organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o349-o350

5-Di­ethyl­amino-2-[(E)-(4-methyl-3-nitro­phenyl)­imino­meth­yl]phenol: a redetermination

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bSeQuent Scientific Limited, No. 120 A&B, Industrial Area, Baikampady, New Mangalore, Karnataka 575 011, India, and cDepartment of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India
*Correspondence e-mail: hkfun@usm.my

(Received 12 January 2009; accepted 14 January 2009; online 17 January 2009)

The title compound, C18H21N3O3, is a potential bidentate Schiff base ligand. The whole mol­ecule is disordered with a refined site-occupancy ratio of 0.567 (4):0.433 (4) and not just one ethyl group as reported previously [Sarojini et al. (2007[Sarojini, B. K., Narayana, B., Mustafa, K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4782.]). Acta Cryst. E63, o4782–o4782]. Using the whole mol­ecule disorder, R values are much smaller than those published. An intra­molecular O—H⋯N hydrogen bond generates a six-membered ring, producing an S(6) ring motif. The dihedral angle between the mean plane of the two benzene rings (major component) is 9.0 (5)°. The crystal structure shows short C⋯C [3.189 (15)–3.298 (12) Å] and C⋯O [2.983 (5)–3.149 (13) Å] contacts. Inter­molecular C—H⋯O inter­actions link neighbouring mol­ecules into dimers with R22(18) motifs. In the crystal structure, these dimers are linked together by inter­molecular C—H⋯O inter­actions into one-dimensional extended chains along the b axis. The crystal structure is further stabilized by inter­molecular ππ stacking inter­actions [centroid–centroid distances = 3.458 (8)–3.691 (6) Å].

Related literature

For the previous determination of this structure, see: Sarojini et al. (2007[Sarojini, B. K., Narayana, B., Mustafa, K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4782.]). For details of hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the application of Schiff bases in synthesis, coordination chemistry and biomedical activities, see: Patai (1970[Patai, S. (1970). The Chemistry of the Carbon-Nitrogen Double Bond. London: John Wiley & Sons Ltd.]); Tai et al. (2003[Tai, X., Yin, X., Chen, Q. & Tan, M. (2003). Molecules, 8, 439-443.]); Ittel et al. (2000[Ittel, S. D., Johnson, L. K. & Brookhart, M. (2000). Chem. Rev. 100, 1169-1203.]); Kabeer et al. (2001[Kabeer, A. S., Baseer, M. A. & Mote, N. A. (2001). Asian J. Chem. 13, 496-500.]); Pandeya et al. (1999[Pandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Farmaco, 54, 624-628.]); More et al. (2001[More, P. G., Bhalvankar, R. B. & Pattar, S. C. (2001). J. Indian Chem. Soc. 78, 474-475.]); Singh & Dash (1988[Singh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33-37.]); Isloor et al. (2009[Isloor, A. M., Sunil, D., Shetty, P. & Satyamoorthy, K. (2009). Eur. J. Med. Chem.. Submitted.]); Pathak et al. (2000[Pathak, P., Jolly, V. S. & Sharma, K. P. (2000). Orient. J. Chem. 16, 161-162.]); Vazzanaa et al. (2004[Vazzanaa, I., Terranova, E., Mattiolib, F. & Sparatore, F. (2004). Arkivoc, v, 364-374.]); Samadhiya & Halve (2001[Samadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17, 119-122.]); Aydoğan et al. (2001[Aydoğan, F., Öcal, N., Turgut, Z. & Yolaçan, C. (2001). Bull. Korean Chem. Soc. 22, 476-480.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21N3O3

  • Mr = 327.38

  • Monoclinic, P 21 /n

  • a = 7.2777 (1) Å

  • b = 22.1792 (5) Å

  • c = 10.3473 (2) Å

  • β = 103.713 (1)°

  • V = 1622.59 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100.0 (1) K

  • 0.49 × 0.25 × 0.04 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.956, Tmax = 0.997

  • 21678 measured reflections

  • 4744 independent reflections

  • 3239 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.117

  • S = 1.02

  • 4744 reflections

  • 412 parameters

  • 1197 restraints

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯N1A 0.84 1.95 2.68 (2) 144
C12A—H12A⋯O1Ai 0.95 2.53 3.329 (19) 141
C15A—H15A⋯O3Aii 0.98 2.26 2.983 (5) 130
Symmetry codes: (i) -x, -y, -z+2; (ii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Compounds with the structure of –CN– (azomethine group) are known as Schiff bases, which are usually synthesized by the condensation of primary amines and active carbonyl groups. The chemistry of the carbon-nitrogen double bond plays a vital role in the progresses of chemistry (Patai 1970). They have been used as intermediates in medical substrates and as ligands in complex formation with some metal ions (Tai et al., 2003). Recently multi-dentate complexes of iron and nickel showed high activities of ethylene oligomerization and polymerization (Ittel et al., 2000). They have shown biological activities including antibacterial (Kabeer et al., 2001; Pandeya et al., 1999), antifungal (More et al., 2001; Singh & Dash 1988), anticancer (Isloor et al., 2009; Pathak et al., 2000), anti-inflammatory (Vazzanaa et al., 2004) and herbicidal (Samadhiya & Halve 2001) activities. In addition, Schiff bases have also been used as starting materials in the synthesis of large bioactive and industrial compounds via ring closure, cycloaddition and replacement reactions (Aydoğan et al., 2001).

In the title compound, (I), (Fig. 1), an intramolecular O—H···N hydrogen bond generate a six-membered ring, producing S(6) ring motif (Table 1). Intermolecular C—H···O interactions link neighbouring molecules into dimers with R22(18) motifs (Table 1, Fig. 2). The whole molecule is disordered with a site occupancy ratio of 0.567 (4)/0.433 (4) and not just the ethyl group as mentioned in the previously reported article (Sarojini et al., 2007). Using the whole molecule disorder, R-values are much smaller than those published.

The two substituted benzene rings are not coplanar and make a dihedral angle of 9.0 (5)° (for major component A). The interesting features of the crystal structure is short C1A···C8Ai [3.298 (12) Å;(i) 1-x,-y,2-z], C1B···C8Bi [3.329 (16) Å], C3B···C12Bi [3.189 (15) Å], C15A···O3Aii [2.983 (5) Å; (ii) 3/2-x,-1/2+y,3/2-z], C8B···O3Biii [3.149 Å; (iii) -x,-y,1-z], and C13B···O3Biii [3.116 (15) Å] contacts which are shorter than the sum of the van der Waals radii of these atoms. In the crystal structure, these dimers are linked together by intermolecular C—H···O interaction into 1-D extended chains along the b-axis (Fig. 3). The crystal structure is further stabilized by weak intermolecular π-π interactions [Cg1··· Cg2i = 3.7744 (6) Å; Cg2···Cg3i = 3.473 (7) Å; Cg3···Cg4i = 3.458 (8) Å and Cg1···Cg4 = 3.670 (7) Å: Cg1, Cg2, Cg3, and Cg4 are the centroids of the C1A–C6A, C8A–C13A, C1B–C6B, and C8B–C13B benzene rings].

Related literature top

For the previous determination of this structure, see: Sarojini et al. (2007). For details of hydrogen-bond motifs, see: Bernstein et al. (1995). For the application of Schiff bases in synthesis, coordination chemistry and biomedical activities, see: Patai (1970); Tai et al. (2003); Ittel et al. (2000); Kabeer et al. (2001); Pandeya et al. (1999); More et al. (2001); Singh & Dash (1988); Isloor et al. (2009); Pathak et al. (2000); Vazzanaa et al. (2004); Samadhiya & Halve (2001); Aydoğan et al. (2001).

Experimental top

An equimolar mixture of 4-(diethylamino)-2-hydroxybenzaldehyde (0.5 g, 2.59 mmol) and 4-methyl-3-nitro aniline (0.393 g, 2.59 mmol) in ethanol (10 mL) were refluxed for 4 h. Catalytic amount of sulfuric acid was also added. The precipitated solid was filtered and recrystallised from acetone to yield orange coloured crystalline solid [0.41 g, 82 %, m.p 405 K]).

Refinement top

H atoms of the hydroxy groups were positioned by a freely rotating O—H bond and constrained with a fixed distance of 0.84 Å. The rest of the hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.95–0.99 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl hydrogen atoms of the methoxy groups. Rigid bond, similarity and simulation restraints were applied.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atomic numbering. Intramolecular hydrogen bond is shown as a dashed line. Open bonds show the minor component.
[Figure 2] Fig. 2. The crystal packing of the major component of (I), viewed down the b-axis, showing dimer formation by a R22(18) motif.
[Figure 3] Fig. 3. The crystal packing of the major component of (I), viewed down the c-axis, showing 1-D extended chain along the b-axis.
5-Diethylamino-2-[(E)-(4-methyl-3-nitrophenyl)iminomethyl]phenol top
Crystal data top
C18H21N3O3F(000) = 696
Mr = 327.38Dx = 1.340 Mg m3
Monoclinic, P21/nMelting point: 405 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.2777 (1) ÅCell parameters from 4554 reflections
b = 22.1792 (5) Åθ = 2.7–29.8°
c = 10.3473 (2) ŵ = 0.09 mm1
β = 103.713 (1)°T = 100 K
V = 1622.59 (5) Å3Plate, yellow
Z = 40.49 × 0.25 × 0.04 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4744 independent reflections
Radiation source: fine-focus sealed tube3239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ϕ and ω scansθmax = 30.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.956, Tmax = 0.997k = 3131
21678 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.1724P]
where P = (Fo2 + 2Fc2)/3
4744 reflections(Δ/σ)max < 0.001
412 parametersΔρmax = 0.21 e Å3
1197 restraintsΔρmin = 0.22 e Å3
Crystal data top
C18H21N3O3V = 1622.59 (5) Å3
Mr = 327.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.2777 (1) ŵ = 0.09 mm1
b = 22.1792 (5) ÅT = 100 K
c = 10.3473 (2) Å0.49 × 0.25 × 0.04 mm
β = 103.713 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
4744 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3239 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.997Rint = 0.037
21678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431197 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.02Δρmax = 0.21 e Å3
4744 reflectionsΔρmin = 0.22 e Å3
412 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.3739 (19)0.0973 (10)1.0926 (17)0.0234 (9)0.567 (4)
H1A0.30890.07911.02620.035*0.567 (4)
C1A0.5374 (9)0.1157 (3)1.0663 (5)0.0125 (7)0.567 (4)
C2A0.647 (2)0.1575 (12)1.1497 (19)0.0255 (9)0.567 (4)
H2AA0.61400.16821.23010.031*0.567 (4)
C3A0.8077 (5)0.18510 (16)1.1189 (3)0.0255 (6)0.567 (4)
C4A0.8620 (5)0.16478 (18)1.0018 (4)0.0296 (7)0.567 (4)
H4AA0.97260.18030.98030.035*0.567 (4)
C5A0.7531 (7)0.1227 (3)0.9210 (6)0.0252 (10)0.567 (4)
H5AA0.79110.10990.84360.030*0.567 (4)
C6A0.5879 (14)0.0974 (8)0.9470 (12)0.0197 (10)0.567 (4)
C7A0.4817 (12)0.0550 (5)0.8538 (8)0.0179 (13)0.567 (4)
H7AA0.53000.04220.78070.021*0.567 (4)
N1A0.3211 (11)0.0336 (5)0.8673 (8)0.0179 (9)0.567 (4)
C8A0.2039 (12)0.0048 (5)0.7729 (8)0.0250 (14)0.567 (4)
C9A0.2462 (14)0.0271 (7)0.6580 (10)0.0230 (14)0.567 (4)
H9AA0.36310.01710.63760.028*0.567 (4)
C10A0.1184 (11)0.0637 (5)0.5730 (8)0.0221 (11)0.567 (4)
C11A0.0553 (11)0.0821 (6)0.5965 (9)0.0226 (11)0.567 (4)
C12A0.0955 (14)0.0564 (5)0.7096 (9)0.0309 (12)0.567 (4)
H12A0.21690.06370.72560.037*0.567 (4)
C13A0.0291 (11)0.0210 (5)0.8002 (9)0.0264 (12)0.567 (4)
H13A0.00240.00780.87960.032*0.567 (4)
N2A0.9119 (3)0.22760 (14)1.1993 (3)0.0402 (7)0.567 (4)
C14A1.1461 (3)0.22808 (9)1.21715 (19)0.0262 (5)0.567 (4)
H14A1.21680.23691.30930.031*0.567 (4)
H14B1.19420.19081.18430.031*0.567 (4)
C15A1.1392 (3)0.28153 (10)1.1233 (2)0.0327 (6)0.567 (4)
H15A1.26770.29121.11580.049*0.567 (4)
H15B1.08470.31651.15850.049*0.567 (4)
H15C1.06090.27121.03530.049*0.567 (4)
C16A0.8713 (9)0.2448 (3)1.3260 (6)0.0268 (11)0.567 (4)
H16A0.99000.25801.38810.032*0.567 (4)
H16B0.82320.20921.36550.032*0.567 (4)
C17A0.7284 (9)0.2947 (3)1.3107 (9)0.0343 (11)0.567 (4)
H17A0.70580.30471.39790.052*0.567 (4)
H17B0.60970.28161.25090.052*0.567 (4)
H17C0.77640.33041.27340.052*0.567 (4)
C18A0.1980 (12)0.1223 (4)0.5104 (10)0.0286 (13)0.567 (4)
H18A0.30710.12700.54980.043*0.567 (4)
H18B0.14120.16190.50340.043*0.567 (4)
H18C0.23940.10450.42160.043*0.567 (4)
N3A0.184 (3)0.0827 (19)0.455 (2)0.0313 (14)0.567 (4)
O2A0.3440 (11)0.0694 (3)0.4470 (8)0.0529 (17)0.567 (4)
O3A0.0868 (6)0.1188 (2)0.3802 (5)0.0700 (13)0.567 (4)
O1B0.398 (3)0.0963 (13)1.092 (2)0.0234 (9)0.433 (4)
H1B0.35510.06801.03910.035*0.433 (4)
C1B0.5589 (14)0.1191 (5)1.0618 (9)0.0306 (17)0.433 (4)
C2B0.665 (3)0.1575 (15)1.155 (2)0.0255 (9)0.433 (4)
H2BA0.61480.17411.22350.031*0.433 (4)
C3B0.8515 (5)0.17175 (19)1.1452 (4)0.0181 (7)0.433 (4)
C4B0.9079 (6)0.1517 (2)1.0301 (4)0.0218 (8)0.433 (4)
H4BA1.02770.16361.01720.026*0.433 (4)
C5B0.7946 (8)0.1158 (4)0.9378 (8)0.0221 (11)0.433 (4)
H5BA0.83740.10340.86200.027*0.433 (4)
C6B0.6180 (19)0.0966 (10)0.9512 (17)0.0197 (10)0.433 (4)
C7B0.4953 (17)0.0590 (7)0.8598 (12)0.030 (2)0.433 (4)
H7BA0.53340.04630.78240.036*0.433 (4)
N1B0.3323 (17)0.0409 (7)0.8762 (12)0.0250 (18)0.433 (4)
C8B0.2194 (14)0.0014 (6)0.7836 (10)0.0169 (13)0.433 (4)
C9B0.2642 (19)0.0211 (9)0.6684 (14)0.0189 (13)0.433 (4)
H9BA0.38220.01170.64910.023*0.433 (4)
C10B0.1362 (14)0.0571 (6)0.5834 (10)0.0213 (14)0.433 (4)
C11B0.0420 (16)0.0732 (8)0.6030 (12)0.028 (2)0.433 (4)
C12B0.0749 (16)0.0544 (7)0.7258 (11)0.0330 (19)0.433 (4)
H12B0.18230.06880.75360.040*0.433 (4)
C13B0.0489 (16)0.0153 (7)0.8050 (13)0.033 (2)0.433 (4)
H13B0.01310.00130.88000.040*0.433 (4)
N2B0.9676 (3)0.20711 (11)1.2388 (2)0.0158 (5)0.433 (4)
C14B1.0549 (4)0.26562 (12)1.1520 (3)0.0288 (7)0.433 (4)
H14C1.00150.26541.05470.035*0.433 (4)
H14D1.04820.30631.18990.035*0.433 (4)
C15B1.2453 (4)0.23619 (13)1.1946 (3)0.0343 (8)0.433 (4)
H15D1.33810.25931.16020.051*0.433 (4)
H15E1.23840.19501.15950.051*0.433 (4)
H15F1.28390.23501.29200.051*0.433 (4)
C16B0.9026 (12)0.2355 (5)1.3477 (7)0.0245 (12)0.433 (4)
H16C1.01440.24901.41620.029*0.433 (4)
H16D0.83560.20501.38910.029*0.433 (4)
C17B0.7722 (11)0.2891 (4)1.3056 (11)0.0315 (13)0.433 (4)
H17D0.73390.30541.38320.047*0.433 (4)
H17E0.65980.27611.23890.047*0.433 (4)
H17F0.83880.32031.26740.047*0.433 (4)
C18B0.1932 (17)0.1105 (6)0.5125 (13)0.0300 (17)0.433 (4)
H18D0.30260.11430.55180.045*0.433 (4)
H18E0.14290.15070.50140.045*0.433 (4)
H18F0.23200.09070.42560.045*0.433 (4)
N3B0.185 (4)0.078 (2)0.459 (3)0.0313 (14)0.433 (4)
O2B0.3391 (12)0.0633 (4)0.4405 (10)0.0260 (11)0.433 (4)
O3B0.0621 (6)0.10006 (19)0.3677 (5)0.0255 (7)0.433 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.020 (3)0.0286 (7)0.0251 (4)0.003 (2)0.0111 (17)0.0049 (4)
C1A0.0190 (15)0.0127 (15)0.0082 (12)0.0006 (11)0.0079 (10)0.0015 (10)
C2A0.031 (2)0.0267 (5)0.0230 (12)0.0060 (19)0.0144 (18)0.0060 (8)
C3A0.0251 (15)0.0271 (17)0.0258 (16)0.0008 (11)0.0091 (11)0.0056 (12)
C4A0.0284 (16)0.034 (2)0.0314 (18)0.0034 (12)0.0175 (13)0.0041 (13)
C5A0.026 (2)0.0303 (18)0.0211 (16)0.0044 (15)0.0082 (14)0.0067 (14)
C6A0.019 (3)0.0228 (6)0.0184 (8)0.003 (2)0.0072 (19)0.0009 (7)
C7A0.027 (2)0.0150 (18)0.0087 (19)0.0030 (15)0.0020 (15)0.0034 (16)
N1A0.0219 (19)0.018 (2)0.0152 (18)0.0029 (12)0.0063 (15)0.0020 (14)
C8A0.0211 (17)0.024 (2)0.024 (2)0.0017 (13)0.0067 (14)0.0046 (14)
C9A0.020 (3)0.035 (4)0.015 (2)0.0024 (18)0.005 (2)0.0029 (15)
C10A0.0218 (18)0.024 (2)0.0150 (15)0.0008 (14)0.0058 (11)0.0054 (13)
C11A0.019 (2)0.030 (3)0.020 (2)0.0001 (15)0.0067 (16)0.0031 (14)
C12A0.0195 (16)0.043 (2)0.026 (2)0.0028 (14)0.0026 (13)0.0072 (17)
C13A0.0192 (16)0.039 (3)0.026 (3)0.0015 (15)0.0150 (19)0.0062 (17)
N2A0.0351 (12)0.0537 (17)0.0389 (14)0.0199 (11)0.0227 (10)0.0212 (12)
C14A0.0232 (10)0.0282 (10)0.0292 (10)0.0032 (8)0.0105 (8)0.0030 (8)
C15A0.0344 (11)0.0308 (11)0.0390 (11)0.0074 (9)0.0208 (9)0.0020 (9)
C16A0.023 (2)0.033 (3)0.0247 (19)0.0049 (15)0.0064 (15)0.0040 (16)
C17A0.032 (3)0.0292 (18)0.0424 (18)0.0006 (16)0.0093 (18)0.0078 (14)
C18A0.0211 (15)0.030 (3)0.0303 (18)0.0061 (16)0.0038 (12)0.0059 (18)
N3A0.0284 (5)0.044 (5)0.0211 (13)0.0034 (11)0.0058 (7)0.0080 (7)
O2A0.028 (2)0.092 (4)0.040 (3)0.001 (2)0.0118 (18)0.028 (3)
O3A0.083 (3)0.087 (3)0.052 (2)0.0527 (19)0.0408 (18)0.047 (2)
O1B0.020 (3)0.0286 (7)0.0251 (4)0.003 (2)0.0111 (17)0.0049 (4)
C1B0.023 (2)0.029 (3)0.043 (3)0.0032 (18)0.0160 (18)0.0165 (19)
C2B0.031 (2)0.0267 (5)0.0230 (12)0.0060 (19)0.0144 (18)0.0060 (8)
C3B0.0189 (16)0.0160 (16)0.0188 (16)0.0090 (10)0.0033 (11)0.0086 (11)
C4B0.0216 (17)0.0228 (18)0.0221 (17)0.0055 (12)0.0072 (12)0.0046 (12)
C5B0.017 (2)0.029 (2)0.024 (2)0.0043 (18)0.0121 (18)0.0053 (15)
C6B0.019 (3)0.0228 (6)0.0184 (8)0.003 (2)0.0072 (19)0.0009 (7)
C7B0.031 (3)0.031 (4)0.032 (5)0.007 (2)0.017 (3)0.009 (3)
N1B0.028 (2)0.020 (3)0.021 (2)0.0010 (16)0.0066 (16)0.0077 (16)
C8B0.019 (3)0.025 (3)0.0084 (19)0.0045 (18)0.0057 (19)0.0035 (16)
C9B0.0133 (18)0.021 (2)0.018 (2)0.0030 (15)0.0052 (15)0.0053 (17)
C10B0.016 (2)0.036 (4)0.014 (2)0.0026 (17)0.008 (2)0.0050 (18)
C11B0.023 (2)0.029 (4)0.026 (2)0.0086 (18)0.0078 (17)0.0045 (19)
C12B0.019 (3)0.063 (4)0.020 (3)0.003 (2)0.011 (3)0.006 (2)
C13B0.031 (3)0.043 (4)0.021 (3)0.001 (2)0.0029 (19)0.008 (3)
N2B0.0172 (9)0.0156 (11)0.0132 (10)0.0058 (7)0.0011 (7)0.0053 (8)
C14B0.0297 (14)0.0258 (14)0.0327 (14)0.0003 (11)0.0111 (11)0.0025 (11)
C15B0.0268 (15)0.0375 (16)0.0411 (16)0.0004 (11)0.0128 (12)0.0035 (12)
C16B0.024 (3)0.030 (3)0.020 (2)0.0050 (16)0.0061 (18)0.0041 (19)
C17B0.027 (3)0.031 (2)0.038 (2)0.003 (2)0.009 (2)0.0073 (17)
C18B0.033 (2)0.027 (4)0.032 (3)0.008 (2)0.0111 (18)0.002 (2)
N3B0.0284 (5)0.044 (5)0.0211 (13)0.0034 (11)0.0058 (7)0.0080 (7)
O2B0.023 (2)0.0343 (19)0.023 (2)0.0071 (15)0.0100 (17)0.0035 (16)
O3B0.0187 (9)0.0372 (17)0.0163 (10)0.0021 (11)0.0043 (7)0.0078 (11)
Geometric parameters (Å, º) top
O1A—C1A1.346 (7)O1B—C1B1.376 (9)
O1A—H1A0.8400O1B—H1B0.8400
C1A—C2A1.384 (7)C1B—C2B1.377 (10)
C1A—C6A1.427 (7)C1B—C6B1.406 (9)
C2A—C3A1.420 (8)C2B—C3B1.418 (10)
C2A—H2AA0.9500C2B—H2BA0.9500
C3A—N2A1.363 (4)C3B—N2B1.371 (5)
C3A—C4A1.433 (5)C3B—C4B1.420 (6)
C4A—C5A1.373 (6)C4B—C5B1.361 (8)
C4A—H4AA0.9500C4B—H4BA0.9500
C5A—C6A1.409 (7)C5B—C6B1.391 (8)
C5A—H5AA0.9500C5B—H5BA0.9500
C6A—C7A1.436 (7)C6B—C7B1.409 (9)
C7A—N1A1.299 (7)C7B—N1B1.301 (9)
C7A—H7AA0.9500C7B—H7BA0.9500
N1A—C8A1.419 (7)N1B—C8B1.410 (9)
C8A—C9A1.388 (7)C8B—C13B1.363 (9)
C8A—C13A1.413 (7)C8B—C9B1.401 (9)
C9A—C10A1.383 (7)C9B—C10B1.375 (9)
C9A—H9AA0.9500C9B—H9BA0.9500
C10A—C11A1.403 (6)C10B—C11B1.405 (8)
C10A—N3A1.474 (7)C10B—N3B1.484 (9)
C11A—C12A1.394 (7)C11B—C12B1.410 (9)
C11A—C18A1.493 (7)C11B—C18B1.512 (9)
C12A—C13A1.384 (7)C12B—C13B1.373 (9)
C12A—H12A0.9500C12B—H12B0.9500
C13A—H13A0.9500C13B—H13B0.9500
N2A—C16A1.462 (6)N2B—C16B1.463 (8)
N2A—C14A1.670 (3)N2B—C14B1.779 (4)
C14A—C15A1.526 (3)C14B—C15B1.501 (4)
C14A—H14A0.9900C14B—H14C0.9900
C14A—H14B0.9900C14B—H14D0.9900
C15A—H15A0.9800C15B—H15D0.9800
C15A—H15B0.9800C15B—H15E0.9800
C15A—H15C0.9800C15B—H15F0.9800
C16A—C17A1.501 (6)C16B—C17B1.518 (8)
C16A—H16A0.9900C16B—H16C0.9900
C16A—H16B0.9900C16B—H16D0.9900
C17A—H17A0.9800C17B—H17D0.9800
C17A—H17B0.9800C17B—H17E0.9800
C17A—H17C0.9800C17B—H17F0.9800
C18A—H18A0.9800C18B—H18D0.9800
C18A—H18B0.9800C18B—H18E0.9800
C18A—H18C0.9800C18B—H18F0.9800
N3A—O3A1.219 (10)N3B—O2B1.225 (9)
N3A—O2A1.220 (7)N3B—O3B1.242 (13)
O1A—C1A—C2A119.0 (8)O1B—C1B—C2B115.9 (10)
O1A—C1A—C6A120.7 (7)O1B—C1B—C6B119.6 (10)
C2A—C1A—C6A120.0 (6)C2B—C1B—C6B123.9 (9)
C1A—C2A—C3A122.2 (8)C1B—C2B—C3B118.5 (10)
C1A—C2A—H2AA118.9C1B—C2B—H2BA120.7
C3A—C2A—H2AA118.9C3B—C2B—H2BA120.7
N2A—C3A—C2A121.9 (4)N2B—C3B—C2B121.2 (6)
N2A—C3A—C4A120.6 (3)N2B—C3B—C4B121.3 (4)
C2A—C3A—C4A117.4 (5)C2B—C3B—C4B117.3 (6)
C5A—C4A—C3A119.6 (4)C5B—C4B—C3B121.6 (5)
C5A—C4A—H4AA120.2C5B—C4B—H4BA119.2
C3A—C4A—H4AA120.2C3B—C4B—H4BA119.2
C4A—C5A—C6A123.3 (5)C4B—C5B—C6B122.0 (7)
C4A—C5A—H5AA118.4C4B—C5B—H5BA119.0
C6A—C5A—H5AA118.4C6B—C5B—H5BA119.0
C5A—C6A—C1A117.3 (6)C5B—C6B—C1B116.1 (8)
C5A—C6A—C7A118.7 (6)C5B—C6B—C7B124.6 (9)
C1A—C6A—C7A124.0 (6)C1B—C6B—C7B119.2 (8)
N1A—C7A—C6A121.5 (7)N1B—C7B—C6B123.2 (10)
N1A—C7A—H7AA119.3N1B—C7B—H7BA118.4
C6A—C7A—H7AA119.3C6B—C7B—H7BA118.4
C7A—N1A—C8A123.7 (6)C7B—N1B—C8B120.4 (9)
C9A—C8A—C13A118.3 (6)C13B—C8B—C9B116.5 (8)
C9A—C8A—N1A125.7 (6)C13B—C8B—N1B117.7 (8)
C13A—C8A—N1A116.0 (6)C9B—C8B—N1B125.8 (8)
C10A—C9A—C8A120.1 (6)C10B—C9B—C8B119.5 (9)
C10A—C9A—H9AA119.9C10B—C9B—H9BA120.2
C8A—C9A—H9AA119.9C8B—C9B—H9BA120.2
C9A—C10A—C11A124.0 (6)C9B—C10B—C11B124.3 (7)
C9A—C10A—N3A113.1 (6)C9B—C10B—N3B117.9 (7)
C11A—C10A—N3A123.0 (6)C11B—C10B—N3B117.8 (8)
C12A—C11A—C10A113.8 (6)C10B—C11B—C12B114.5 (7)
C12A—C11A—C18A119.4 (6)C10B—C11B—C18B127.6 (9)
C10A—C11A—C18A126.7 (6)C12B—C11B—C18B117.8 (9)
C13A—C12A—C11A124.5 (7)C13B—C12B—C11B119.8 (8)
C13A—C12A—H12A117.7C13B—C12B—H12B120.1
C11A—C12A—H12A117.7C11B—C12B—H12B120.1
C12A—C13A—C8A119.1 (6)C8B—C13B—C12B124.6 (9)
C12A—C13A—H13A120.5C8B—C13B—H13B117.7
C8A—C13A—H13A120.5C12B—C13B—H13B117.7
C3A—N2A—C16A121.8 (4)C3B—N2B—C16B122.2 (5)
C3A—N2A—C14A118.5 (2)C3B—N2B—C14B107.1 (2)
C16A—N2A—C14A108.5 (3)C16B—N2B—C14B107.1 (5)
C15A—C14A—N2A93.22 (16)C15B—C14B—N2B87.1 (2)
C15A—C14A—H14A113.1C15B—C14B—H14C114.1
N2A—C14A—H14A113.1N2B—C14B—H14C114.1
C15A—C14A—H14B113.1C15B—C14B—H14D114.1
N2A—C14A—H14B113.1N2B—C14B—H14D114.1
H14A—C14A—H14B110.5H14C—C14B—H14D111.3
C14A—C15A—H15A109.5C14B—C15B—H15D109.5
C14A—C15A—H15B109.5C14B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
C14A—C15A—H15C109.5C14B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
N2A—C16A—C17A112.4 (4)N2B—C16B—C17B114.2 (6)
N2A—C16A—H16A109.1N2B—C16B—H16C108.7
C17A—C16A—H16A109.1C17B—C16B—H16C108.7
N2A—C16A—H16B109.1N2B—C16B—H16D108.7
C17A—C16A—H16B109.1C17B—C16B—H16D108.7
H16A—C16A—H16B107.9H16C—C16B—H16D107.6
C16A—C17A—H17A109.5C16B—C17B—H17D109.5
C16A—C17A—H17B109.5C16B—C17B—H17E109.5
H17A—C17A—H17B109.5H17D—C17B—H17E109.5
C16A—C17A—H17C109.5C16B—C17B—H17F109.5
H17A—C17A—H17C109.5H17D—C17B—H17F109.5
H17B—C17A—H17C109.5H17E—C17B—H17F109.5
C11A—C18A—H18A109.5C11B—C18B—H18D109.5
C11A—C18A—H18B109.5C11B—C18B—H18E109.5
H18A—C18A—H18B109.5H18D—C18B—H18E109.5
C11A—C18A—H18C109.5C11B—C18B—H18F109.5
H18A—C18A—H18C109.5H18D—C18B—H18F109.5
H18B—C18A—H18C109.5H18E—C18B—H18F109.5
O3A—N3A—O2A122.4 (11)O2B—N3B—O3B120.2 (13)
O3A—N3A—C10A117.3 (8)O2B—N3B—C10B118.2 (9)
O2A—N3A—C10A119.3 (7)O3B—N3B—C10B120.4 (11)
C1B—O1B—H1B109.5
O1A—C1A—C2A—C3A171 (2)O1B—C1B—C2B—C3B166 (3)
C6A—C1A—C2A—C3A2 (3)C6B—C1B—C2B—C3B5 (4)
C1A—C2A—C3A—N2A178.0 (16)C1B—C2B—C3B—N2B176 (2)
C1A—C2A—C3A—C4A5 (3)C1B—C2B—C3B—C4B8 (4)
N2A—C3A—C4A—C5A178.9 (4)N2B—C3B—C4B—C5B178.9 (4)
C2A—C3A—C4A—C5A3.6 (15)C2B—C3B—C4B—C5B6 (2)
C3A—C4A—C5A—C6A0.3 (12)C3B—C4B—C5B—C6B0.2 (16)
C4A—C5A—C6A—C1A2 (2)C4B—C5B—C6B—C1B3 (3)
C4A—C5A—C6A—C7A178.3 (10)C4B—C5B—C6B—C7B179.4 (17)
O1A—C1A—C6A—C5A174.7 (16)O1B—C1B—C6B—C5B172 (2)
C2A—C1A—C6A—C5A1 (2)C2B—C1B—C6B—C5B0 (4)
O1A—C1A—C6A—C7A6 (2)O1B—C1B—C6B—C7B11 (3)
C2A—C1A—C6A—C7A179 (2)C2B—C1B—C6B—C7B178 (3)
C5A—C6A—C7A—N1A174.8 (13)C5B—C6B—C7B—N1B179 (2)
C1A—C6A—C7A—N1A6 (2)C1B—C6B—C7B—N1B4 (3)
C6A—C7A—N1A—C8A175.0 (14)C6B—C7B—N1B—C8B177.5 (19)
C7A—N1A—C8A—C9A3 (2)C7B—N1B—C8B—C13B179.1 (17)
C7A—N1A—C8A—C13A176.6 (12)C7B—N1B—C8B—C9B1 (3)
C13A—C8A—C9A—C10A0 (2)C13B—C8B—C9B—C10B1 (3)
N1A—C8A—C9A—C10A179.3 (13)N1B—C8B—C9B—C10B176.9 (17)
C8A—C9A—C10A—C11A2 (2)C8B—C9B—C10B—C11B1 (3)
C8A—C9A—C10A—N3A179 (2)C8B—C9B—C10B—N3B177 (3)
C9A—C10A—C11A—C12A4.5 (19)C9B—C10B—C11B—C12B6 (3)
N3A—C10A—C11A—C12A177 (2)N3B—C10B—C11B—C12B177 (3)
C9A—C10A—C11A—C18A178.9 (13)C9B—C10B—C11B—C18B177.7 (18)
N3A—C10A—C11A—C18A0 (3)N3B—C10B—C11B—C18B1 (4)
C10A—C11A—C12A—C13A6.6 (19)C10B—C11B—C12B—C13B10 (2)
C18A—C11A—C12A—C13A176.6 (12)C18B—C11B—C12B—C13B173.2 (15)
C11A—C12A—C13A—C8A6 (2)C9B—C8B—C13B—C12B3 (3)
C9A—C8A—C13A—C12A2.3 (19)N1B—C8B—C13B—C12B178.4 (16)
N1A—C8A—C13A—C12A177.4 (11)C11B—C12B—C13B—C8B9 (3)
C2A—C3A—N2A—C16A3.6 (16)C2B—C3B—N2B—C16B4 (2)
C4A—C3A—N2A—C16A173.8 (3)C4B—C3B—N2B—C16B170.9 (5)
C2A—C3A—N2A—C14A143.3 (15)C2B—C3B—N2B—C14B128 (2)
C4A—C3A—N2A—C14A34.1 (4)C4B—C3B—N2B—C14B47.0 (3)
C3A—N2A—C14A—C15A102.7 (3)C3B—N2B—C14B—C15B111.2 (2)
C16A—N2A—C14A—C15A112.8 (4)C16B—N2B—C14B—C15B116.1 (4)
C3A—N2A—C16A—C17A88.1 (6)C3B—N2B—C16B—C17B74.0 (9)
C14A—N2A—C16A—C17A128.8 (5)C14B—N2B—C16B—C17B49.9 (8)
C9A—C10A—N3A—O3A175 (3)C9B—C10B—N3B—O2B2 (6)
C11A—C10A—N3A—O3A4 (5)C11B—C10B—N3B—O2B179 (4)
C9A—C10A—N3A—O2A5 (5)C9B—C10B—N3B—O3B166 (4)
C11A—C10A—N3A—O2A174 (3)C11B—C10B—N3B—O3B11 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1A0.841.952.68 (2)144
C12A—H12A···O1Ai0.952.533.329 (19)141
C15A—H15A···O3Aii0.982.262.983 (5)130
Symmetry codes: (i) x, y, z+2; (ii) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H21N3O3
Mr327.38
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.2777 (1), 22.1792 (5), 10.3473 (2)
β (°) 103.713 (1)
V3)1622.59 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.49 × 0.25 × 0.04
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.956, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
21678, 4744, 3239
Rint0.037
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.02
No. of reflections4744
No. of parameters412
No. of restraints1197
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.22

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···N1A0.84001.95002.68 (2)144.00
C12A—H12A···O1Ai0.95002.53003.329 (19)141.00
C15A—H15A···O3Aii0.98002.26002.983 (5)130.00
Symmetry codes: (i) x, y, z+2; (ii) x+3/2, y+1/2, z+3/2.
 

Footnotes

Current address: Department of Chemistry, National Institute of Technology-Karnataka, Surathkal, Mangalore 575 025, India.

Acknowledgements

HKF and RK thank the Malaysian Government and Universiti Sains Malaysia for Science Fund grant No. 305/PFIZIK/613312. RK thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/ 811012.

References

First citationAydoğan, F., Öcal, N., Turgut, Z. & Yolaçan, C. (2001). Bull. Korean Chem. Soc. 22, 476–480.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIsloor, A. M., Sunil, D., Shetty, P. & Satyamoorthy, K. (2009). Eur. J. Med. Chem.. Submitted.  Google Scholar
First citationIttel, S. D., Johnson, L. K. & Brookhart, M. (2000). Chem. Rev. 100, 1169–1203.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKabeer, A. S., Baseer, M. A. & Mote, N. A. (2001). Asian J. Chem. 13, 496–500.  Google Scholar
First citationMore, P. G., Bhalvankar, R. B. & Pattar, S. C. (2001). J. Indian Chem. Soc. 78, 474–475.  CAS Google Scholar
First citationPandeya, S. N., Sriram, D., Nath, G. & De Clercq, E. (1999). Farmaco, 54, 624–628.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPatai, S. (1970). The Chemistry of the Carbon–Nitrogen Double Bond. London: John Wiley & Sons Ltd.  Google Scholar
First citationPathak, P., Jolly, V. S. & Sharma, K. P. (2000). Orient. J. Chem. 16, 161–162.  CAS Google Scholar
First citationSamadhiya, S. & Halve, A. (2001). Orient. J. Chem. 17, 119–122.  CAS Google Scholar
First citationSarojini, B. K., Narayana, B., Mustafa, K., Yathirajan, H. S. & Bolte, M. (2007). Acta Cryst. E63, o4782.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, W. M. & Dash, B. C. (1988). Pesticides, 22, 33–37.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTai, X., Yin, X., Chen, Q. & Tan, M. (2003). Molecules, 8, 439–443.  Web of Science CrossRef CAS Google Scholar
First citationVazzanaa, I., Terranova, E., Mattiolib, F. & Sparatore, F. (2004). Arkivoc, v, 364–374.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o349-o350
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds