organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(1H-Benzotriazol-1-yl)-1-(3-meth­oxy­benzo­yl)ethyl isonicotinate

aCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, 210009 Nanjing, Jiangsu, People's Republic of China
*Correspondence e-mail: mzh62@qust.edu.cn

(Received 5 January 2009; accepted 10 January 2009; online 23 January 2009)

In the title compound, C22H18N4O4, mol­ecules are linked to each other by C—H⋯N and C—H⋯O inter­molecular hydrogen-bonding inter­actions. The crystal packing is further stabilized by C—H⋯π, and ππ inter­actions with a distance of 3.783 (3) Å between the centroids of the benzene rings of the benzotriazole system.

Related literature

For general background on benzotriazole and its derivatives, see: Chen & Wu (2005[Chen, Z.-Y. & Wu, M.-T. (2005). Org. Lett. 7, 475-477.]). For details of the synthesis, see: Wan et al. (2006[Wan, J., Peng, Z.-Z., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, o634-o636.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C22H18N4O4

  • Mr = 402.40

  • Triclinic, [P \overline 1]

  • a = 9.4839 (18) Å

  • b = 10.3611 (19) Å

  • c = 11.276 (2) Å

  • α = 109.342 (3)°

  • β = 102.664 (3)°

  • γ = 97.985 (3)°

  • V = 992.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 (2) K

  • 0.33 × 0.16 × 0.08 mm

Data collection
  • Siemens SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.969, Tmax = 0.992

  • 5605 measured reflections

  • 3819 independent reflections

  • 2822 reflections with I > 2σ(I)

  • Rint = 0.013

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.119

  • S = 1.04

  • 3819 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3B⋯N3i 0.93 2.48 3.328 (3) 151
C9—H9B⋯O1ii 0.97 2.56 3.471 (2) 157
C15—H15A⋯O1ii 0.93 2.46 3.368 (3) 164
C20—H20ACg3iii 0.93 2.85 3.767 168
C22—H22CCg4iv 0.96 2.87 3.530 127
Symmetry codes: (i) -x+1, -y+2, -z+2; (ii) -x, -y+2, -z+1; (iii) x, y, z-1; (iv) x, y+1, z+1.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Benzotriazole and its derivatives exhibit an excellent pharmacological activities, such as antifungal, antitumor and antineoplastic activities (Chen & Wu, 2005). In order to find a new benzotriazole compound with higher bioactivity, the title compound, (I) (Fig. 1), was synthesized and its crystal structure was presented here.

In (I), all bond lengths and angles are within normal ranges (Allen et al., 1987). The benzotriazole ring is mostly planar with a dihedral angle of 1.75 (1)° between the N1—N3/C10/C11 triazole and C10—C15 benzene rings. The mean plane makes dihedral angles of 70.93 (1) and 19.8 (1)° with the N4/C17—C21 pyridine and C1—C6 benzene rings, respectively, and the dihedral angle between the latter two aromatic rings is 80.08 (1)°.

In the crystal structure, molecules of (I) are linked to each other by C3—H3B···N3, and further linked by C—H···O intermolecular hydrogen bonding interactions (C9—H9B···O1 and C15—H15A···O1), and stabilized by C—H···π interactions (Table 1). The distances of 3.783 Å between the centroids of the rings C10—C15 related by the symmetry code (-x, 1 - y, 1 - z) suggests a possible ππ interaction.

Related literature top

For general background on benzotriazole and its derivatives, see: Chen & Wu (2005). For details of the synthesis, see: Wan et al. (2006). For bond-length data, see: Allen et al. (1987). Cg3 and Cg4 are the centroids of the C1–C6 and C10–C15 benzene rings, respectively.

Experimental top

The title compound was prepared according to the literature method of Wan et al. (20067). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution at room temperature over a period of one week.

Refinement top

All H atoms were located in difference Fourier maps and constrained to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) and 1.5 Ueq(methyl C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The structure of the compound (I) showing 50% probability displacement ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A packing diagram of (I), viewed down the a axis. Hydrogen bonds are indicated by dashed lines.
2-(1H-Benzotriazol-1-yl)-1-(3-methoxybenzoyl)ethyl isonicotinate top
Crystal data top
C22H18N4O4Z = 2
Mr = 402.40F(000) = 420
Triclinic, P1Dx = 1.346 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4839 (18) ÅCell parameters from 1711 reflections
b = 10.3611 (19) Åθ = 2.6–24.7°
c = 11.276 (2) ŵ = 0.10 mm1
α = 109.342 (3)°T = 293 K
β = 102.664 (3)°Plate, colourless
γ = 97.985 (3)°0.33 × 0.16 × 0.08 mm
V = 992.8 (3) Å3
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3819 independent reflections
Radiation source: fine-focus sealed tube2822 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 8.33 pixels mm-1θmax = 26.1°, θmin = 2.0°
ω scansh = 1111
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1210
Tmin = 0.969, Tmax = 0.992l = 1213
5605 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.1574P]
where P = (Fo2 + 2Fc2)/3
3819 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H18N4O4γ = 97.985 (3)°
Mr = 402.40V = 992.8 (3) Å3
Triclinic, P1Z = 2
a = 9.4839 (18) ÅMo Kα radiation
b = 10.3611 (19) ŵ = 0.10 mm1
c = 11.276 (2) ÅT = 293 K
α = 109.342 (3)°0.33 × 0.16 × 0.08 mm
β = 102.664 (3)°
Data collection top
Siemens SMART 1000 CCD area-detector
diffractometer
3819 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2822 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.992Rint = 0.013
5605 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
3819 reflectionsΔρmin = 0.19 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.21549 (13)0.94145 (12)0.45684 (11)0.0511 (3)
O30.40290 (15)1.11047 (14)0.47141 (13)0.0639 (4)
N10.22089 (16)0.73861 (15)0.58935 (14)0.0498 (4)
C70.23974 (18)1.12532 (18)0.66726 (18)0.0474 (4)
C60.31816 (18)1.19911 (18)0.80934 (17)0.0457 (4)
C170.23003 (19)0.97219 (18)0.26265 (17)0.0481 (4)
C10.2728 (2)1.31472 (19)0.88006 (18)0.0526 (5)
H1A0.19521.34410.83790.063*
C160.29418 (19)1.01773 (19)0.40669 (18)0.0487 (4)
O10.15281 (15)1.17332 (14)0.60783 (13)0.0691 (4)
C80.26559 (19)0.98062 (18)0.59616 (17)0.0474 (4)
H8A0.37120.98110.62330.057*
N20.34386 (18)0.72584 (18)0.66902 (16)0.0642 (5)
C100.16172 (19)0.61663 (18)0.48299 (17)0.0457 (4)
C210.2851 (2)1.0500 (2)0.19695 (19)0.0556 (5)
H21A0.36041.13100.24220.067*
C90.1742 (2)0.86971 (18)0.62674 (18)0.0498 (4)
H9A0.18370.90400.71990.060*
H9B0.07040.85350.58050.060*
C150.0363 (2)0.57215 (19)0.37579 (18)0.0524 (5)
H15A0.02640.63100.36340.063*
N30.36612 (19)0.60040 (18)0.61744 (17)0.0687 (5)
O40.28449 (18)1.49647 (15)1.07256 (15)0.0812 (5)
C110.2550 (2)0.52895 (19)0.50226 (18)0.0522 (5)
C50.4361 (2)1.1570 (2)0.87303 (19)0.0565 (5)
H5A0.46751.07910.82730.068*
C20.3411 (2)1.38696 (19)1.01200 (19)0.0551 (5)
N40.1207 (2)0.8890 (2)0.00867 (17)0.0771 (5)
C30.4587 (2)1.3456 (2)1.0743 (2)0.0626 (5)
H3B0.50591.39441.16320.075*
C120.2266 (2)0.3910 (2)0.4131 (2)0.0615 (5)
H12A0.28870.33160.42530.074*
C140.0107 (2)0.4364 (2)0.28959 (19)0.0604 (5)
H14A0.07170.40240.21640.072*
C40.5054 (2)1.2319 (2)1.0041 (2)0.0670 (6)
H4B0.58541.20521.04600.080*
C130.1044 (2)0.3469 (2)0.3078 (2)0.0627 (5)
H13A0.08260.25550.24660.075*
C200.2260 (2)1.0049 (2)0.0634 (2)0.0680 (6)
H20A0.26221.05930.02070.082*
C190.0693 (3)0.8157 (3)0.0559 (2)0.0825 (7)
H19A0.00420.73390.00760.099*
C220.3532 (3)1.5758 (2)1.2089 (2)0.0840 (7)
H22A0.30311.64931.23910.126*
H22B0.45551.61631.22230.126*
H22C0.34711.51511.25700.126*
C180.1180 (2)0.8531 (2)0.1897 (2)0.0695 (6)
H18A0.07620.79910.23020.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0529 (7)0.0520 (7)0.0458 (7)0.0072 (6)0.0145 (6)0.0166 (6)
O30.0558 (8)0.0645 (9)0.0632 (9)0.0020 (7)0.0069 (7)0.0265 (7)
N10.0547 (9)0.0462 (9)0.0449 (9)0.0113 (7)0.0066 (7)0.0176 (7)
C70.0417 (9)0.0488 (10)0.0528 (11)0.0117 (8)0.0111 (8)0.0213 (8)
C60.0435 (9)0.0445 (10)0.0490 (11)0.0063 (8)0.0119 (8)0.0196 (8)
C170.0463 (10)0.0511 (11)0.0494 (11)0.0166 (8)0.0176 (8)0.0172 (8)
C10.0477 (10)0.0533 (11)0.0565 (12)0.0135 (8)0.0109 (9)0.0219 (9)
C160.0473 (10)0.0476 (10)0.0546 (11)0.0149 (9)0.0175 (9)0.0199 (9)
O10.0717 (9)0.0700 (9)0.0587 (9)0.0335 (8)0.0025 (7)0.0186 (7)
C80.0464 (10)0.0486 (10)0.0451 (10)0.0114 (8)0.0100 (8)0.0165 (8)
N20.0651 (10)0.0611 (11)0.0550 (10)0.0141 (8)0.0021 (8)0.0197 (8)
C100.0511 (10)0.0447 (10)0.0426 (10)0.0100 (8)0.0128 (8)0.0187 (8)
C210.0563 (11)0.0538 (11)0.0557 (12)0.0126 (9)0.0174 (9)0.0185 (9)
C90.0546 (10)0.0456 (10)0.0479 (10)0.0106 (8)0.0146 (8)0.0162 (8)
C150.0529 (11)0.0565 (11)0.0493 (11)0.0154 (9)0.0121 (9)0.0221 (9)
N30.0723 (11)0.0633 (11)0.0633 (11)0.0238 (9)0.0017 (9)0.0226 (9)
O40.0977 (11)0.0704 (10)0.0664 (10)0.0311 (9)0.0243 (9)0.0088 (8)
C110.0577 (11)0.0528 (11)0.0476 (11)0.0157 (9)0.0101 (9)0.0226 (9)
C50.0577 (11)0.0552 (11)0.0558 (12)0.0196 (9)0.0119 (9)0.0196 (9)
C20.0593 (11)0.0491 (11)0.0535 (12)0.0076 (9)0.0178 (9)0.0154 (9)
N40.0788 (12)0.0912 (14)0.0529 (11)0.0082 (11)0.0183 (10)0.0213 (10)
C30.0667 (13)0.0630 (13)0.0483 (12)0.0062 (10)0.0070 (10)0.0178 (10)
C120.0742 (13)0.0531 (12)0.0641 (13)0.0248 (10)0.0225 (11)0.0245 (10)
C140.0603 (12)0.0626 (13)0.0485 (11)0.0075 (10)0.0118 (9)0.0135 (9)
C40.0646 (13)0.0745 (14)0.0564 (13)0.0205 (11)0.0018 (10)0.0258 (11)
C130.0761 (14)0.0468 (11)0.0595 (13)0.0099 (10)0.0231 (11)0.0120 (9)
C200.0751 (14)0.0726 (15)0.0586 (13)0.0117 (12)0.0235 (11)0.0266 (11)
C190.0799 (16)0.0866 (17)0.0563 (14)0.0113 (13)0.0136 (12)0.0116 (12)
C220.1063 (19)0.0643 (14)0.0660 (15)0.0046 (13)0.0360 (14)0.0037 (11)
C180.0672 (13)0.0733 (14)0.0575 (13)0.0036 (11)0.0170 (11)0.0194 (11)
Geometric parameters (Å, º) top
O2—C161.349 (2)C15—H15A0.9300
O2—C81.434 (2)N3—C111.375 (2)
O3—C161.204 (2)O4—C21.363 (2)
N1—N21.359 (2)O4—C221.428 (2)
N1—C101.362 (2)C11—C121.396 (3)
N1—C91.445 (2)C5—C41.375 (3)
C7—O11.212 (2)C5—H5A0.9300
C7—C61.488 (2)C2—C31.382 (3)
C7—C81.531 (2)N4—C191.327 (3)
C6—C11.384 (2)N4—C201.329 (3)
C6—C51.395 (2)C3—C41.376 (3)
C17—C181.382 (3)C3—H3B0.9300
C17—C211.385 (3)C12—C131.361 (3)
C17—C161.487 (2)C12—H12A0.9300
C1—C21.378 (3)C14—C131.403 (3)
C1—H1A0.9300C14—H14A0.9300
C8—C91.519 (2)C4—H4B0.9300
C8—H8A0.9800C13—H13A0.9300
N2—N31.304 (2)C20—H20A0.9300
C10—C111.387 (2)C19—C181.378 (3)
C10—C151.392 (2)C19—H19A0.9300
C21—C201.375 (3)C22—H22A0.9600
C21—H21A0.9300C22—H22B0.9600
C9—H9A0.9700C22—H22C0.9600
C9—H9B0.9700C18—H18A0.9300
C15—C141.371 (3)
C16—O2—C8115.78 (13)C2—O4—C22117.93 (18)
N2—N1—C10109.89 (14)N3—C11—C10108.94 (16)
N2—N1—C9118.99 (14)N3—C11—C12130.21 (18)
C10—N1—C9131.12 (15)C10—C11—C12120.83 (17)
O1—C7—C6122.39 (16)C4—C5—C6119.33 (18)
O1—C7—C8119.34 (16)C4—C5—H5A120.3
C6—C7—C8118.21 (15)C6—C5—H5A120.3
C1—C6—C5119.12 (17)O4—C2—C1115.94 (18)
C1—C6—C7118.39 (15)O4—C2—C3124.37 (18)
C5—C6—C7122.49 (16)C1—C2—C3119.69 (18)
C18—C17—C21117.82 (18)C19—N4—C20116.16 (19)
C18—C17—C16122.72 (18)C4—C3—C2119.54 (19)
C21—C17—C16119.45 (17)C4—C3—H3B120.2
C2—C1—C6120.96 (17)C2—C3—H3B120.2
C2—C1—H1A119.5C13—C12—C11117.29 (18)
C6—C1—H1A119.5C13—C12—H12A121.4
O3—C16—O2123.70 (17)C11—C12—H12A121.4
O3—C16—C17124.81 (18)C15—C14—C13122.40 (19)
O2—C16—C17111.49 (15)C15—C14—H14A118.8
O2—C8—C9106.06 (13)C13—C14—H14A118.8
O2—C8—C7110.80 (14)C5—C4—C3121.34 (19)
C9—C8—C7109.81 (14)C5—C4—H4B119.3
O2—C8—H8A110.0C3—C4—H4B119.3
C9—C8—H8A110.0C12—C13—C14121.34 (18)
C7—C8—H8A110.0C12—C13—H13A119.3
N3—N2—N1109.04 (15)C14—C13—H13A119.3
N1—C10—C11104.25 (15)N4—C20—C21124.4 (2)
N1—C10—C15133.49 (16)N4—C20—H20A117.8
C11—C10—C15122.22 (16)C21—C20—H20A117.8
C20—C21—C17118.61 (19)N4—C19—C18124.2 (2)
C20—C21—H21A120.7N4—C19—H19A117.9
C17—C21—H21A120.7C18—C19—H19A117.9
N1—C9—C8111.93 (14)O4—C22—H22A109.5
N1—C9—H9A109.2O4—C22—H22B109.5
C8—C9—H9A109.2H22A—C22—H22B109.5
N1—C9—H9B109.2O4—C22—H22C109.5
C8—C9—H9B109.2H22A—C22—H22C109.5
H9A—C9—H9B107.9H22B—C22—H22C109.5
C14—C15—C10115.92 (17)C19—C18—C17118.8 (2)
C14—C15—H15A122.0C19—C18—H18A120.6
C10—C15—H15A122.0C17—C18—H18A120.6
N2—N3—C11107.87 (15)
O1—C7—C6—C110.4 (3)N1—C10—C15—C14177.61 (19)
C8—C7—C6—C1166.80 (16)C11—C10—C15—C140.4 (3)
O1—C7—C6—C5168.84 (18)N1—N2—N3—C110.5 (2)
C8—C7—C6—C513.9 (3)N2—N3—C11—C100.6 (2)
C5—C6—C1—C20.9 (3)N2—N3—C11—C12177.9 (2)
C7—C6—C1—C2179.82 (17)N1—C10—C11—N30.4 (2)
C8—O2—C16—O32.3 (2)C15—C10—C11—N3178.31 (17)
C8—O2—C16—C17177.93 (13)N1—C10—C11—C12178.28 (18)
C18—C17—C16—O3170.73 (19)C15—C10—C11—C120.4 (3)
C21—C17—C16—O38.3 (3)C1—C6—C5—C40.6 (3)
C18—C17—C16—O29.0 (2)C7—C6—C5—C4178.69 (18)
C21—C17—C16—O2172.00 (15)C22—O4—C2—C1179.05 (18)
C16—O2—C8—C9172.79 (13)C22—O4—C2—C31.4 (3)
C16—O2—C8—C768.10 (18)C6—C1—C2—O4178.11 (17)
O1—C7—C8—O218.0 (2)C6—C1—C2—C31.5 (3)
C6—C7—C8—O2164.64 (14)O4—C2—C3—C4178.9 (2)
O1—C7—C8—C998.8 (2)C1—C2—C3—C40.6 (3)
C6—C7—C8—C978.53 (19)N3—C11—C12—C13178.3 (2)
C10—N1—N2—N30.3 (2)C10—C11—C12—C130.1 (3)
C9—N1—N2—N3179.98 (16)C10—C15—C14—C130.2 (3)
N2—N1—C10—C110.1 (2)C6—C5—C4—C31.5 (3)
C9—N1—C10—C11179.61 (17)C2—C3—C4—C50.9 (3)
N2—N1—C10—C15177.64 (19)C11—C12—C13—C140.1 (3)
C9—N1—C10—C152.1 (3)C15—C14—C13—C120.0 (3)
C18—C17—C21—C200.1 (3)C19—N4—C20—C211.4 (3)
C16—C17—C21—C20178.95 (17)C17—C21—C20—N41.5 (3)
N2—N1—C9—C879.2 (2)C20—N4—C19—C180.2 (4)
C10—N1—C9—C8101.1 (2)N4—C19—C18—C171.7 (4)
O2—C8—C9—N174.36 (17)C21—C17—C18—C191.6 (3)
C7—C8—C9—N1165.87 (14)C16—C17—C18—C19177.42 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···N3i0.932.483.328 (3)151
C9—H9B···O1ii0.972.563.471 (2)157
C15—H15A···O1ii0.932.463.368 (3)164
C20—H20A···Cg3iii0.932.853.767168
C22—H22C···Cg4iv0.962.873.530127
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z+1; (iii) x, y, z1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC22H18N4O4
Mr402.40
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.4839 (18), 10.3611 (19), 11.276 (2)
α, β, γ (°)109.342 (3), 102.664 (3), 97.985 (3)
V3)992.8 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.33 × 0.16 × 0.08
Data collection
DiffractometerSiemens SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.969, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5605, 3819, 2822
Rint0.013
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.119, 1.04
No. of reflections3819
No. of parameters271
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.19

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···N3i0.932.4843.328 (3)150.92
C9—H9B···O1ii0.972.5583.471 (2)157.06
C15—H15A···O1ii0.932.4623.368 (3)164.41
C20—H20A···Cg3iii0.932.8523.767167.99
C22—H22C···Cg4iv0.962.8713.530126.65
Symmetry codes: (i) x+1, y+2, z+2; (ii) x, y+2, z+1; (iii) x, y, z1; (iv) x, y+1, z+1.
 

Acknowledgements

This project was supported by the Natural Science Foundation of Shandong Province (grant No. Y2006B07).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationChen, Z.-Y. & Wu, M.-T. (2005). Org. Lett. 7, 475–477.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWan, J., Peng, Z.-Z., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, o634–o636.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds