organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

2-(2-Thien­yl)-4,5-di­hydro-1H-imidazole

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, School of Science, Payame Noor University (PNU), Ardakan, Yazd, Iran
*Correspondence e-mail: hkfun@usm.my

(Received 8 January 2009; accepted 9 January 2009; online 14 January 2009)

In title compound, C7H8N2S, the five-membered rings are twisted by a dihedral angle of 5.17 (10)°. Two inter­molecular N—H⋯N and C—H⋯N hydrogen bonds to the same acceptor N atom form seven-membered rings, producing R21(7) ring motifs. These inter­actions link neighbouring mol­ecules into one-dimensional chains extended along the c axis. The crystal structure is further stabilized by weak inter­molecular C—H⋯π inter­actions.

Related literature

For reference geometrical data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For a related structure and the synthesis, see, Kia et al. (2008[Kia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2406.]); Stibrany et al. (2004[Stibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o527-o529.]). For the applications of imidazoline derivatives, see, for example: Blancafort (1978[Blancafort, P. (1978). Drugs Future, 3, 592-592.]); Chan (1993[Chan, S. (1993). Clin. Sci. 85, 671-677.]); Vizi (1986[Vizi, E. S. (1986). Med. Res. Rev. 6, 431-449.]); Li et al. (1996[Li, H. Y., Drummond, S., De Lucca, I. & Boswell, G. A. (1996). Tetrahedron, 52, 11153-11162.]); Ueno et al. (1995[Ueno, M., Imaizumi, K., Sugita, T., Takata, I. & Takeshita, M. (1995). Int. J. Immunopharmacol. 17, 597-603.]); Corey & Grogan (1999[Corey, E. J. & Grogan, M. J. (1999). Org. Lett. 1, 157-160.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N2S

  • Mr = 152.21

  • Monoclinic, P 21 /c

  • a = 6.1321 (2) Å

  • b = 11.5663 (3) Å

  • c = 10.0098 (3) Å

  • β = 90.154 (1)°

  • V = 709.95 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 100.0 (1) K

  • 0.54 × 0.28 × 0.22 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.825, Tmax = 0.922

  • 27675 measured reflections

  • 3100 independent reflections

  • 3040 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.128

  • S = 1.24

  • 3100 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯N2i 0.75 2.23 2.977 (2) 171
C3—H3A⋯N2i 0.95 2.60 3.482 (2) 155
C6—H6ACg1ii 0.99 2.89 3.539 (2) 124
C6—H6BCg1iii 0.99 2.83 3.691 (2) 146
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x-1, y, z. Cg1 is the centroid of the S1/C1–C4 (thiophen) ring.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Imidazoline derivatives are of great importance because they exhibit significant biological and pharmacological activities including antihypertensive (Blancafort 1978), antihyperglycemic (Chan 1993), antidepressive (Vizi 1986), antihypercholesterolemic (Li et al., 1996) and antiinflammatory properties (Ueno et al., 1995). These compounds are also used as catalysts and synthetic intermediates in some organic reactions (Corey & Grogan 1999). Due to these important applications of imidazolines, here we report the crystal structure of the title compound (I).

In the title compound (I) (Fig. 1), bond lengths (Allen et al. 1987) and angles are within the normal ranges and are comparable with the related structures (Stibrany et al. 2004; Kia et al., 2008). The two five-membered rings are not coplanar to each other and twisted by a dihedral angle of 5.17 (10)°. Two intermolecular N—H···N and C—H···N hydrogen bonds involving a nitrogen atom as an acceptor form seven-membered rings, producing, R12(7) ring motifs (Table 1). These interactions link neighbouring molecules into 1-D extended chains along the c axis (, Fig. 2). The crystal structure is further stabilized by weak intermolecular C—H···π interactions [C6—H6A···Cg1i and C6—H6B···Cg1ii: (i) -x, 1/2 + y, 3/2 - z, (ii) -1 + x, y, z; Cg1 is the centroid of the S1/C1–C4 thiophene ring.

Related literature top

For the values of bond lengths, see: Allen et al. (1987). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For a related structure and the synthesis, see, Kia et al. (2008); Stibrany et al. (2004). For the applications of imidazoline derivatives, see, for example: Blancafort (1978); Chan (1993); Vizi (1986); Li et al. (1996); Ueno et al. (1995); Corey & Grogan (1999).

Experimental top

The synthetic method was based on the previous work (Stibrany et al. 2004), except that 10 mmol of 2-cyano-thiophene and 40 mmol of ethylenediamine was used. Single crystals suitable for X-ray diffraction were obtained by evaporation of a toluene solution at room temperature.

Refinement top

The hydrogen atom bound to N1 was located from the difference Fourier map and constrained to refine with the respective parent atom, see Table 1. The rest of the hydrogen atoms were positioned gemetrically and refined in a riding model approximation with C—H = 0.95–0.99 Å and Uiso (H) = 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atom labels and 50% probability ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal packing of (I), viewed down the b-axis showing 1-D infinite chain along the c-axis by intermolecular N—H···N and C—H···N interactions. The intermolecular interactions are shown as dashed lines.
2-(2-Thienyl)-4,5-dihydro-1H-imidazole top
Crystal data top
C7H8N2SF(000) = 320
Mr = 152.21Dx = 1.424 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9869 reflections
a = 6.1321 (2) Åθ = 2.5–34.3°
b = 11.5663 (3) ŵ = 0.37 mm1
c = 10.0098 (3) ÅT = 100 K
β = 90.154 (1)°Block, colourless
V = 709.95 (4) Å30.54 × 0.28 × 0.22 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3100 independent reflections
Radiation source: fine-focus sealed tube3040 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 35.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.825, Tmax = 0.922k = 1817
27675 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.24 w = 1/[σ2(Fo2) + 1.7551P]
where P = (Fo2 + 2Fc2)/3
3100 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C7H8N2SV = 709.95 (4) Å3
Mr = 152.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.1321 (2) ŵ = 0.37 mm1
b = 11.5663 (3) ÅT = 100 K
c = 10.0098 (3) Å0.54 × 0.28 × 0.22 mm
β = 90.154 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3100 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3040 reflections with I > 2σ(I)
Tmin = 0.825, Tmax = 0.922Rint = 0.021
27675 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.24Δρmax = 0.62 e Å3
3100 reflectionsΔρmin = 0.39 e Å3
91 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.46967 (8)0.14161 (4)0.59514 (4)0.01548 (10)
N20.0669 (2)0.29635 (14)0.61122 (15)0.0137 (2)
N10.0460 (2)0.30376 (14)0.83746 (14)0.0133 (2)
H1N10.05840.27240.90260.016*
C10.6387 (3)0.05389 (17)0.6858 (2)0.0180 (3)
H1A0.75420.01000.64820.022*
C20.5888 (3)0.05418 (16)0.81838 (19)0.0169 (3)
H2A0.66550.01030.88350.020*
C30.4092 (3)0.12742 (15)0.84860 (17)0.0136 (3)
H3A0.35300.13850.93600.016*
C40.3260 (3)0.18060 (14)0.73589 (16)0.0117 (3)
C50.1427 (3)0.26052 (14)0.72556 (16)0.0109 (3)
C60.1543 (3)0.36276 (17)0.79447 (17)0.0154 (3)
H6A0.17240.43800.84030.018*
H6B0.28490.31440.81010.018*
C70.1097 (3)0.37874 (16)0.64419 (17)0.0151 (3)
H7A0.24230.36150.59120.018*
H7B0.06340.45910.62520.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01727 (19)0.01847 (19)0.01071 (17)0.00446 (15)0.00185 (13)0.00026 (14)
N20.0153 (6)0.0161 (6)0.0098 (6)0.0027 (5)0.0003 (4)0.0009 (5)
N10.0148 (6)0.0170 (6)0.0080 (5)0.0029 (5)0.0016 (4)0.0004 (5)
C10.0166 (7)0.0181 (8)0.0192 (8)0.0057 (6)0.0001 (6)0.0015 (6)
C20.0186 (7)0.0155 (7)0.0167 (7)0.0029 (6)0.0034 (6)0.0009 (6)
C30.0164 (7)0.0129 (7)0.0113 (6)0.0001 (5)0.0002 (5)0.0004 (5)
C40.0131 (6)0.0120 (6)0.0100 (6)0.0005 (5)0.0003 (5)0.0005 (5)
C50.0120 (6)0.0113 (6)0.0094 (6)0.0011 (5)0.0005 (5)0.0004 (5)
C60.0143 (7)0.0186 (7)0.0132 (7)0.0030 (6)0.0019 (5)0.0007 (6)
C70.0152 (7)0.0181 (7)0.0120 (7)0.0035 (6)0.0000 (5)0.0018 (5)
Geometric parameters (Å, º) top
S1—C11.7099 (19)C2—H2A0.9500
S1—C41.7239 (17)C3—C41.381 (2)
N2—C51.302 (2)C3—H3A0.9500
N2—C71.480 (2)C4—C51.459 (2)
N1—C51.364 (2)C6—C71.541 (2)
N1—C61.468 (2)C6—H6A0.9900
N1—H1N10.7501C6—H6B0.9900
C1—C21.362 (3)C7—H7A0.9900
C1—H1A0.9500C7—H7B0.9900
C2—C31.423 (3)
C1—S1—C491.82 (9)C5—C4—S1120.22 (12)
C5—N2—C7105.57 (14)N2—C5—N1116.78 (15)
C5—N1—C6107.14 (14)N2—C5—C4122.49 (15)
C5—N1—H1N1119.6N1—C5—C4120.71 (14)
C6—N1—H1N1124.2N1—C6—C7101.03 (13)
C2—C1—S1112.21 (14)N1—C6—H6A111.6
C2—C1—H1A123.9C7—C6—H6A111.6
S1—C1—H1A123.9N1—C6—H6B111.6
C1—C2—C3112.63 (16)C7—C6—H6B111.6
C1—C2—H2A123.7H6A—C6—H6B109.4
C3—C2—H2A123.7N2—C7—C6105.80 (14)
C4—C3—C2112.08 (15)N2—C7—H7A110.6
C4—C3—H3A124.0C6—C7—H7A110.6
C2—C3—H3A124.0N2—C7—H7B110.6
C3—C4—C5128.52 (15)C6—C7—H7B110.6
C3—C4—S1111.26 (13)H7A—C7—H7B108.7
C4—S1—C1—C20.16 (16)C6—N1—C5—N211.9 (2)
S1—C1—C2—C30.2 (2)C6—N1—C5—C4169.73 (15)
C1—C2—C3—C40.5 (2)C3—C4—C5—N2173.27 (18)
C2—C3—C4—C5179.52 (17)S1—C4—C5—N26.9 (2)
C2—C3—C4—S10.60 (19)C3—C4—C5—N18.5 (3)
C1—S1—C4—C30.44 (14)S1—C4—C5—N1171.36 (13)
C1—S1—C4—C5179.67 (15)C5—N1—C6—C717.79 (18)
C7—N2—C5—N10.6 (2)C5—N2—C7—C612.26 (19)
C7—N2—C5—C4177.67 (15)N1—C6—C7—N218.12 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.752.232.977 (2)171
C3—H3A···N2i0.952.603.482 (2)155
C6—H6A···Cg1ii0.992.893.539 (2)124
C6—H6B···Cg1iii0.992.833.691 (2)146
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+3/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC7H8N2S
Mr152.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)6.1321 (2), 11.5663 (3), 10.0098 (3)
β (°) 90.154 (1)
V3)709.95 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.54 × 0.28 × 0.22
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.825, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
27675, 3100, 3040
Rint0.021
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.128, 1.24
No. of reflections3100
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.62, 0.39

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···N2i0.75002.23002.977 (2)171.00
C3—H3A···N2i0.95002.60003.482 (2)155.00
C6—H6A···Cg1ii0.99002.89003.539 (2)124.00
C6—H6B···Cg1iii0.99002.83003.691 (2)146.00
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1/2, z+3/2; (iii) x1, y, z.
 

Acknowledgements

HKF and RK thanks the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HK thanks PNU for the financial support. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlancafort, P. (1978). Drugs Future, 3, 592–592.  CrossRef Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, S. (1993). Clin. Sci. 85, 671–677.  CAS PubMed Web of Science Google Scholar
First citationCorey, E. J. & Grogan, M. J. (1999). Org. Lett. 1, 157–160.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2008). Acta Cryst. E64, o2406.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, H. Y., Drummond, S., De Lucca, I. & Boswell, G. A. (1996). Tetrahedron, 52, 11153–11162.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStibrany, R. T., Schugar, H. J. & Potenza, J. A. (2004). Acta Cryst. E60, o527–o529.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUeno, M., Imaizumi, K., Sugita, T., Takata, I. & Takeshita, M. (1995). Int. J. Immunopharmacol. 17, 597–603.  CrossRef CAS PubMed Web of Science Google Scholar
First citationVizi, E. S. (1986). Med. Res. Rev. 6, 431–449.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds