organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Hydr­­oxy-2-methyl-4H-pyran-4-one

aDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan, bInstitute of Inorganic Chemistry, University of Vienna, Whaeringer Strasse 42, A-1090 Vienna, Austria, cDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and dPAEC, PO Box No. 1114, Islamabad, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 25 January 2009; accepted 26 January 2009; online 31 January 2009)

The title compound, C6H6O3, is a member of the pyrone family. The mol­ecules are planar (r.m.s. deviation of the asymmetric unit is 0.0248 Å, whereas that of the dimer is 0.0360 Å) and they are dimerized due to inter­molecular O—H⋯O hydrogen bonds. The dimers are connected to each other through hydrogen bonds involving the CH3 group and the hydr­oxy O atom. There are ππ inter­actions between the centroids of the pyrone rings at a distance of 3.8552 (13) Å. A C—H⋯π inter­action also exists between the carbonyl group and the centroid CgA of the pyrone ring, with O⋯CgA = 3.65 (1) Å and C⋯CgA = 4.363 (2) Å.

Related literature

For general background, see: Aytemir et al. (1999[Aytemir, M. D., Uzbay, T. & Erol, D. D. (1999). Drug Res. 49, 250-254.]); Erol & Yulug (1999[Erol, D. D. & Yulug, N. (1999). Eur. J. Med. Chem. 29, 893-895.]). For studies involving metal complexes of allomaltol, see: Ma et al. (2004[Ma, Y., Luo, W., Quinn, P. J., Liu, Z. & Hider, R. C. (2004). J. Med. Chem. 47, 6349-6362.]); Shaheen et al. (2008[Shaheen, M. A., Berger, I., Alexey, A. N., Hartinger, C. G., Koroteev, M. P., Nifant, E. E. & Keppler, B. K. (2008). Chem. Biodivers. 5, 1640-1644.], 2008a[Shaheen, M. A., Kandioller, W., Maria-Grazia, M. F., Alexey, A. N., Hartinger, C. G. & Keppler, B. K. (2008a). Chem. Biodivers. 5, 2060-2066.]). For crystal structures of related compounds, see: Tak et al. (1994[Tak, H., Fronczek, F. R. & Fischer, N. H. (1994). Spectrosc. Lett. 27, 1431-1435.]); Rahman et al. (1997[Rahman, A., Nasreen, A., Akhtar, F., Shekhani, M. S., Clardy, J., Parvez, M. & Choudhary, M. I. (1997). J. Nat. Prod. 60, 472-474.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6O3

  • Mr = 126.11

  • Triclinic, [P \overline 1]

  • a = 5.4467 (4) Å

  • b = 7.3301 (5) Å

  • c = 7.6945 (5) Å

  • α = 105.354 (3)°

  • β = 98.416 (4)°

  • γ = 100.008 (4)°

  • V = 285.68 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 296 (2) K

  • 0.22 × 0.20 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.970, Tmax = 0.986

  • 6426 measured reflections

  • 1504 independent reflections

  • 713 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.131

  • S = 1.00

  • 1504 reflections

  • 87 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O3 0.87 (3) 2.46 (2) 2.7853 (19) 103.1 (18)
O2—H2⋯O3i 0.87 (3) 1.83 (3) 2.635 (2) 152 (2)
C6—H6A⋯O2ii 0.96 2.42 3.378 (3) 173
Symmetry codes: (i) -x-1, -y, -z+1; (ii) x, y, z-1; (iii) x-1, y, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

A variety of compounds with a 4(1H)-pyridinone structure have been synthesized and their biological activities studied extensively (Aytemir et al., 1999; Erol & Yulug, 1999). Allomaltol, the title compound (I), (Fig. 1) and its derivatives have been exploited as iron chelators (Ma et al., 2004). Ruthenium and osmium complexes of allomaltol were found to be effective in catalyzing the hydration of chloroacetonitriles (Shaheen et al., 2008, 2008a).

The crystal structures of 3-Hydroxy-4-pyrone (Tak et al., 1994) has been published which have same heterocyclic ring as of title compound. 3-Hydroxy-2-methyl-4H-pyran-4-one (Rahman et al., 1997) has also been published which is chemical isomer of (I) but have different position of CH3. The title compound has been prepared for various purposes such as complexation and as an intermediate ligand.

The heterocyclic ring is not regular as it has two C—C [1.426 (3), 1.446 (3) Å], two CC [1.323 (3), 1.334 (3) Å] and two C—O [1.352 (3), 1.358 (3) Å], bonds respectively. Due to intra as well as intermolecular H-bonds (Table 1), the molecules are dimerized with central four-membered [O···H···O···H] ring, (Fig. 2). The dimers are linked to each other through H-bond between CH3 and hydroxy groups. The molecules may be stabilized due to ππ interaction between the centroids of the ring A (O1/C1–C5). The distance between the centroids of CgA and CgAi [Symmetry code: i = -x, 1 - y, 1 - z] is 3.8552 (13) Å. There exist a C3O3···π interaction (Table 1), as well.

Related literature top

For general background, see: Aytemir et al. (1999); Erol & Yulug (1999). For studies involving metal complexes of the title compound, see: Ma et al. (2004); Shaheen et al. (2008, 2008a). For crystal structures of related compounds, see: Tak et al. (1994); Rahman et al. (1997). [Please check amended text]

Experimental top

A mixture of 2-chloromethyl-5-hydroxy-4-pyron (1.0 g, 0.6 mmol) and zinc dust (0.8 g, 12 mmol) in water (20 ml) was stirred for 30 min at 323 K. Concentrated HCl (6 ml) was added dropwise to dissolve the zinc dust completely and the mixture was stirred for 3 h at 353 K. The reaction mixture was transferred to ice–water and extracted with dichloromethane, dried with anhydrous Na2SO4 and evaporated to dryness. The crystals of the title compound were obtained by recrystallizing the crude product in isopropanol.

Refinement top

The coordinates of H atom of hydroxy group were refined. H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, O), where x = 1.5 for methyl H, and x = 1.2 for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound, with the atom numbering scheme. The thermal ellipsoids are drawn at the 30% probability level. H atoms are shown by small circles of arbitrary radii.
[Figure 2] Fig. 2. The packing figure (PLATON: Spek, 2003) which shows that the title compound is dimersed and dimers are connected through H-bonds in helical way.
(I) top
Crystal data top
C6H6O3Z = 2
Mr = 126.11F(000) = 132
Triclinic, P1Dx = 1.466 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.4467 (4) ÅCell parameters from 1504 reflections
b = 7.3301 (5) Åθ = 2.8–29.1°
c = 7.6945 (5) ŵ = 0.12 mm1
α = 105.354 (3)°T = 296 K
β = 98.416 (4)°Prismatic, colourless
γ = 100.008 (4)°0.22 × 0.20 × 0.10 mm
V = 285.68 (4) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1504 independent reflections
Radiation source: fine-focus sealed tube713 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
Detector resolution: 7.40 pixels mm-1θmax = 29.1°, θmin = 2.8°
ω scansh = 77
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.970, Tmax = 0.986l = 1010
6426 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.0219P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1504 reflectionsΔρmax = 0.18 e Å3
87 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.053 (14)
Crystal data top
C6H6O3γ = 100.008 (4)°
Mr = 126.11V = 285.68 (4) Å3
Triclinic, P1Z = 2
a = 5.4467 (4) ÅMo Kα radiation
b = 7.3301 (5) ŵ = 0.12 mm1
c = 7.6945 (5) ÅT = 296 K
α = 105.354 (3)°0.22 × 0.20 × 0.10 mm
β = 98.416 (4)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1504 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
713 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.986Rint = 0.045
6426 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.18 e Å3
1504 reflectionsΔρmin = 0.20 e Å3
87 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2557 (3)0.3634 (2)0.37275 (16)0.0542 (5)
O20.1534 (3)0.1916 (2)0.64758 (18)0.0641 (6)
O30.4440 (3)0.0215 (2)0.29282 (18)0.0631 (6)
C10.1595 (4)0.3242 (3)0.5153 (3)0.0554 (8)
C20.0705 (4)0.2171 (3)0.4961 (3)0.0467 (7)
C30.2315 (4)0.1292 (3)0.3153 (3)0.0455 (7)
C40.1223 (4)0.1770 (3)0.1711 (3)0.0486 (7)
C50.1096 (4)0.2896 (3)0.2016 (3)0.0463 (7)
C60.2424 (4)0.3492 (4)0.0642 (3)0.0624 (8)
H10.260840.375320.632800.0664*
H20.299 (5)0.111 (4)0.628 (3)0.0769*
H40.216330.127800.051230.0584*
H6A0.135080.294030.055900.0936*
H6B0.280600.488170.094270.0936*
H6C0.397790.304180.065230.0936*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0501 (9)0.0655 (10)0.0377 (8)0.0005 (7)0.0002 (6)0.0131 (7)
O20.0703 (11)0.0723 (12)0.0356 (8)0.0115 (9)0.0030 (7)0.0143 (8)
O30.0506 (10)0.0853 (12)0.0440 (8)0.0041 (9)0.0051 (7)0.0182 (8)
C10.0612 (15)0.0605 (15)0.0346 (10)0.0001 (12)0.0004 (10)0.0117 (10)
C20.0540 (14)0.0473 (13)0.0343 (10)0.0071 (11)0.0035 (9)0.0101 (9)
C30.0410 (13)0.0519 (14)0.0391 (11)0.0078 (11)0.0038 (9)0.0099 (9)
C40.0457 (13)0.0612 (15)0.0327 (9)0.0077 (11)0.0027 (9)0.0089 (10)
C50.0454 (13)0.0544 (14)0.0343 (10)0.0090 (11)0.0033 (9)0.0091 (9)
C60.0547 (14)0.0819 (17)0.0488 (12)0.0074 (12)0.0110 (10)0.0210 (12)
Geometric parameters (Å, º) top
O1—C11.358 (3)C4—C51.334 (3)
O1—C51.352 (3)C5—C61.480 (3)
O2—C21.356 (3)C1—H10.9300
O3—C31.243 (3)C4—H40.9300
O2—H20.87 (3)C6—H6A0.9600
C1—C21.323 (3)C6—H6B0.9600
C2—C31.446 (3)C6—H6C0.9600
C3—C41.426 (3)
O1···O3i3.200 (2)C2···O1iii3.350 (3)
O1···O1ii3.078 (2)C2···O2vi3.405 (3)
O1···C2iii3.350 (3)C2···C1iii3.501 (3)
O2···O32.7853 (19)C2···C2vi3.415 (3)
O2···C6iv3.378 (3)C6···O2ix3.378 (3)
O2···O3v2.635 (2)C3···H2v3.00 (3)
O2···C2vi3.405 (3)C4···H6Cvii3.0000
O3···O2v2.635 (2)H2···O32.46 (2)
O3···O1vii3.200 (2)H2···O3v1.83 (3)
O3···O22.7853 (19)H2···C3v3.00 (3)
O2···H6Biii2.9000H4···H6A2.4500
O2···H6Aiv2.4200H4···O3viii2.8200
O3···H22.46 (2)H6A···O2ix2.4200
O3···H2v1.83 (3)H6A···H42.4500
O3···H4viii2.8200H6B···O2iii2.9000
C1···C1iii3.387 (3)H6C···C4i3.0000
C1···C2iii3.501 (3)
C1—O1—C5118.57 (18)O1—C5—C4121.3 (2)
C2—O2—H2116.2 (15)O1—C1—H1118.00
O1—C1—C2123.6 (2)C2—C1—H1118.00
O2—C2—C3120.55 (19)C3—C4—H4119.00
C1—C2—C3120.2 (2)C5—C4—H4119.00
O2—C2—C1119.3 (2)C5—C6—H6A109.00
O3—C3—C4124.7 (2)C5—C6—H6B109.00
C2—C3—C4113.9 (2)C5—C6—H6C109.00
O3—C3—C2121.4 (2)H6A—C6—H6B109.00
C3—C4—C5122.5 (2)H6A—C6—H6C109.00
O1—C5—C6111.28 (19)H6B—C6—H6C109.00
C4—C5—C6127.5 (2)
C5—O1—C1—C20.0 (3)C1—C2—C3—O3177.0 (2)
C1—O1—C5—C41.4 (3)C1—C2—C3—C42.6 (3)
C1—O1—C5—C6179.1 (2)O3—C3—C4—C5178.3 (2)
O1—C1—C2—O2177.69 (19)C2—C3—C4—C51.3 (3)
O1—C1—C2—C32.0 (4)C3—C4—C5—O10.7 (4)
O2—C2—C3—O33.3 (3)C3—C4—C5—C6179.9 (2)
O2—C2—C3—C4177.2 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y+1, z+1; (iii) x, y+1, z+1; (iv) x, y, z+1; (v) x1, y, z+1; (vi) x, y, z+1; (vii) x1, y, z; (viii) x1, y, z; (ix) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.87 (3)2.46 (2)2.7853 (19)103.1 (18)
O2—H2···O3v0.87 (3)1.83 (3)2.635 (2)152 (2)
C6—H6A···O2ix0.96002.42003.378 (3)173.00
C3—O3···CgAvii1.24 (1)3.65 (1)4.363 (2)118 (1)
Symmetry codes: (v) x1, y, z+1; (vii) x1, y, z; (ix) x, y, z1.

Experimental details

Crystal data
Chemical formulaC6H6O3
Mr126.11
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.4467 (4), 7.3301 (5), 7.6945 (5)
α, β, γ (°)105.354 (3), 98.416 (4), 100.008 (4)
V3)285.68 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.22 × 0.20 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.970, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
6426, 1504, 713
Rint0.045
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.131, 1.00
No. of reflections1504
No. of parameters87
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.20

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O30.87 (3)2.46 (2)2.7853 (19)103.1 (18)
O2—H2···O3i0.87 (3)1.83 (3)2.635 (2)152 (2)
C6—H6A···O2ii0.96002.42003.378 (3)173.00
C3—O3···CgAiii1.243 (3)3.6465 (19)4.363 (2)117.56 (13)
Symmetry codes: (i) x1, y, z+1; (ii) x, y, z1; (iii) x1, y, z.
 

References

First citationAytemir, M. D., Uzbay, T. & Erol, D. D. (1999). Drug Res. 49, 250–254.  CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationErol, D. D. & Yulug, N. (1999). Eur. J. Med. Chem. 29, 893–895.  CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationMa, Y., Luo, W., Quinn, P. J., Liu, Z. & Hider, R. C. (2004). J. Med. Chem. 47, 6349–6362.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRahman, A., Nasreen, A., Akhtar, F., Shekhani, M. S., Clardy, J., Parvez, M. & Choudhary, M. I. (1997). J. Nat. Prod. 60, 472–474.  PubMed Web of Science Google Scholar
First citationShaheen, M. A., Berger, I., Alexey, A. N., Hartinger, C. G., Koroteev, M. P., Nifant, E. E. & Keppler, B. K. (2008). Chem. Biodivers. 5, 1640–1644.  Web of Science PubMed Google Scholar
First citationShaheen, M. A., Kandioller, W., Maria-Grazia, M. F., Alexey, A. N., Hartinger, C. G. & Keppler, B. K. (2008a). Chem. Biodivers. 5, 2060–2066.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTak, H., Fronczek, F. R. & Fischer, N. H. (1994). Spectrosc. Lett. 27, 1431–1435.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds