organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o378-o379

N-(Di­phenyl­carbamo­thio­yl)-3-methyl­benzamide

aDepartment of Chemistry, Faculty of Arts and Science, Mersin University, Mersin, TR 33343, Turkey, bDepartment of Chemistry, University of Paderborn, Paderborn D 33098, Germany, cDepartment of Natural Sciences, Fayetteville State University, Fayetteville, NC 28301, USA, and dDepartment of Chemistry, Faculty of Pharmacy, Mersin University, Mersin, TR 33169, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com

(Received 19 January 2009; accepted 20 January 2009; online 23 January 2009)

The synthesis of the title compound, C21H18N2OS, involves the reaction of 3-methyl­benzoyl chloride with potassium thio­cyanate in dry acetone followed by condensation of the 3-methyl­benzoyl isothio­cyanate with diphenyl­amine. The carbonyl [C—O = 1.215 (2) Å] and thio­carbonyl [C—S = 1.6721 (17) Å] distances indicate that these correspond to double bonds. The short C—N bonds at the center of the mol­ecule reveal the effects of resonance in this part of the mol­ecule. The conformation of the mol­ecule with respect to the thio­carbonyl and carbonyl groups is twisted. The 3-methyl­phenyl and two phenyl rings are also twisted, with dihedral angles of 75.67 (9) and 14.91 (9)°. The phenyl rings are rotated out of the mean plane of the N—C—S—N atoms by 66.87 (8) and 78.40 (9)°. Pairs of mol­ecules are linked into centrosymmetric dimers via inter­molecular N—H⋯S inter­actions and a C—H⋯O link also occurs. The dimers are stacked along the a axis.

Related literature

For synthesis, see: Özer et al. (2009[Özer, C. K., Arslan, H., VanDerveer, D. & Binzet, G. (2009). J. Coord. Chem. 62, 266-276.]); Mansuroğlu et al. (2008[Mansuroğlu, D. S., Arslan, H., Flörke, U. & Külcü, N. (2008). J Coord. Chem. 61, 3134-3146.]); Uğur et al. (2006[Uğur, D., Arslan, H. & Külcü, N. (2006). Russ. J. Coord. Chem. 32, 669-675.]); Arslan et al. (2003a[Arslan, H., Flörke, U. & Külcü, N. (2003a). Acta Cryst. E59, o641-o642.], and references therein). For general background, see: Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216, 473-488.]); El Aamrani et al. (1998[El Aamrani, F. Z., Kumar, A., Beyer, L., Cortina, J. L. & Sastre, A. M. (1998). Solvent Extr. Ion Exch. 16, 1389-1406.], 1999[El Aamrani, F. Z., Kumar, A., Cortina, J. L. & Sastre, A. M. (1999). Anal. Chim. Acta, 382, 205-231.]). For related compounds, see: Arslan et al. (2003b[Arslan, H., Flörke, U. & Külcü, N. (2003b). J. Chem. Crystallogr. 33, 919-924.],c[Arslan, H., Külcü, N. & Flörke, U. (2003c). Transition Met. Chem. 28, 816-819.], 2004[Arslan, H., Flörke, U. & Külcü, N. (2004). Turk. J. Chem. 28, 673-678.]); Khawar Rauf et al. (2009a[Khawar Rauf, M., Bolte, M. & Anwar, S. (2009a). Acta Cryst. E65, o249.],b[Khawar Rauf, M., Bolte, M. & Badshah, A. (2009b). Acta Cryst. E65, o143.],c[Khawar Rauf, M., Bolte, M. & Badshah, A. (2009c). Acta Cryst. E65, o240.],d[Khawar Rauf, M., Bolte, M. & Rauf, A. (2009d). Acta Cryst. E65, o234.]).

[Scheme 1]

Experimental

Crystal data
  • C21H18N2OS

  • Mr = 346.43

  • Orthorhombic, P b c a

  • a = 10.6928 (12) Å

  • b = 16.7647 (17) Å

  • c = 19.865 (2) Å

  • V = 3561.0 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 120 (2) K

  • 0.41 × 0.23 × 0.08 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.985

  • 29957 measured reflections

  • 4241 independent reflections

  • 2955 reflections with I > 2σ(I)

  • Rint = 0.098

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.101

  • S = 0.95

  • 4241 reflections

  • 231 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.899 (14) 2.525 (14) 3.4123 (15) 169.3 (13)
C5—H5B⋯O1ii 0.98 2.59 3.461 (2) 148
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+2, -y+2, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thioureas are basic and excellent ligands for the transition group metals, so many derivatives have been prepared for use in the liquid–liquid extraction and separation of some transition metal ions (Koch, 2001). Especially, N-benzoylthiourea derivatives have been successfully used in the extraction of copper(II) and gold(III) ions (El Aamrani et al., 1998, 1999).

Recently, we have focused on the synthesis, characterization, crystal structure, thermal behavior and antimicrobial activity of new thiourea derivatives (Özer et al., 2009; Mansuroğlu et al., 2008; Uğur et al., 2006; Arslan et al., 2003c, and references therein). In the present study, we have synthesized and characterized a new thiourea derivative, N-(diphenylcarbamothioyl)-3-methylbenzamide, (I). The molecular structure of the title compound is depicted in Fig. 1.

The carbonyl (C1—O1 = 1.215 (2) Å) and thiocarbonyl (C9—S1 = 1.6721 (17) Å) distances indicates that these correspond to double bonds and are comparable to those observed for N'-(4-chlorobenzoyl)-N,N-diphenylthiourea [1.213 (3) Å for C—O and 1.664 (2) Å for C—S] (Arslan et al., 2003a), 1-(4-chloro-benzoyl)-3-naphthalen-1-yl-thiourea [1.224 (2) Å for C—O and 1.6696 (17) Å for C—S] (Arslan et al., 2003b), 1-(2-chloro-benzoyl)-3-p-tolyl-thiourea [1.216 (2) Å for C—O and 1.666 (2) Å for C—S] (Arslan et al., 2004), 1-(4-chlorobenzoyl)-3-(2,4,6-trichlorophenyl)thiourea [1.229 (3) Å for C—O and 1.666 (2) Å for C—S] (Khawar Rauf et al., 2009b).

The C—N bond distances [C1—N1 = 1.395 (2) Å, C9—N1 = 1.396 (2) Å and C9—N2 = 1.344 (2) Å] observed in the title compound are consistent with those reported for the other thiourea derivatives (1-(3-chlorophenyl)-3-(2,6-dichlorobenzoyl)thiourea (Khawar Rauf et al., 2009d), 1-(3-chlorobenzoyl)-3-(2,3-dimethylphenyl)thiourea (Khawar Rauf et al., 2009c), 1-(2,6-dichlorobenzoyl)-3-(2,3,5,6-tetrachlorophenyl)thiourea (Khawar Rauf et al., 2009a), suggesting a partial double-bond character.

The conformation of the title molecule with respect to the thiocarbonyl and carbonyl moieties is twisted, as reflected by the C9—N1—C1—O1 and C1—N1—C9—N2 torsion angles of 0.1 (3)° and -56.1 (2)°, respectively. The 3-methylphenyl and phenyl rings (C10–C15 and C16–C21 rings) are also twisted with dihedral angles of 75.67 (9)° and 14.91 (9)°, respectively.

The atom N2 is sp2-hybridized, because of the sum of the angles around atom N2 is 359.91 (13)°. The phenyl rings are rotated out of the mean plane of the N1–C9–S1–N2 atoms by 66.87 (8)° (C10–C15 ring) and 78.40 (9)° (C16–C21 ring). In addition, the dihedral angle between C10–C15 ring and C16–C21 ring is 87.81 (9)°.

As can be seen from the packing diagram (Fig. 2), intermolecular N—H···S hydrogen bond (Table 1) links the molecules into dimers, which are stacked along the a axis. The C—H···O intermolecular contact is also listed in Table 1.

Related literature top

For synthesis, see: Özer et al. (2009); Mansuroğlu et al. (2008); Uğur et al. (2006); Arslan et al. (2003a) and references therein. For general background, see: Koch (2001); El Aamrani et al. (1998, 1999). For related compounds, see: Arslan et al. (2003b,c, 2004); Khawar Rauf et al. (2009a,b,c,d).

Experimental top

The title compound was prepared with a procedure similar to that reported in the literature (Arslan et al., 2003c). A solution of 3-methylbenzoyl chloride (0.01 mol) in acetone (50 ml) was added dropwise to a suspension of potassium thiocyanate (0.01 mol) in acetone (30 ml). The reaction mixture was heated under reflux for 30 min, and then cooled to room temperature. A solution of diphenylamine (0.01 mol) in acetone (10 ml) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 ml) was added to the solution, which was then filtered. The solid product was washed with water and purifed by recrystalization from an ethanol:dichloromethane mixture (1:2). Analysis calculated for C21H18N2OS: C 72.8, H 5.2, N 8.1%. Found: C 72.6, H 5.2, N 8.0%.

Refinement top

H atoms bound to C atoms were placed geometrically and allowed to ride during subsequent refinement with C—H = 0.95 and 0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). The nitrogen-bound H atom was located in a difference Fourier map and refined freely.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
N-(Diphenylcarbamothioyl)-3-methylbenzamide top
Crystal data top
C21H18N2OSF(000) = 1456
Mr = 346.43Dx = 1.292 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 801 reflections
a = 10.6928 (12) Åθ = 2.5–25.9°
b = 16.7647 (17) ŵ = 0.19 mm1
c = 19.865 (2) ÅT = 120 K
V = 3561.0 (6) Å3Prism, colourless
Z = 80.41 × 0.23 × 0.08 mm
Data collection top
Bruker SMART APEX
diffractometer
4241 independent reflections
Radiation source: sealed tube2955 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
ϕ and ω scansθmax = 27.9°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1414
Tmin = 0.925, Tmax = 0.985k = 2219
29957 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difference Fourier map
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 0.95 w = 1/[σ2(Fo2) + (0.0429P)2]
where P = (Fo2 + 2Fc2)/3
4241 reflections(Δ/σ)max = 0.001
231 parametersΔρmax = 0.28 e Å3
1 restraintΔρmin = 0.38 e Å3
Crystal data top
C21H18N2OSV = 3561.0 (6) Å3
Mr = 346.43Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.6928 (12) ŵ = 0.19 mm1
b = 16.7647 (17) ÅT = 120 K
c = 19.865 (2) Å0.41 × 0.23 × 0.08 mm
Data collection top
Bruker SMART APEX
diffractometer
4241 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2955 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.985Rint = 0.098
29957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0471 restraint
wR(F2) = 0.101H atoms treated by a mixture of independent and constrained refinement
S = 0.95Δρmax = 0.28 e Å3
4241 reflectionsΔρmin = 0.38 e Å3
231 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.49155 (4)0.96594 (3)0.60687 (2)0.02357 (13)
O10.83581 (11)0.88560 (8)0.53805 (6)0.0282 (3)
N10.63123 (14)0.90441 (8)0.50788 (7)0.0194 (3)
H10.5892 (15)0.9383 (8)0.4811 (7)0.029 (5)*
N20.61147 (13)0.82693 (8)0.60385 (7)0.0198 (3)
C10.75893 (17)0.89869 (10)0.49441 (8)0.0204 (4)
C20.79282 (16)0.91117 (10)0.42236 (8)0.0201 (4)
C30.90683 (17)0.94747 (10)0.40766 (9)0.0226 (4)
H3A0.96030.96330.44340.027*
C40.94370 (18)0.96101 (10)0.34132 (9)0.0252 (4)
C51.0663 (2)1.00079 (12)0.32634 (10)0.0360 (5)
H5A1.13490.96380.33620.054*
H5B1.07501.04860.35430.054*
H5C1.06921.01590.27870.054*
C60.86364 (18)0.93615 (11)0.29006 (9)0.0283 (4)
H6A0.88630.94560.24450.034*
C70.75192 (18)0.89805 (11)0.30421 (8)0.0280 (4)
H7A0.70010.88010.26850.034*
C80.71531 (17)0.88605 (10)0.37039 (9)0.0237 (4)
H8A0.63780.86080.38010.028*
C90.58249 (16)0.89564 (10)0.57267 (8)0.0190 (4)
C100.65779 (16)0.75696 (10)0.56929 (8)0.0200 (4)
C110.58848 (18)0.72236 (10)0.51815 (8)0.0241 (4)
H11A0.51180.74550.50400.029*
C120.63308 (19)0.65307 (10)0.48777 (9)0.0307 (5)
H12A0.58720.62910.45220.037*
C130.7437 (2)0.61921 (11)0.50926 (10)0.0346 (5)
H13A0.77410.57230.48810.042*
C140.81025 (19)0.65320 (11)0.56141 (11)0.0360 (5)
H14A0.88520.62890.57680.043*
C150.76792 (18)0.72271 (11)0.59126 (9)0.0287 (4)
H15A0.81430.74670.62670.034*
C160.59063 (16)0.81692 (10)0.67524 (8)0.0191 (4)
C170.50108 (18)0.76351 (11)0.69656 (9)0.0285 (4)
H17A0.45040.73590.66490.034*
C180.4862 (2)0.75071 (12)0.76492 (9)0.0371 (5)
H18A0.42460.71430.78030.045*
C190.5600 (2)0.79033 (11)0.81074 (9)0.0342 (5)
H19A0.54860.78140.85760.041*
C200.65082 (19)0.84305 (12)0.78887 (9)0.0317 (5)
H20A0.70260.86970.82060.038*
C210.66613 (18)0.85692 (11)0.72048 (9)0.0258 (4)
H21A0.72770.89340.70500.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0282 (3)0.0204 (2)0.0221 (2)0.00679 (19)0.0028 (2)0.00050 (19)
O10.0228 (7)0.0371 (8)0.0248 (7)0.0013 (6)0.0014 (6)0.0050 (6)
N10.0203 (8)0.0184 (8)0.0197 (7)0.0027 (6)0.0013 (6)0.0037 (6)
N20.0226 (8)0.0181 (7)0.0186 (7)0.0038 (6)0.0025 (6)0.0010 (6)
C10.0207 (9)0.0157 (9)0.0246 (9)0.0010 (7)0.0012 (8)0.0003 (7)
C20.0237 (10)0.0155 (9)0.0210 (9)0.0059 (7)0.0022 (7)0.0008 (7)
C30.0225 (10)0.0206 (9)0.0248 (9)0.0027 (8)0.0010 (8)0.0007 (7)
C40.0290 (10)0.0188 (9)0.0278 (10)0.0045 (8)0.0068 (8)0.0008 (8)
C50.0366 (12)0.0390 (12)0.0324 (11)0.0055 (10)0.0126 (9)0.0003 (9)
C60.0384 (12)0.0260 (10)0.0204 (9)0.0050 (9)0.0079 (8)0.0023 (8)
C70.0320 (11)0.0291 (10)0.0231 (9)0.0031 (9)0.0026 (8)0.0032 (8)
C80.0221 (10)0.0218 (10)0.0271 (9)0.0018 (8)0.0018 (8)0.0010 (8)
C90.0177 (9)0.0196 (9)0.0196 (9)0.0018 (7)0.0022 (7)0.0003 (7)
C100.0228 (10)0.0163 (9)0.0208 (9)0.0013 (7)0.0055 (7)0.0032 (7)
C110.0263 (11)0.0214 (9)0.0247 (9)0.0010 (8)0.0013 (8)0.0025 (7)
C120.0389 (12)0.0223 (10)0.0310 (10)0.0028 (9)0.0046 (9)0.0046 (8)
C130.0370 (12)0.0186 (10)0.0482 (12)0.0033 (9)0.0164 (10)0.0037 (9)
C140.0250 (11)0.0288 (11)0.0542 (13)0.0104 (9)0.0037 (10)0.0050 (10)
C150.0264 (11)0.0275 (11)0.0322 (10)0.0034 (8)0.0042 (8)0.0007 (8)
C160.0222 (10)0.0173 (8)0.0178 (8)0.0045 (7)0.0025 (7)0.0013 (7)
C170.0304 (11)0.0289 (10)0.0263 (10)0.0072 (9)0.0060 (8)0.0042 (8)
C180.0515 (14)0.0301 (11)0.0297 (11)0.0106 (10)0.0151 (10)0.0013 (9)
C190.0529 (14)0.0291 (11)0.0206 (10)0.0054 (10)0.0078 (9)0.0029 (8)
C200.0378 (13)0.0328 (11)0.0243 (10)0.0024 (9)0.0047 (9)0.0039 (8)
C210.0256 (11)0.0259 (10)0.0259 (9)0.0025 (8)0.0002 (8)0.0013 (8)
Geometric parameters (Å, º) top
S1—C91.6721 (17)C10—C151.381 (2)
O1—C11.215 (2)C10—C111.385 (2)
N1—C11.395 (2)C11—C121.393 (2)
N1—C91.396 (2)C11—H11A0.9500
N1—H10.899 (14)C12—C131.379 (3)
N2—C91.344 (2)C12—H12A0.9500
N2—C161.445 (2)C13—C141.380 (3)
N2—C101.447 (2)C13—H13A0.9500
C1—C21.491 (2)C14—C151.384 (3)
C2—C81.389 (2)C14—H14A0.9500
C2—C31.393 (2)C15—H15A0.9500
C3—C41.394 (2)C16—C171.378 (2)
C3—H3A0.9500C16—C211.382 (2)
C4—C61.394 (3)C17—C181.384 (2)
C4—C51.501 (3)C17—H17A0.9500
C5—H5A0.9800C18—C191.375 (3)
C5—H5B0.9800C18—H18A0.9500
C5—H5C0.9800C19—C201.383 (3)
C6—C71.383 (3)C19—H19A0.9500
C6—H6A0.9500C20—C211.388 (2)
C7—C81.386 (2)C20—H20A0.9500
C7—H7A0.9500C21—H21A0.9500
C8—H8A0.9500
C1—N1—C9122.34 (14)C15—C10—C11120.93 (16)
C1—N1—H1114.8 (12)C15—C10—N2118.63 (15)
C9—N1—H1115.1 (12)C11—C10—N2120.30 (15)
C9—N2—C16121.07 (14)C10—C11—C12118.94 (18)
C9—N2—C10123.73 (14)C10—C11—H11A120.5
C16—N2—C10115.11 (13)C12—C11—H11A120.5
O1—C1—N1122.56 (16)C13—C12—C11120.17 (18)
O1—C1—C2123.08 (16)C13—C12—H12A119.9
N1—C1—C2114.35 (15)C11—C12—H12A119.9
C8—C2—C3119.91 (16)C12—C13—C14120.30 (18)
C8—C2—C1121.72 (16)C12—C13—H13A119.9
C3—C2—C1118.36 (16)C14—C13—H13A119.9
C2—C3—C4121.10 (17)C13—C14—C15120.05 (19)
C2—C3—H3A119.5C13—C14—H14A120.0
C4—C3—H3A119.5C15—C14—H14A120.0
C6—C4—C3117.92 (17)C10—C15—C14119.59 (18)
C6—C4—C5121.64 (17)C10—C15—H15A120.2
C3—C4—C5120.44 (17)C14—C15—H15A120.2
C4—C5—H5A109.5C17—C16—C21121.43 (16)
C4—C5—H5B109.5C17—C16—N2118.97 (15)
H5A—C5—H5B109.5C21—C16—N2119.46 (16)
C4—C5—H5C109.5C16—C17—C18118.82 (18)
H5A—C5—H5C109.5C16—C17—H17A120.6
H5B—C5—H5C109.5C18—C17—H17A120.6
C7—C6—C4121.31 (17)C19—C18—C17120.57 (18)
C7—C6—H6A119.3C19—C18—H18A119.7
C4—C6—H6A119.3C17—C18—H18A119.7
C6—C7—C8120.24 (17)C18—C19—C20120.24 (17)
C6—C7—H7A119.9C18—C19—H19A119.9
C8—C7—H7A119.9C20—C19—H19A119.9
C7—C8—C2119.48 (17)C19—C20—C21119.82 (18)
C7—C8—H8A120.3C19—C20—H20A120.1
C2—C8—H8A120.3C21—C20—H20A120.1
N2—C9—N1115.40 (15)C16—C21—C20119.11 (18)
N2—C9—S1123.43 (13)C16—C21—H21A120.4
N1—C9—S1121.15 (12)C20—C21—H21A120.4
C9—N1—C1—O10.1 (2)C16—N2—C10—C1557.2 (2)
C9—N1—C1—C2179.01 (15)C9—N2—C10—C1157.8 (2)
O1—C1—C2—C8146.21 (18)C16—N2—C10—C11118.63 (17)
N1—C1—C2—C834.7 (2)C15—C10—C11—C121.6 (3)
O1—C1—C2—C332.3 (2)N2—C10—C11—C12177.31 (15)
N1—C1—C2—C3146.80 (15)C10—C11—C12—C130.9 (3)
C8—C2—C3—C41.6 (3)C11—C12—C13—C140.7 (3)
C1—C2—C3—C4179.81 (15)C12—C13—C14—C151.7 (3)
C2—C3—C4—C60.8 (3)C11—C10—C15—C140.6 (3)
C2—C3—C4—C5179.50 (16)N2—C10—C15—C14176.38 (16)
C3—C4—C6—C71.0 (3)C13—C14—C15—C101.1 (3)
C5—C4—C6—C7178.66 (17)C9—N2—C16—C17112.65 (19)
C4—C6—C7—C82.1 (3)C10—N2—C16—C1763.9 (2)
C6—C7—C8—C21.2 (3)C9—N2—C16—C2171.6 (2)
C3—C2—C8—C70.6 (3)C10—N2—C16—C21111.85 (18)
C1—C2—C8—C7179.09 (16)C21—C16—C17—C180.7 (3)
C16—N2—C9—N1166.64 (14)N2—C16—C17—C18176.37 (16)
C10—N2—C9—N117.1 (2)C16—C17—C18—C190.3 (3)
C16—N2—C9—S114.9 (2)C17—C18—C19—C200.5 (3)
C10—N2—C9—S1161.33 (13)C18—C19—C20—C211.0 (3)
C1—N1—C9—N256.1 (2)C17—C16—C21—C200.2 (3)
C1—N1—C9—S1125.41 (15)N2—C16—C21—C20175.88 (16)
C9—N2—C10—C15126.34 (18)C19—C20—C21—C160.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.90 (1)2.53 (1)3.4123 (15)169 (1)
C5—H5B···O1ii0.982.593.461 (2)148
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formulaC21H18N2OS
Mr346.43
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)120
a, b, c (Å)10.6928 (12), 16.7647 (17), 19.865 (2)
V3)3561.0 (6)
Z8
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.41 × 0.23 × 0.08
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.925, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
29957, 4241, 2955
Rint0.098
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.101, 0.95
No. of reflections4241
No. of parameters231
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.38

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.899 (14)2.525 (14)3.4123 (15)169.3 (13)
C5—H5B···O1ii0.982.593.461 (2)148
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+2, z+1.
 

Acknowledgements

This work was supported by Mersin University Research Fund [Project Nos. BAP-ECZ-F-TBB-(HA) 2004-3 and BAPFEF-KB-(NK) 2006-3]. This study is part of the PhD thesis of GB.

References

First citationArslan, H., Flörke, U. & Külcü, N. (2003a). Acta Cryst. E59, o641–o642.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArslan, H., Flörke, U. & Külcü, N. (2003b). J. Chem. Crystallogr. 33, 919–924.  Web of Science CSD CrossRef CAS Google Scholar
First citationArslan, H., Flörke, U. & Külcü, N. (2004). Turk. J. Chem. 28, 673–678.  CAS Google Scholar
First citationArslan, H., Külcü, N. & Flörke, U. (2003c). Transition Met. Chem. 28, 816–819.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Aamrani, F. Z., Kumar, A., Beyer, L., Cortina, J. L. & Sastre, A. M. (1998). Solvent Extr. Ion Exch. 16, 1389–1406.  CAS Google Scholar
First citationEl Aamrani, F. Z., Kumar, A., Cortina, J. L. & Sastre, A. M. (1999). Anal. Chim. Acta, 382, 205–231.  Web of Science CrossRef CAS Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Anwar, S. (2009a). Acta Cryst. E65, o249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Badshah, A. (2009b). Acta Cryst. E65, o143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Badshah, A. (2009c). Acta Cryst. E65, o240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Rauf, A. (2009d). Acta Cryst. E65, o234.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216, 473–488.  Web of Science CrossRef Google Scholar
First citationMansuroğlu, D. S., Arslan, H., Flörke, U. & Külcü, N. (2008). J Coord. Chem. 61, 3134–3146.  Google Scholar
First citationÖzer, C. K., Arslan, H., VanDerveer, D. & Binzet, G. (2009). J. Coord. Chem. 62, 266–276.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUğur, D., Arslan, H. & Külcü, N. (2006). Russ. J. Coord. Chem. 32, 669–675.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o378-o379
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds