organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o427-o428

4-Bromo-N-(di­ethyl­carbamo­thio­yl)­benzamide

aDepartment of Chemistry, Faculty of Arts and Sciences, Mersin University, Mersin TR 33343, Turkey, bDepartment of Chemistry, University of Paderborn, Paderborn D33098, Germany, cDepartment of Natural Sciences, Fayetteville State University, Fayetteville, NC 28301, USA, and dDepartment of Chemistry, Faculty of Pharmacy, Mersin University, Mersin, TR 33169, Turkey
*Correspondence e-mail: hakan.arslan.acad@gmail.com

(Received 20 January 2009; accepted 26 January 2009; online 31 January 2009)

The synthesis of the title compound, C12H15BrN2OS, involves the reaction of 4-bromo­benzoyl chloride with potassium thio­cyanate in dry acetone, followed by condensation of 4-bromo­benzoyl isothio­cyanate with diethyl­amine. The carbonyl and thio­carbonyl bond lengths indicate that these correspond to double bonds. The short C—N bond lengths reveal the effects of resonance in this part of the mol­ecule. The conformation of the mol­ecule with respect to the thio­carbonyl and carbonyl units is twisted, with torsion angles of −5.7 (3) and 87.2 (2)°. The N atom of the diethyl­amine group is sp2-hybridized: the sum of the angles around the N atom is 359.97 (14)°. The two diethyl groups are twisted in + and − anti­periplanar conformations with angles of −179.89 and 179.92°. In the crystal structure, the mol­ecules form infinite chains via an inter­molecular N—H⋯O inter­action.

Related literature

For the synthesis, see: Özer et al. (2009[Özer, C. K., Arslan, H., VanDerveer, D. & Binzet, G. (2009). J. Coord. Chem. 62, 266-276.]); Arslan, Flörke & Külcü (2003[Arslan, H., Flörke, U. & Külcü, N. (2003). Acta Cryst. E59, o641-o642.]), and references therein. For general background, see: Koch (2001[Koch, K. R. (2001). Coord. Chem. Rev. 216, 473-488.]); El Aamrani et al. (1998[El Aamrani, F. Z., Kumar, A., Beyer, L., Cortina, J. L. & Sastre, A. M. (1998). Solvent Extr. Ion Exch. 16, 1389-1406.], 1999[El Aamrani, F. Z., Kumar, A., Cortina, J. L. & Sastre, A. M. (1999). Anal. Chim. Acta, 382, 205-231.]); Arslan et al. (2006[Arslan, H., Külcü, N. & Flörke, U. (2006). Spectrochim. Acta A, 64, 1065-1071.]); Arslan, Flörke & Külcü (2007[Arslan, H., Flörke, U. & Külcü, N. (2007). Spectrochim. Acta A, 67, 936-943.]); Arslan, Flörke, Külcü & Binzet (2007[Arslan, H., Flörke, U., Külcü, N. & Binzet, G. (2007). Spectrochim. Acta A, 68, 1347-1355.]); Yuan et al. (2001[Yuan, Y. F., Wang, J. T., Gimeno, M. C., Laguna, A. & Jones, P. G. (2001). Inorg. Chim. Acta, 324, 309-317.]); Zhang et al. (2004[Zhang, Y. M., Wei, T. B., Xian, L. & Gao, L. M. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 2007-2013.]); Weiqun et al. (2004[Weiqun, Z., Baolong, L., Liming, Z., Jiangang, D., Yong, Z., Lude, L. & Xujie, Y. (2004). J. Mol. Struct. 690, 145-150.]). For related compounds, see: Arslan, Külcü & Flörke (2003[Arslan, H., Külcü, N. & Flörke, U. (2003). Transition Met. Chem. 28, 816-819.]); Arslan et al. (2004[Arslan, H., Flörke, U. & Külcü, N. (2004). Turk. J. Chem. 28, 673-678.]); Khawar Rauf et al. (2009a[Khawar Rauf, M., Bolte, M. & Badshah, A. (2009a). Acta Cryst. E65, o143.],b[Khawar Rauf, M., Bolte, M. & Badshah, A. (2009b). Acta Cryst. E65, o240.]); Khawar Rauf, Bolte & Anwar (2009[Khawar Rauf, M., Bolte, M. & Anwar, S. (2009). Acta Cryst. E65, o249.]); Khawar Rauf, Bolte & Rauf (2009[Khawar Rauf, M., Bolte, M. & Rauf, A. (2009). Acta Cryst. E65, o234.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H15BrN2OS

  • Mr = 315.23

  • Monoclinic, P 21 /c

  • a = 6.9955 (9) Å

  • b = 18.680 (2) Å

  • c = 10.0816 (13) Å

  • β = 95.361 (3)°

  • V = 1311.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.28 mm−1

  • T = 120 (2) K

  • 0.38 × 0.37 × 0.11 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.329, Tmax = 0.714

  • 10831 measured reflections

  • 3117 independent reflections

  • 2730 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.064

  • S = 1.06

  • 3117 reflections

  • 158 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.896 (5) 2.016 (9) 2.882 (2) 162 (2)
Symmetry code: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Transition metal complexes bearing thiourea ligand or its derivatives have been one of the highlights in coordination chemistry, which are used as reactant for extraction of some transition metal ions (Koch, 2001; El Aamrani et al., 1998, 1999). Moreover, the growing interest for thiourea derivative ligands and their metal complexes result from the important role they play in biological systems (Yuan et al., 2001; Zhang et al., 2004; Weiqun et al., 2004).

Recently, our research has focussed on the chemical and physical properties of thiourea derivatives and their metal complexes (Arslan et al., 2006; Arslan, Flörke & Külcü, 2007; Arslan, Flörke, Külcü & Binzet, 2007). In the present work, we report the crystal structure of 4-bromo-N-(diethylcarbamothioyl)benzamide, (I). The molecular structure of the title compound is depicted in Fig. 1.

The typical thiourea carbonyl [C6—O1 = 1.230 (2) Å] and thiocarbonyl (C1—S1 = 1.6638 (18) Å) double bonds as well as shortened C—N bond lengths (C1—N1 (1.435 (2) Å), C1—N2 (1.325 (2) Å) and C6—N1 (1.355 (2) Å)) are observed in the title compound. These bond lengths in the title compound are comparable to those of related structures (Khawar Rauf et al., 2009a,b; Khawar Rauf, Bolte & Anwar, 2009; Khawar Rauf, Bolte & Rauf, 2009; Arslan, Flörke & Külcü, 2003; Arslan et al., 2004). The other bond lengths in (I) show normal values (Allen et al., 1987).

The conformation of the title molecule with respect to the thiocarbonyl and carbonyl moieties is twisted, as reflected by the C1—N1—C6—O1, C6—N1—C1—N2, and C6—N1—C1—S1 torsion angles of -5.7 (3) °, 87.2 (2) ° and -94.57 (18) °, respectively. The dihedral angle between the 4-bromophenyl ring and the plane O1/N1/C7/C6 is 10.10 (3) °, and the dihedral angle between the 4-bromophenyl ring and the plane S1/C1/N1/N2 is 86.98 (3) °. The atom N2 is sp2-hybridized, because of the sum of the angles around atom N2 is 359.97 (14) °. The two diethyl groups are twisted in a + and - antiperiplanar conformation with -179.89 ° and 179.92 °.

Iintermolecular N—H···O (x, -y+1.5, z-0.5) hydrogen bonds (Table 1) link the molecules into endless chains, as shown in Fig. 2.

Related literature top

For the synthesis, see: Özer et al. (2009); Arslan, Flörke & Külcü (2003a), and references therein. For general background, see: Koch (2001); El Aamrani et al. (1998, 1999); Arslan et al. (2006); Arslan, Flörke & Külcü (2007); Arslan, Flörke, Külcü & Binzet (2007); Yuan et al. (2001); Zhang et al. (2004); Weiqun et al. (2004). For related compounds, see: Arslan, Külcü & Flörke (2003); Arslan et al. (2004); Khawar Rauf et al. (2009a,b); Khawar Rauf, Bolte & Anwar (2009); Khawar Rauf, Bolte & Rauf (2009). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared with a procedure similar to that reported in the literature (Arslan, Külcü & Flörke, 2003; Özer et al., 2009). A solution of 4-bromobenzoyl chloride (0.01 mol) in acetone (50 cm3) was added dropwise to a suspension of potassium thiocyanate (0.01 mol) in acetone (30 cm3). The reaction mixture was heated under reflux for 30 min, and then cooled to room temperature. A solution of diethylamine (0.01 mol) in acetone (10 cm3) was added and the resulting mixture was stirred for 2 h. Hydrochloric acid (0.1 N, 300 cm3) was added to the solution, which was then filtered. The solid product was washed with water and purifed by recrystalization from an ethanol:dichloromethane mixture (1:2). Analysis calculated for C12H15N2OSBr: C 45.7, H 4.8, N 8.9%. Found: C 45.7, H 4.9, N 8.7%.

Refinement top

H atoms bound to C atoms were placed geometrically and allowed to ride on their parent atoms, with C—H = 0.95-0.99 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). The nitrogen-bound H atom was located in a difference Fourier map and refined freely.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the structure showing the formation of endless chains involving N—H···O hydrogen bonds.
4-Bromo-N-(diethylcarbamothioyl)benzamide top
Crystal data top
C12H15BrN2OSF(000) = 640
Mr = 315.23Dx = 1.596 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 891 reflections
a = 6.9955 (9) Åθ = 2.3–28.2°
b = 18.680 (2) ŵ = 3.28 mm1
c = 10.0816 (13) ÅT = 120 K
β = 95.361 (3)°Prism, colourless
V = 1311.7 (3) Å30.38 × 0.37 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
3117 independent reflections
Radiation source: sealed tube2730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.9°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 97
Tmin = 0.329, Tmax = 0.714k = 2424
10831 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0328P)2 + 0.2678P]
where P = (Fo2 + 2Fc2)/3
3117 reflections(Δ/σ)max = 0.001
158 parametersΔρmax = 0.59 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C12H15BrN2OSV = 1311.7 (3) Å3
Mr = 315.23Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.9955 (9) ŵ = 3.28 mm1
b = 18.680 (2) ÅT = 120 K
c = 10.0816 (13) Å0.38 × 0.37 × 0.11 mm
β = 95.361 (3)°
Data collection top
Bruker SMART APEX
diffractometer
3117 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2730 reflections with I > 2σ(I)
Tmin = 0.329, Tmax = 0.714Rint = 0.027
10831 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0251 restraint
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.59 e Å3
3117 reflectionsΔρmin = 0.26 e Å3
158 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.18884 (3)0.416437 (9)0.341437 (19)0.02229 (7)
S10.41112 (7)0.90370 (2)0.43285 (5)0.02424 (11)
O10.4748 (2)0.73637 (7)0.62427 (13)0.0265 (3)
N10.5090 (2)0.76602 (7)0.41132 (14)0.0176 (3)
H10.478 (3)0.7585 (12)0.3242 (7)0.035 (6)*
N20.7563 (2)0.84313 (7)0.48486 (15)0.0184 (3)
C10.5705 (3)0.83737 (9)0.44671 (17)0.0180 (4)
C20.8900 (3)0.78163 (9)0.49166 (19)0.0230 (4)
H2A0.82450.73910.52480.028*
H2B1.00180.79260.55610.028*
C30.9600 (3)0.76427 (10)0.3581 (2)0.0290 (4)
H3A1.04760.72330.36740.043*
H3B1.02770.80580.32580.043*
H3C0.85010.75250.29430.043*
C40.8433 (3)0.91336 (9)0.51931 (19)0.0219 (4)
H4A0.76980.95120.46810.026*
H4B0.97640.91420.49350.026*
C50.8459 (3)0.92934 (10)0.66664 (19)0.0265 (4)
H5A0.90480.97630.68550.040*
H5B0.92040.89250.71760.040*
H5C0.71410.92960.69220.040*
C60.4567 (3)0.72010 (9)0.50554 (17)0.0172 (3)
C70.3850 (2)0.64814 (9)0.45935 (17)0.0166 (3)
C80.3120 (3)0.60335 (10)0.55234 (18)0.0197 (4)
H8A0.30300.62000.64060.024*
C90.2519 (3)0.53439 (9)0.51763 (18)0.0203 (4)
H9A0.20130.50390.58120.024*
C100.2670 (2)0.51082 (9)0.38901 (18)0.0180 (3)
C110.3388 (3)0.55432 (9)0.29424 (18)0.0204 (4)
H11A0.34810.53720.20630.025*
C120.3970 (3)0.62334 (9)0.32955 (18)0.0190 (4)
H12A0.44530.65390.26510.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02598 (11)0.01446 (10)0.02654 (11)0.00248 (6)0.00300 (7)0.00079 (6)
S10.0274 (3)0.0178 (2)0.0274 (3)0.00464 (17)0.00185 (19)0.00387 (17)
O10.0459 (9)0.0198 (6)0.0141 (6)0.0039 (6)0.0046 (6)0.0019 (5)
N10.0241 (8)0.0153 (7)0.0131 (7)0.0018 (6)0.0007 (6)0.0016 (5)
N20.0240 (8)0.0130 (7)0.0184 (8)0.0006 (6)0.0028 (6)0.0016 (5)
C10.0277 (10)0.0139 (8)0.0127 (8)0.0025 (7)0.0040 (7)0.0005 (6)
C20.0242 (10)0.0171 (8)0.0270 (10)0.0023 (7)0.0025 (8)0.0019 (7)
C30.0293 (11)0.0264 (10)0.0313 (11)0.0090 (8)0.0034 (8)0.0025 (8)
C40.0259 (10)0.0172 (8)0.0230 (10)0.0052 (7)0.0040 (7)0.0023 (7)
C50.0317 (11)0.0246 (9)0.0228 (10)0.0065 (8)0.0009 (8)0.0063 (7)
C60.0206 (9)0.0157 (8)0.0155 (9)0.0023 (6)0.0021 (7)0.0007 (6)
C70.0174 (8)0.0150 (7)0.0172 (9)0.0017 (6)0.0007 (7)0.0006 (6)
C80.0244 (9)0.0205 (8)0.0146 (9)0.0001 (7)0.0035 (7)0.0009 (7)
C90.0211 (9)0.0197 (8)0.0207 (9)0.0022 (7)0.0042 (7)0.0041 (7)
C100.0165 (9)0.0138 (7)0.0233 (9)0.0007 (6)0.0002 (7)0.0008 (6)
C110.0275 (10)0.0178 (8)0.0164 (9)0.0017 (7)0.0038 (7)0.0023 (7)
C120.0243 (9)0.0164 (8)0.0168 (9)0.0011 (7)0.0051 (7)0.0016 (6)
Geometric parameters (Å, º) top
Br1—C101.8944 (17)C4—H4A0.9900
S1—C11.6638 (18)C4—H4B0.9900
O1—C61.230 (2)C5—H5A0.9800
N1—C61.355 (2)C5—H5B0.9800
N1—C11.435 (2)C5—H5C0.9800
N1—H10.896 (5)C6—C71.494 (2)
N2—C11.325 (2)C7—C81.389 (2)
N2—C41.474 (2)C7—C121.398 (2)
N2—C21.479 (2)C8—C91.390 (2)
C2—C31.511 (3)C8—H8A0.9500
C2—H2A0.9900C9—C101.383 (3)
C2—H2B0.9900C9—H9A0.9500
C3—H3A0.9800C10—C111.384 (2)
C3—H3B0.9800C11—C121.389 (2)
C3—H3C0.9800C11—H11A0.9500
C4—C51.513 (3)C12—H12A0.9500
C6—N1—C1120.52 (14)C4—C5—H5A109.5
C6—N1—H1122.0 (15)C4—C5—H5B109.5
C1—N1—H1115.4 (15)H5A—C5—H5B109.5
C1—N2—C4120.85 (14)C4—C5—H5C109.5
C1—N2—C2123.33 (14)H5A—C5—H5C109.5
C4—N2—C2115.79 (15)H5B—C5—H5C109.5
N2—C1—N1114.24 (15)O1—C6—N1121.04 (16)
N2—C1—S1126.53 (13)O1—C6—C7121.79 (16)
N1—C1—S1119.20 (13)N1—C6—C7117.11 (15)
N2—C2—C3112.43 (15)C8—C7—C12119.34 (16)
N2—C2—H2A109.1C8—C7—C6117.74 (15)
C3—C2—H2A109.1C12—C7—C6122.84 (16)
N2—C2—H2B109.1C7—C8—C9120.67 (16)
C3—C2—H2B109.1C7—C8—H8A119.7
H2A—C2—H2B107.8C9—C8—H8A119.7
C2—C3—H3A109.5C10—C9—C8118.91 (16)
C2—C3—H3B109.5C10—C9—H9A120.5
H3A—C3—H3B109.5C8—C9—H9A120.5
C2—C3—H3C109.5C9—C10—C11121.67 (16)
H3A—C3—H3C109.5C9—C10—Br1119.22 (13)
H3B—C3—H3C109.5C11—C10—Br1119.11 (13)
N2—C4—C5111.95 (15)C10—C11—C12119.01 (16)
N2—C4—H4A109.2C10—C11—H11A120.5
C5—C4—H4A109.2C12—C11—H11A120.5
N2—C4—H4B109.2C11—C12—C7120.39 (16)
C5—C4—H4B109.2C11—C12—H12A119.8
H4A—C4—H4B107.9C7—C12—H12A119.8
C4—N2—C1—N1177.55 (14)N1—C6—C7—C8173.35 (16)
C2—N2—C1—N10.4 (2)O1—C6—C7—C12167.57 (18)
C4—N2—C1—S10.6 (3)N1—C6—C7—C129.7 (2)
C2—N2—C1—S1178.51 (14)C12—C7—C8—C90.3 (3)
C6—N1—C1—N287.2 (2)C6—C7—C8—C9176.75 (16)
C6—N1—C1—S194.57 (18)C7—C8—C9—C100.4 (3)
C1—N2—C2—C382.9 (2)C8—C9—C10—C110.5 (3)
C4—N2—C2—C395.12 (19)C8—C9—C10—Br1179.13 (13)
C1—N2—C4—C592.2 (2)C9—C10—C11—C120.0 (3)
C2—N2—C4—C589.7 (2)Br1—C10—C11—C12179.64 (13)
C1—N1—C6—O15.7 (3)C10—C11—C12—C70.7 (3)
C1—N1—C6—C7176.95 (15)C8—C7—C12—C110.8 (3)
O1—C6—C7—C89.3 (3)C6—C7—C12—C11176.06 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.90 (1)2.02 (1)2.882 (2)162 (2)
Symmetry code: (i) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H15BrN2OS
Mr315.23
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)6.9955 (9), 18.680 (2), 10.0816 (13)
β (°) 95.361 (3)
V3)1311.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)3.28
Crystal size (mm)0.38 × 0.37 × 0.11
Data collection
DiffractometerBruker SMART APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.329, 0.714
No. of measured, independent and
observed [I > 2σ(I)] reflections
10831, 3117, 2730
Rint0.027
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.064, 1.06
No. of reflections3117
No. of parameters158
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.26

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.896 (5)2.016 (9)2.882 (2)162 (2)
Symmetry code: (i) x, y+3/2, z1/2.
 

Acknowledgements

This work was supported by Mersin University Research Fund [project Nos. BAP-ECZ-F-TBB-(HA) 2004–3 and BAP-FEF-KB-(NK) 2006-3]. This study is part of the PhD thesis of GB.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationArslan, H., Flörke, U. & Külcü, N. (2003). Acta Cryst. E59, o641–o642.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationArslan, H., Flörke, U. & Külcü, N. (2004). Turk. J. Chem. 28, 673–678.  CAS Google Scholar
First citationArslan, H., Flörke, U. & Külcü, N. (2007). Spectrochim. Acta A, 67, 936–943.  CSD CrossRef Google Scholar
First citationArslan, H., Flörke, U., Külcü, N. & Binzet, G. (2007). Spectrochim. Acta A, 68, 1347–1355.  CrossRef Google Scholar
First citationArslan, H., Külcü, N. & Flörke, U. (2003). Transition Met. Chem. 28, 816–819.  Web of Science CSD CrossRef CAS Google Scholar
First citationArslan, H., Külcü, N. & Flörke, U. (2006). Spectrochim. Acta A, 64, 1065–1071.  CrossRef Google Scholar
First citationBruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl Aamrani, F. Z., Kumar, A., Beyer, L., Cortina, J. L. & Sastre, A. M. (1998). Solvent Extr. Ion Exch. 16, 1389–1406.  CAS Google Scholar
First citationEl Aamrani, F. Z., Kumar, A., Cortina, J. L. & Sastre, A. M. (1999). Anal. Chim. Acta, 382, 205–231.  Web of Science CrossRef CAS Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Anwar, S. (2009). Acta Cryst. E65, o249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Badshah, A. (2009a). Acta Cryst. E65, o143.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Badshah, A. (2009b). Acta Cryst. E65, o240.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhawar Rauf, M., Bolte, M. & Rauf, A. (2009). Acta Cryst. E65, o234.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKoch, K. R. (2001). Coord. Chem. Rev. 216, 473-488.  Web of Science CrossRef Google Scholar
First citationÖzer, C. K., Arslan, H., VanDerveer, D. & Binzet, G. (2009). J. Coord. Chem. 62, 266–276.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeiqun, Z., Baolong, L., Liming, Z., Jiangang, D., Yong, Z., Lude, L. & Xujie, Y. (2004). J. Mol. Struct. 690, 145–150.  Web of Science CSD CrossRef Google Scholar
First citationYuan, Y. F., Wang, J. T., Gimeno, M. C., Laguna, A. & Jones, P. G. (2001). Inorg. Chim. Acta, 324, 309–317.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y. M., Wei, T. B., Xian, L. & Gao, L. M. (2004). Phosphorus Sulfur Silicon Relat. Elem. 179, 2007–2013.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o427-o428
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds