metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­aqua­bis­(N-phenyl­sulfonyl-L-leucinato)cadmium(II) dihydrate

aDepartment of Sport, Weifang University, Weifang 261061, People's Republic of China
*Correspondence e-mail: taixishi@lzu.edu.cn

(Received 29 December 2008; accepted 7 January 2009; online 10 January 2009)

In the title compound, [Cd(C12H16NO4S)2(H2O)]·2H2O, the Cd atom is located on a twofold rotation axis and a distorted CdO8 dodeca­hedral arrangement arises from the coordination of the two chelating ligands and four water mol­ecules. A network of N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds help to establish the crystal packing. Both coordinated and uncoordinated water molecules are disordered with an approximate half-occupation for each of the water molecules.

Related literature

For background to the design and synthesis of metal complexes, see: Zhang et al. (2007[Zhang, X. M., Zhou, Y. Z., Tu, S. J., Xiao, L. M. & Zhu, H. J. (2007). Chin. J. Inorg. Chem. 23, 1700-1704.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C12H16NO4S)2(H2O)]·2H2O

  • Mr = 725.10

  • Orthorhombic, P 21 21 2

  • a = 17.733 (2) Å

  • b = 17.2930 (19) Å

  • c = 5.6051 (11) Å

  • V = 1718.9 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 298 (2) K

  • 0.50 × 0.40 × 0.36 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.687, Tmax = 0.759

  • 9050 measured reflections

  • 3033 independent reflections

  • 1954 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.214

  • S = 1.03

  • 3033 reflections

  • 207 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.56 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1247 Friedel pairs

  • Flack parameter: 0.00 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.90 2.29 2.776 (11) 113
N1—H1⋯O2i 0.90 2.35 3.121 (12) 143
O5—H5E⋯O1ii 0.85 1.85 2.639 (19) 154
O5—H5F⋯O1iii 0.85 1.79 2.605 (18) 161
O7—H7C⋯O3iv 0.85 2.20 2.99 (2) 155
O7—H7D⋯O4v 0.85 2.22 3.00 (2) 152
C2—H2⋯O3 0.98 2.46 2.903 (13) 107
C2—H2⋯O4ii 0.98 2.58 3.457 (13) 149
C12—H12⋯O3 0.93 2.52 2.871 (14) 102
Symmetry codes: (i) x, y, z+1; (ii) x, y, z-1; (iii) -x+1, -y+1, z-1; (iv) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (v) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+2].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

During the last decade, the design and synthesis of metal complexes have attracted considerable attention due to their potential uses as biological activities (Zhang et al., 2007). The synthesis and structure of the title compound (I) is reported.

In the title compound, the Cd atom is located on an inversion center. Two O-bidentate ligands and four water molecules are attached to the cadmium atom, resulting in a distorted CdO8 triangluar dodecahedral arrangement (Fig. 1). The identical S1O3 [1.407 (7) Å], S1O4 [1.430 (8) Å] and C1O2 [1.235 (13) Å] bonds lengths imply double-bond character. The dihedral angle between the two benzene ring mean planes (C7—C12 and C7A—C12A) is 58.2 °.

Two molecules of water complete the structure of (I) and a network of hydrogen bonds helps to establish the crystal packing (Table 1).

Related literature top

For background to the design and synthesis of metal complexes, see: Zhang et al. (2007).

Experimental top

1 mmol of cadmium chloride was added to a solution of 2-phenylsulfonyl chloride-L-leucine (2 mmol) in 10 ml of CH3OH/H2O (v/v 1:1). The mixture was continuously stirred for 4 h at refluxing temperature, evaporating some methanol, then, upon cooling, the solid product was collected by filtration and dried in vacuo (yield 69%). Clear blocks of (I) were obtained by evaporation from a methanol solution after a week.

Refinement top

The water H atoms were located in a difference map and refined as riding in their as-found relative positions with Uiso(H) = 1.2Ueq(O). Other H atoms were placed geometrically (C—H = 0.93–0.98 Å, O—H = 0.82 Å, N—H = 0.90 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(C,O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The complex molecule, with 30% probabiility ellipsoids.
Tetraaquabis(N-phenylsulfonyl-L-leucinato)cadmium(II) dihydrate top
Crystal data top
[Cd(C12H16NO4S)2(H2O)]·2H2OF(000) = 748
Mr = 725.10Dx = 1.401 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 2267 reflections
a = 17.733 (2) Åθ = 2.3–19.6°
b = 17.2930 (19) ŵ = 0.81 mm1
c = 5.6051 (11) ÅT = 298 K
V = 1718.9 (4) Å3Block, colourless
Z = 20.50 × 0.40 × 0.36 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3033 independent reflections
Radiation source: fine-focus sealed tube1954 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ϕ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2119
Tmin = 0.687, Tmax = 0.759k = 1820
9050 measured reflectionsl = 66
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.214 w = 1/[σ2(Fo2) + (0.1333P)2 + 0.5509P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3033 reflectionsΔρmax = 0.70 e Å3
207 parametersΔρmin = 0.56 e Å3
0 restraintsAbsolute structure: Flack (1983), 1247 Freidel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (8)
Crystal data top
[Cd(C12H16NO4S)2(H2O)]·2H2OV = 1718.9 (4) Å3
Mr = 725.10Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 17.733 (2) ŵ = 0.81 mm1
b = 17.2930 (19) ÅT = 298 K
c = 5.6051 (11) Å0.50 × 0.40 × 0.36 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3033 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1954 reflections with I > 2σ(I)
Tmin = 0.687, Tmax = 0.759Rint = 0.051
9050 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.214Δρmax = 0.70 e Å3
S = 1.03Δρmin = 0.56 e Å3
3033 reflectionsAbsolute structure: Flack (1983), 1247 Freidel pairs
207 parametersAbsolute structure parameter: 0.00 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.50000.50000.05213 (18)0.0754 (4)
N10.3790 (4)0.7120 (5)0.5321 (16)0.067 (2)
H10.39920.67070.60570.081*
O10.4512 (4)0.5829 (4)0.3465 (14)0.079 (2)
O20.4394 (4)0.6239 (4)0.0210 (14)0.077 (2)
O30.2573 (4)0.7608 (4)0.4174 (14)0.080 (2)
O40.2793 (4)0.7154 (5)0.8283 (13)0.085 (2)
O50.5451 (10)0.5261 (9)0.333 (3)0.099 (5)0.50
H5E0.51630.55670.40870.119*0.50
H5F0.55170.48500.41280.119*0.50
O60.379 (2)0.446 (3)0.075 (15)0.110 (12)0.57 (13)
H6E0.37910.39770.09420.132*0.57 (13)
H6F0.37680.45540.07400.132*0.57 (13)
O6'0.396 (3)0.428 (3)0.191 (19)0.110 (16)0.43 (13)
H6'C0.39410.38210.13540.132*0.43 (13)
H6'B0.41700.42960.32700.132*0.43 (13)
O70.6587 (11)0.6808 (11)0.976 (4)0.128 (7)0.50
H7C0.67780.68800.83890.153*0.50
H7D0.68550.70541.07660.153*0.50
S10.29018 (13)0.70772 (14)0.5767 (5)0.0649 (6)
C10.4350 (6)0.6338 (6)0.197 (2)0.068 (3)
C20.4090 (6)0.7135 (6)0.2887 (19)0.069 (3)
H20.37140.73540.17980.083*
C30.4805 (6)0.7630 (7)0.285 (2)0.085 (3)
H3A0.51390.74410.40900.102*
H3B0.50560.75460.13360.102*
C40.4717 (8)0.8475 (8)0.319 (3)0.101 (4)
H40.44740.86210.46900.122*
C50.4321 (9)0.8787 (9)0.095 (4)0.129 (6)
H5A0.44400.84630.03920.194*
H5B0.44910.93050.06360.194*
H5C0.37860.87890.11990.194*
C60.5520 (11)0.8810 (9)0.286 (4)0.151 (8)
H6A0.58400.86290.41170.227*
H6B0.54970.93650.28970.227*
H6C0.57190.86460.13460.227*
C70.2568 (6)0.6164 (6)0.498 (2)0.074 (3)
C80.2721 (7)0.5536 (7)0.651 (2)0.083 (3)
H80.29950.56160.79050.099*
C90.2469 (7)0.4809 (7)0.596 (3)0.093 (4)
H90.25710.43980.69770.111*
C100.2057 (8)0.4681 (8)0.384 (3)0.094 (4)
H100.18820.41890.34620.113*
C110.1923 (7)0.5283 (7)0.239 (3)0.093 (4)
H110.16500.52020.10000.112*
C120.2186 (7)0.6048 (7)0.292 (2)0.083 (3)
H120.20960.64540.18710.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0923 (8)0.0840 (7)0.0497 (6)0.0321 (6)0.0000.000
N10.075 (5)0.069 (4)0.058 (5)0.015 (4)0.007 (4)0.005 (4)
O10.095 (5)0.077 (4)0.064 (5)0.024 (4)0.006 (4)0.004 (4)
O20.090 (5)0.079 (4)0.062 (5)0.026 (4)0.002 (4)0.000 (4)
O30.084 (4)0.080 (5)0.076 (5)0.030 (4)0.004 (4)0.003 (4)
O40.099 (5)0.102 (5)0.056 (4)0.030 (5)0.010 (4)0.010 (4)
O50.149 (14)0.083 (11)0.066 (10)0.054 (9)0.002 (9)0.006 (8)
O60.115 (16)0.120 (16)0.09 (3)0.017 (12)0.012 (19)0.005 (18)
O6'0.11 (2)0.12 (2)0.09 (3)0.017 (17)0.01 (2)0.00 (3)
O70.133 (15)0.133 (14)0.117 (17)0.040 (12)0.014 (13)0.052 (14)
S10.0736 (14)0.0714 (14)0.0498 (13)0.0225 (12)0.0001 (13)0.0047 (13)
C10.074 (6)0.071 (6)0.058 (7)0.015 (5)0.006 (5)0.008 (6)
C20.077 (7)0.071 (6)0.060 (6)0.009 (5)0.004 (5)0.003 (5)
C30.087 (8)0.088 (8)0.080 (8)0.003 (6)0.008 (6)0.006 (6)
C40.102 (9)0.103 (10)0.099 (10)0.002 (7)0.018 (8)0.005 (9)
C50.142 (13)0.119 (11)0.126 (15)0.002 (9)0.027 (13)0.022 (12)
C60.147 (15)0.137 (14)0.17 (2)0.037 (12)0.029 (15)0.013 (15)
C70.083 (6)0.080 (6)0.060 (8)0.008 (5)0.001 (5)0.003 (5)
C80.095 (8)0.085 (8)0.069 (8)0.004 (6)0.008 (6)0.002 (6)
C90.104 (8)0.089 (9)0.085 (9)0.002 (6)0.004 (7)0.011 (7)
C100.106 (9)0.091 (8)0.086 (10)0.008 (7)0.003 (8)0.003 (8)
C110.105 (9)0.099 (10)0.075 (9)0.006 (7)0.008 (7)0.000 (7)
C120.096 (8)0.086 (8)0.067 (8)0.002 (6)0.003 (7)0.003 (6)
Geometric parameters (Å, º) top
Cd1—O5i2.343 (16)S1—C71.742 (12)
Cd1—O52.343 (16)C1—C21.543 (15)
Cd1—O62.35 (3)C2—C31.531 (15)
Cd1—O6i2.35 (3)C2—H20.9800
Cd1—O1i2.351 (7)C3—C41.481 (17)
Cd1—O12.351 (7)C3—H3A0.9700
Cd1—O6'i2.36 (4)C3—H3B0.9700
Cd1—O6'2.36 (4)C4—C51.54 (2)
Cd1—O2i2.433 (7)C4—C61.55 (2)
Cd1—O22.433 (7)C4—H40.9800
Cd1—C1i2.709 (11)C5—H5A0.9600
N1—C21.464 (14)C5—H5B0.9600
N1—S11.597 (8)C5—H5C0.9600
N1—H10.8999C6—H6A0.9600
O1—C11.249 (12)C6—H6B0.9600
O2—C11.235 (13)C6—H6C0.9600
O3—S11.407 (7)C7—C121.356 (16)
O4—S11.430 (8)C7—C81.409 (16)
O5—H5E0.8500C8—C91.371 (17)
O5—H5F0.8500C8—H80.9300
O6—H6E0.8500C9—C101.408 (19)
O6—H6F0.8501C9—H90.9300
O6—H6'C1.1951C10—C111.343 (16)
O6'—H6E0.8094C10—H100.9300
O6'—H6'C0.8500C11—C121.432 (17)
O6'—H6'B0.8501C11—H110.9300
O7—H7C0.8500C12—H120.9300
O7—H7D0.8499
O5i—Cd1—O546.1 (9)H6E—O6—H6'C15.9
O5i—Cd1—O670 (2)H6F—O6—H6'C117.1
O5—Cd1—O6116 (2)Cd1—O6'—H6E114.2
O5i—Cd1—O6i116 (2)Cd1—O6'—H6'C113.8
O5—Cd1—O6i70 (2)H6E—O6'—H6'C30.9
O6—Cd1—O6i174 (4)Cd1—O6'—H6'B86.3
O5i—Cd1—O1i130.8 (4)H6E—O6'—H6'B141.9
O5—Cd1—O1i129.6 (4)H6'C—O6'—H6'B112.3
O6—Cd1—O1i93 (2)H7C—O7—H7D107.7
O6i—Cd1—O1i82.2 (9)O3—S1—O4120.6 (5)
O5i—Cd1—O1129.6 (4)O3—S1—N1106.2 (5)
O5—Cd1—O1130.8 (4)O4—S1—N1106.4 (5)
O6—Cd1—O182.2 (9)O3—S1—C7106.9 (5)
O6i—Cd1—O193 (2)O4—S1—C7106.7 (5)
O1i—Cd1—O190.8 (4)N1—S1—C7109.7 (5)
O5i—Cd1—O6'i132 (3)O2—C1—O1123.5 (10)
O5—Cd1—O6'i86 (3)O2—C1—C2118.2 (10)
O6—Cd1—O6'i155 (4)O1—C1—C2118.3 (9)
O6i—Cd1—O6'i19.3 (9)N1—C2—C3108.8 (9)
O1i—Cd1—O6'i78.7 (11)N1—C2—C1113.8 (9)
O1—Cd1—O6'i75 (3)C3—C2—C1104.4 (9)
O5i—Cd1—O6'86 (3)N1—C2—H2109.9
O5—Cd1—O6'132 (3)C3—C2—H2109.9
O6—Cd1—O6'19.3 (9)C1—C2—H2109.9
O6i—Cd1—O6'155 (4)C4—C3—C2117.6 (10)
O1i—Cd1—O6'75 (3)C4—C3—H3A107.9
O1—Cd1—O6'78.7 (11)C2—C3—H3A107.9
O6'i—Cd1—O6'142 (5)C4—C3—H3B107.9
O5i—Cd1—O2i80.0 (4)C2—C3—H3B107.9
O5—Cd1—O2i82.2 (4)H3A—C3—H3B107.2
O6—Cd1—O2i93.9 (10)C3—C4—C5107.0 (13)
O6i—Cd1—O2i87.2 (16)C3—C4—C6104.9 (12)
O1i—Cd1—O2i54.4 (3)C5—C4—C6101.0 (15)
O1—Cd1—O2i144.9 (3)C3—C4—H4114.2
O6'i—Cd1—O2i100 (2)C5—C4—H4114.2
O6'—Cd1—O2i86.3 (13)C6—C4—H4114.2
O5i—Cd1—O282.2 (4)C4—C5—H5A109.5
O5—Cd1—O280.0 (4)C4—C5—H5B109.5
O6—Cd1—O287.2 (16)H5A—C5—H5B109.5
O6i—Cd1—O293.9 (10)C4—C5—H5C109.5
O1i—Cd1—O2144.9 (3)H5A—C5—H5C109.5
O1—Cd1—O254.4 (3)H5B—C5—H5C109.5
O6'i—Cd1—O286.3 (13)C4—C6—H6A109.5
O6'—Cd1—O2100 (2)C4—C6—H6B109.5
O2i—Cd1—O2160.6 (4)H6A—C6—H6B109.5
O5i—Cd1—C1i104.8 (4)C4—C6—H6C109.5
O5—Cd1—C1i107.1 (4)H6A—C6—H6C109.5
O6—Cd1—C1i92.2 (18)H6B—C6—H6C109.5
O6i—Cd1—C1i86.0 (9)C12—C7—C8120.0 (11)
O1i—Cd1—C1i27.4 (3)C12—C7—S1121.3 (9)
O1—Cd1—C1i117.9 (3)C8—C7—S1118.7 (9)
O6'i—Cd1—C1i91.2 (11)C9—C8—C7120.4 (12)
O6'—Cd1—C1i77 (2)C9—C8—H8119.8
O2i—Cd1—C1i27.1 (3)C7—C8—H8119.8
O2—Cd1—C1i172.3 (3)C8—C9—C10120.3 (12)
C2—N1—S1120.3 (7)C8—C9—H9119.8
C2—N1—H1107.3C10—C9—H9119.8
S1—N1—H1106.5C11—C10—C9118.5 (12)
C1—O1—Cd192.5 (6)C11—C10—H10120.7
C1—O2—Cd189.0 (6)C9—C10—H10120.7
Cd1—O5—H5E112.2C10—C11—C12122.3 (12)
Cd1—O5—H5F111.9C10—C11—H11118.8
H5E—O5—H5F109.8C12—C11—H11118.8
Cd1—O6—H6F84.7C7—C12—C11118.4 (12)
H6E—O6—H6F107.7C7—C12—H12120.8
Cd1—O6—H6'C99.8C11—C12—H12120.8
O5i—Cd1—O1—C140.1 (10)Cd1—O1—C1—C2171.1 (9)
O5—Cd1—O1—C121.6 (9)S1—N1—C2—C3146.7 (7)
O6—Cd1—O1—C196 (2)S1—N1—C2—C197.4 (9)
O6i—Cd1—O1—C188.2 (11)O2—C1—C2—N1158.6 (10)
O1i—Cd1—O1—C1170.4 (8)O1—C1—C2—N122.2 (14)
O6'i—Cd1—O1—C192.4 (13)O2—C1—C2—C382.9 (13)
O6'—Cd1—O1—C1116 (3)O1—C1—C2—C396.3 (12)
O2i—Cd1—O1—C1178.1 (7)N1—C2—C3—C469.9 (14)
O2—Cd1—O1—C14.2 (7)C1—C2—C3—C4168.2 (12)
C1i—Cd1—O1—C1175.4 (4)C2—C3—C4—C568.8 (16)
O5i—Cd1—O2—C1157.0 (9)C2—C3—C4—C6175.5 (13)
O5—Cd1—O2—C1156.3 (9)O3—S1—C7—C1211.0 (11)
O6—Cd1—O2—C187 (2)O4—S1—C7—C12141.3 (10)
O6i—Cd1—O2—C187 (2)N1—S1—C7—C12103.7 (10)
O1i—Cd1—O2—C15.3 (10)O3—S1—C7—C8170.8 (9)
O1—Cd1—O2—C14.2 (7)O4—S1—C7—C840.5 (10)
O6'i—Cd1—O2—C169 (3)N1—S1—C7—C874.5 (10)
O6'—Cd1—O2—C172 (3)C12—C7—C8—C91.7 (19)
O2i—Cd1—O2—C1179.7 (7)S1—C7—C8—C9179.9 (10)
C1i—Cd1—O2—C11 (3)C7—C8—C9—C100 (2)
C2—N1—S1—O344.3 (9)C8—C9—C10—C110.4 (19)
C2—N1—S1—O4174.0 (8)C9—C10—C11—C120 (2)
C2—N1—S1—C770.9 (9)C8—C7—C12—C112.2 (18)
Cd1—O2—C1—O17.7 (12)S1—C7—C12—C11179.6 (9)
Cd1—O2—C1—C2171.4 (9)C10—C11—C12—C71.5 (19)
Cd1—O1—C1—O28.0 (13)
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.902.292.776 (11)113
N1—H1···O2ii0.902.353.121 (12)143
O5—H5E···O1iii0.851.852.639 (19)154
O5—H5F···O1iv0.851.792.605 (18)161
O7—H7C···O3v0.852.202.99 (2)155
O7—H7D···O4vi0.852.223.00 (2)152
C2—H2···O30.982.462.903 (13)107
C2—H2···O4iii0.982.583.457 (13)149
C12—H12···O30.932.522.871 (14)102
Symmetry codes: (ii) x, y, z+1; (iii) x, y, z1; (iv) x+1, y+1, z1; (v) x+1/2, y+3/2, z+1; (vi) x+1/2, y+3/2, z+2.

Experimental details

Crystal data
Chemical formula[Cd(C12H16NO4S)2(H2O)]·2H2O
Mr725.10
Crystal system, space groupOrthorhombic, P21212
Temperature (K)298
a, b, c (Å)17.733 (2), 17.2930 (19), 5.6051 (11)
V3)1718.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.81
Crystal size (mm)0.50 × 0.40 × 0.36
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.687, 0.759
No. of measured, independent and
observed [I > 2σ(I)] reflections
9050, 3033, 1954
Rint0.051
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.214, 1.03
No. of reflections3033
No. of parameters207
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.56
Absolute structureFlack (1983), 1247 Freidel pairs
Absolute structure parameter0.00 (8)

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.902.292.776 (11)113
N1—H1···O2i0.902.353.121 (12)143
O5—H5E···O1ii0.851.852.639 (19)154
O5—H5F···O1iii0.851.792.605 (18)161
O7—H7C···O3iv0.852.202.99 (2)155
O7—H7D···O4v0.852.223.00 (2)152
C2—H2···O30.982.462.903 (13)107
C2—H2···O4ii0.982.583.457 (13)149
C12—H12···O30.932.522.871 (14)102
Symmetry codes: (i) x, y, z+1; (ii) x, y, z1; (iii) x+1, y+1, z1; (iv) x+1/2, y+3/2, z+1; (v) x+1/2, y+3/2, z+2.
 

Acknowledgements

The author thanks the National Natural Science Foundation of China (20671073), the Natural Science Foundation of Shandong (Y2007B60) and Weifang University for research grants.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X. M., Zhou, Y. Z., Tu, S. J., Xiao, L. M. & Zhu, H. J. (2007). Chin. J. Inorg. Chem. 23, 1700–1704.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds