0.0432 (4)
C80.05956 (18)0.32348 (19)0.57997 (11)0.0432 (4)
H8A0.08200.43490.56680.052*
C90.1114 (2)0.2122 (2)0.50018 (13)0.0502 (4)
H9A0.04850.20540.44920.060*
C100.2605 (2)0.2614 (3)0.46982 (14)0.0592 (5)
H10A0.29060.21480.41040.071*
H10B0.26960.37580.46590.071*
C110.3429 (2)0.1933 (2)0.54908 (16)0.0585 (5)
H11A0.39310.27560.58020.070*
H11B0.40820.11200.52670.070*
C120.22552 (19)0.1238 (2)0.61262 (14)0.0488 (4)
H12A0.25700.04320.65560.059*
C130.13944 (18)0.25713 (19)0.66061 (11)0.0430 (4)
H13A0.19730.33690.68940.052*
C140.02839 (18)0.1892 (2)0.72702 (12)0.0449 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0422 (8)0.0437 (7)0.0400 (7)0.0010 (6)0.0060 (6)0.0082 (6)
O10.0549 (8)0.0882 (11)0.0546 (8)0.0025 (7)0.0131 (6)0.0281 (7)
O20.0542 (8)0.0651 (8)0.0555 (8)0.0097 (6)0.0127 (6)0.0158 (6)
O30.0538 (7)0.0369 (6)0.0678 (8)0.0025 (5)0.0099 (6)0.0059 (5)
C10.0465 (10)0.0543 (10)0.0534 (10)0.0008 (8)0.0072 (8)0.0011 (8)
C20.0440 (10)0.0628 (12)0.0799 (14)0.0028 (9)0.0097 (9)0.0026 (10)
C30.0417 (10)0.0654 (13)0.0851 (15)0.0065 (9)0.0098 (10)0.0115 (11)
C40.0588 (12)0.0611 (12)0.0580 (11)0.0136 (9)0.0121 (9)0.0061 (9)
C50.0533 (10)0.0465 (9)0.0481 (9)0.0053 (8)0.0025 (8)0.0012 (7)
C60.0414 (8)0.0397 (8)0.0456 (9)0.0038 (6)0.0042 (7)0.0050 (7)
C70.0486 (9)0.0398 (8)0.0415 (8)0.0053 (7)0.0059 (7)0.0044 (6)
C80.0490 (9)0.0359 (8)0.0444 (9)0.0014 (7)0.0015 (7)0.0053 (6)
C90.0568 (11)0.0490 (9)0.0450 (9)0.0032 (8)0.0053 (8)0.0019 (7)
C100.0640 (13)0.0534 (10)0.0579 (11)0.0032 (9)0.0139 (9)0.0036 (9)
C110.0462 (10)0.0540 (11)0.0741 (13)0.0006 (8)0.0060 (9)0.0081 (9)
C120.0434 (9)0.0398 (8)0.0639 (11)0.0005 (7)0.0090 (8)0.0043 (8)
C130.0441 (9)0.0396 (8)0.0459 (9)0.0050 (7)0.0082 (7)0.0018 (7)
C140.0434 (9)0.0472 (9)0.0450 (9)0.0024 (7)0.0100 (7)0.0044 (7)
Geometric parameters (Å, º) top
N1—C141.398 (2)C5—H5A0.9300
N1—C71.402 (2)C7—C81.501 (2)
N1—C61.422 (2)C8—C131.536 (2)
O1—C141.205 (2)C8—C91.543 (2)
O2—C71.204 (2)C8—H8A0.9800
O3—C121.433 (2)C9—C101.528 (3)
O3—C91.441 (2)C9—H9A0.9800
C1—C21.380 (3)C10—C111.539 (3)
C1—C61.383 (2)C10—H10A0.9700
C1—H1A0.9300C10—H10B0.9700
C2—C31.382 (3)C11—C121.525 (3)
C2—H2A0.9300C11—H11A0.9700
C3—C41.374 (3)C11—H11B0.9700
C3—H3A0.9300C12—C131.535 (2)
C4—C51.387 (3)C12—H12A0.9800
C4—H4A0.9300C13—C141.502 (2)
C5—C61.392 (3)C13—H13A0.9800
C14—N1—C7111.99 (14)O3—C9—C8102.29 (14)
C14—N1—C6123.71 (14)C10—C9—C8107.58 (15)
C7—N1—C6124.01 (14)O3—C9—H9A114.2
C12—O3—C996.47 (12)C10—C9—H9A114.2
C2—C1—C6119.77 (18)C8—C9—H9A114.2
C2—C1—H1A120.1C9—C10—C11101.54 (15)
C6—C1—H1A120.1C9—C10—H10A111.5
C1—C2—C3120.2 (2)C11—C10—H10A111.5
C1—C2—H2A119.9C9—C10—H10B111.5
C3—C2—H2A119.9C11—C10—H10B111.5
C4—C3—C2119.91 (19)H10A—C10—H10B109.3
C4—C3—H3A120.0C12—C11—C10101.26 (16)
C2—C3—H3A120.0C12—C11—H11A111.5
C3—C4—C5120.8 (2)C10—C11—H11A111.5
C3—C4—H4A119.6C12—C11—H11B111.5
C5—C4—H4A119.6C10—C11—H11B111.5
C4—C5—C6118.85 (18)H11A—C11—H11B109.3
C4—C5—H5A120.6O3—C12—C11102.78 (16)
C6—C5—H5A120.6O3—C12—C13101.63 (13)
C1—C6—C5120.45 (17)C11—C12—C13110.30 (14)
C1—C6—N1119.36 (16)O3—C12—H12A113.7
C5—C6—N1120.16 (16)C11—C12—H12A113.7
O2—C7—N1124.14 (17)C13—C12—H12A113.7
O2—C7—C8127.30 (15)C14—C13—C12110.43 (14)
N1—C7—C8108.55 (14)C14—C13—C8104.73 (14)
C7—C8—C13105.51 (13)C12—C13—C8101.86 (13)
C7—C8—C9112.30 (14)C14—C13—H13A113.0
C13—C8—C9100.91 (14)C12—C13—H13A113.0
C7—C8—H8A112.5C8—C13—H13A113.0
C13—C8—H8A112.5O1—C14—N1124.09 (17)
C9—C8—H8A112.5O1—C14—C13126.79 (16)
O3—C9—C10103.26 (15)N1—C14—C13109.10 (14)
C6—C1—C2—C30.6 (3)C13—C8—C9—C1074.97 (17)
C1—C2—C3—C40.1 (3)O3—C9—C10—C1131.94 (17)
C2—C3—C4—C50.2 (3)C8—C9—C10—C1175.77 (17)
C3—C4—C5—C60.0 (3)C9—C10—C11—C122.39 (18)
C2—C1—C6—C50.8 (3)C9—O3—C12—C1156.48 (16)
C2—C1—C6—N1177.25 (17)C9—O3—C12—C1357.71 (15)
C4—C5—C6—C10.6 (3)C10—C11—C12—O336.30 (17)
C4—C5—C6—N1177.52 (16)C10—C11—C12—C1371.41 (18)
C14—N1—C6—C1126.96 (18)O3—C12—C13—C1474.48 (16)
C7—N1—C6—C146.3 (2)C11—C12—C13—C14177.05 (15)
C14—N1—C6—C551.1 (2)O3—C12—C13—C836.33 (16)
C7—N1—C6—C5135.62 (17)C11—C12—C13—C872.14 (17)
C14—N1—C7—O2178.77 (17)C7—C8—C13—C143.54 (17)
C6—N1—C7—O24.8 (3)C9—C8—C13—C14113.50 (15)
C14—N1—C7—C80.10 (19)C7—C8—C13—C12118.62 (14)
C6—N1—C7—C8173.85 (14)C9—C8—C13—C121.58 (16)
O2—C7—C8—C13179.03 (18)C7—N1—C14—O1176.01 (17)
N1—C7—C8—C132.35 (18)C6—N1—C14—O12.0 (3)
O2—C7—C8—C971.9 (2)C7—N1—C14—C132.3 (2)
N1—C7—C8—C9106.67 (16)C6—N1—C14—C13176.26 (14)
C12—O3—C9—C1054.79 (16)C12—C13—C14—O165.7 (2)
C12—O3—C9—C856.86 (16)C8—C13—C14—O1174.64 (18)
C7—C8—C9—O378.51 (17)C12—C13—C14—N1112.55 (16)
C13—C8—C9—O333.41 (16)C8—C13—C14—N13.61 (18)
C7—C8—C9—C10173.12 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.972.593.502 (3)156
Symmetry code: (i) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC14H13NO3
Mr243.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.5914 (4), 8.4345 (3), 14.4101 (6)
β (°) 93.468 (3)
V3)1163.62 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.32 × 0.25 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.971, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
18085, 2699, 1898
Rint0.041
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.177, 0.61
No. of reflections2699
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.17

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10B···O2i0.972.593.502 (3)156
Symmetry code: (i) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge financial support from the Natural Science Foundation of Zhejiang Province, China (grant No. Y407301).

References

First citationBruker (2004). SAINT and APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHill, T. A., Stewart, S. G., Ackland, S. P., Gilbert, J., Sauer, B., Sakoff, J. A. & McCluskey, A. (2007). Bioorg. Med. Chem. 15, 6126–6134.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, G.-S. (1989). J. Ethnopharmacol. 26, 147–162.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds