metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m194-m195

Aqua­(2,9-di­methyl-1,10-phenanthroline-κ2N,N′)bis­­(2-hy­droxy­benzoato-κO)manganese(II) 2,9-di­methyl-1,10-phenanthroline hemisolvate

aCollege of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, People's Republic of China, bDepartment of Chemistry and Chemical Engineering, Huanghuai University, Zhumadian 463000, People's Republic of China, and cDepartment of Chemistry, Luoyang Normal University, Luoyang 471022, People's Republic of China
*Correspondence e-mail: pz_zhao@hotmail.com

(Received 7 November 2008; accepted 8 January 2009; online 14 January 2009)

In the asymmetric unit of the title complex, [Mn(C7H5O3)2(C14H12N2)(H2O)]·0.5C14H12N2, the MnII ion is coordinated by a bidentate 2,9-dimethyl-1,10-phenanthroline (dmphen) mol­ecule, one water mol­ecule and two monodentate 2-hydroxy­benzoate anions in a distorted trigonal-bipyramidal geometry. The OH group of the 2-hydroxy­benzoate anion is disordered over two positions with site-occupancy factors of 0.5. The asymmetric unit is completed with by an uncoordinated half-mol­ecule of dmphen, disordered about a crystallographic twofold axis. In the crystal structure, mol­ecules are linked into a two-dimensional framework by O—H⋯N, O—H⋯O and C—H⋯O hydrogen bonds. The packing of the structure is further stabilized by ππ stacking inter­actions involving dmphen mol­ecules, with centroid–centroid separations of 3.8027 (3) and 3.6319 (3) Å.

Related literature

For background to Mn- and phenanthroline-containing complexes, see: Rüttinger & Dismukes (1997[Rüttinger, W. & Dismukes, G. C. (1997). Chem. Rev. 97, 1-24.]); Wang et al. (1996[Wang, J., Cai, X., Rivas, G., Shiraishi, H., Farias, P. A. M. & Dontha, N. (1996). Anal. Chem. 68, 2629-2634.]); Wall et al. (1999[Wall, M., Linkletter, B., Williams, D., Lebuis, A.-M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710-4711.]); Naing et al. (1995[Naing, K., Takahashi, M., Taniguchi, M. & Yamagishi, A. (1995). Inorg. Chem. 34, 350-356.]). For related structures, see: Shen & Yuan (2004[Shen, X.-P. & Yuan, A.-H. (2004). Acta Cryst. E60, m1074-m1075.]); Pan & Xu (2005[Pan, T.-T. & Xu, D.-J. (2005). Acta Cryst. E61, m740-m742.]); Su et al. (2005[Su, J.-R., Zhang, L. & Xu, D.-J. (2005). Acta Cryst. E61, m939-m941.]); Pan et al. (2006[Pan, T.-T., Su, J.-R. & Xu, D.-J. (2006). Acta Cryst. E62, m1403-m1404.]); Shen et al. (2007[Shen, Y.-L., Sun, S.-L. & Song, W.-D. (2007). Acta Cryst. E63, m1309-m1311.]); Xuan et al. (2007[Xuan, X., Zhao, P. & Zhang, S. (2007). Acta Cryst. E63, m2813-m2814.]); Zhao et al. (2007[Zhao, P.-Z., Xuan, X.-P. & Wang, J.-G. (2007). Acta Cryst. E63, m2127.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C7H5O3)2(C14H12N2)(H2O)]·0.5C14H12N2

  • Mr = 659.56

  • Monoclinic, C 2/c

  • a = 23.225 (2) Å

  • b = 19.6902 (17) Å

  • c = 14.0225 (12) Å

  • β = 94.342 (1)°

  • V = 6394.2 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.47 mm−1

  • T = 293 (2) K

  • 0.49 × 0.43 × 0.36 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.804, Tmax = 0.849

  • 23566 measured reflections

  • 5959 independent reflections

  • 4384 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.157

  • S = 1.02

  • 5959 reflections

  • 449 parameters

  • 152 restraints

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Selected geometric parameters (Å, °)

Mn1—O5 2.105 (3)
Mn1—O1 2.108 (2)
Mn1—O8 2.135 (3)
Mn1—N2 2.252 (2)
Mn1—N1 2.262 (2)
O1—Mn1—N2 169.01 (9)
O5—Mn1—O8 119.39 (14)
O5—Mn1—N1 127.02 (11)
O8—Mn1—N1 110.00 (12)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H2W⋯N3′ 0.83 2.52 3.083 (5) 127
O8—H2W⋯N3 0.83 2.23 3.026 (5) 160
O8—H1W⋯O2 0.82 1.79 2.571 (3) 159
O7—H7⋯O6 0.82 1.88 2.609 (6) 147
O4—H4D⋯O2 0.82 1.82 2.453 (7) 133
O3—H3D⋯O1 0.82 1.79 2.514 (5) 146
C12—H12C⋯O8 0.96 2.50 3.309 (5) 142
O8—H2W⋯N3i 0.83 2.38 3.070 (4) 141
O8—H2W⋯N3′i 0.83 2.30 3.013 (6) 145
C6—H6⋯O6ii 0.93 2.57 3.450 (5) 158
Symmetry codes: (i) [-x+1, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: SMART (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

It is generally believed that manganese plays an important role in biological systems (Rüttinger & Dismukes, 1997). In addition, metal-phenanthroline complexes and their derivatives have attracted much attention during recent decades because of their peculiar features (Wang et al., 1996; Wall et al., 1999; Naing et al., 1995). A number of Mn(II) complexes have been synthesized and structures determined (Shen & Yuan, 2004; Pan & Xu, 2005; Su et al., 2005; Pan et al., 2006; Shen et al., 2007; Xuan et al., 2007; Zhao et al., 2007). The title complex, (I), was recently obtained from the reaction of manganese nitrate, sodium 2-hydroxybenzoate and dmphen in an ethanol/water mixture, and its crystal structure is reported here.

The structure of the title compound, (I), is shown in Fig. 1. The MnII ion is five-coordinated by two N atoms from a dmphen ligand, and three O atoms from two 2-hydroxybenzoate ligands and a water molecule. The [MnO3N2] unit presents a distorted trigonal bipyramidal geometry, with N2 and O1 atoms occupying the axial positions, with axial O1—Mn1—N2 angle being 169.01 (9)°. The corresponding bond lengths are listed in Table 1. The OH group in one 2-hydroxybenzoate ligand is disordered over two positions with equal site occupancy factors. The whole uncoordinated dmphen molecule present in the asymmetric unit is also disordered equally between two sites related by a twofold axis.

The intramolecular hydrogen bonds between the hydroxy group, water molecule and uncoordinated carboxyl O atoms stabilize the conformation of the complex. In the crystal structure, molecules are linked into a two-dimensional framework by O—H···N and C—H···O hydrogen bonds (Table 2, Fig. 2). A partially overlapped arrangement of neighboring parallel Mn1B-dmphen (symmetry code: x + 1/2, y + 1/2, z) and Mn1C-dmphen rings (symmetry code: -x + 1, -y + 1, -z + 1) is observed in the crystal structure (Fig. 3). The shorter face-to-face separation of 3.3894 (16) Å clearly indicates the existence of ππ stacking interactions between the dmphen ligands. Furthermore, the distance between the ring centroids X1A (C8B···C11B/N2B/C13B) of coordinated Mn1B-dmphen and X1D (C33C···C35C/C33D···C35D) of uncoordinated C35C-dmphen (symmetry code: x + 1/2, y + 1/2, z) is 3.6319 (3) Å. This value is identical to the van der Waals thickness of the ππ stacking interaction between the nearly parallel coordinated dmphen and uncoordinated dmphen [dihedral angle: 1.36 (6)°], although dmphen rings are well overlapped with respect to each other (Fig. 3). This combination of hydrogen bonds and ππ stacking interactions builds a three-dimensional network architecture in the crystal.

Related literature top

For background to Mn- and phenanthroline-containing complexes, see: Rüttinger & Dismukes (1997); Wang, et al. (1996); Wall et al. (1999); Naing et al. (1995). For related structures, see: Shen & Yuan (2004); Pan & Xu (2005); Su et al. (2005); Pan et al. (2006); Shen et al. (2007); Xuan et al. (2007); Zhao et al. (2007).

Experimental top

2-hydroxybenzoic acid (0.0697 g, 0.5 mmol) and NaOH (0.0194 g, 0.5 mmol) were dissolved in distilled water (10 ml) and a 50% solution of Mn(NO3)2 (0.2103 g, 0.5 mmol) was added. This solution was added to a solution of 2,9-dimethyl-1,10-phenanthroline hemihydrate (C14H12N2.0.5H2O, 0.1089 g, 0.5 mmol) in ethanol (10 ml). The mixture was stirred at 323 K and then refluxed for 5 h, cooled to room temperature and filtered. Yellow single crystals of (I) appeared over a period of 8 d. by slow evaporation at room temperature.

Refinement top

The OH group of a 2-hydroxybenzoate anion is disordered over two positions and site occupancy factors were fixed to 1/2. The whole uncoordinated dmphen is also disordered by symmetry, and its occupation factor in the asymmetric unit was fixed to 1/2. For this dmphen molecule (16 non-H atoms), displacement parameters were restrained: a rigid bond restraint was applied to connected atoms [DELU (Sheldrick, 2008)] and bonded atoms were restrained to have the same Uij components [SIMU (Sheldrick, 2008)]. Methyl H and hydroxyl H atoms were placed in calculated positions, with C—H = 0.96 and O—H = 0.82 Å, and refined with free torsion angles to fit the electron density; Uiso(H) = 1.5Ueq(carrier atom). Other H atoms were placed in calculated positions, with C—H = 0.93 Å, and refined using the riding-model approximation with Uiso(H) = 1.2Ueq(carrier C).

Computing details top

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The hydrogen bonds (dashed lines) in the crystal structure of (I). Displacement ellipsoids are at the 20% probability level.
[Figure 3] Fig. 3. The ππ interactions between the dmphen rings of neighboring molecules in the crystal structure of (I), with 10% probability displacement ellipsoids. H atoms have been omitted for clarity. symmetry codes: (Mn1B, C35C) x + 1/2, y + 1/2, z; (Mn1C, C35E) -x + 1, -y + 1, -z + 1; (Mn1D, C35G) -x + 1/2, -y + 1/2, -z + 1; (Mn1E) -x + 1, y, -z + 3/2; (Mn1F) x, -y + 1, z - 1/2.
Aqua(2,9-dimethyl-1,10-phenanthroline-κ2N,N')bis(2- hydroxybenzoato-κO)manganese(II) 2,9-dimethyl-1,10-phenanthroline hemisolvate top
Crystal data top
[Mn(C7H5O3)2(C14H12N2)(H2O)]·0.5C14H12N2F(000) = 2736
Mr = 659.56Dx = 1.370 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7104 reflections
a = 23.225 (2) Åθ = 2.5–23.7°
b = 19.6902 (17) ŵ = 0.47 mm1
c = 14.0225 (12) ÅT = 293 K
β = 94.342 (1)°Block, yellow
V = 6394.2 (10) Å30.49 × 0.43 × 0.36 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
5959 independent reflections
Radiation source: fine-focus sealed tube4384 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ϕ and ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 2828
Tmin = 0.804, Tmax = 0.849k = 2323
23566 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0779P)2 + 6.8361P]
where P = (Fo2 + 2Fc2)/3
5959 reflections(Δ/σ)max = 0.001
449 parametersΔρmax = 0.34 e Å3
152 restraintsΔρmin = 0.33 e Å3
0 constraints
Crystal data top
[Mn(C7H5O3)2(C14H12N2)(H2O)]·0.5C14H12N2V = 6394.2 (10) Å3
Mr = 659.56Z = 8
Monoclinic, C2/cMo Kα radiation
a = 23.225 (2) ŵ = 0.47 mm1
b = 19.6902 (17) ÅT = 293 K
c = 14.0225 (12) Å0.49 × 0.43 × 0.36 mm
β = 94.342 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5959 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
4384 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 0.849Rint = 0.022
23566 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.050152 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.02Δρmax = 0.34 e Å3
5959 reflectionsΔρmin = 0.33 e Å3
449 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.336181 (19)0.09320 (2)0.70559 (3)0.05897 (18)
O10.34065 (10)0.01168 (11)0.6768 (2)0.0831 (7)
O20.43061 (12)0.04509 (14)0.7166 (3)0.1290 (13)
O50.27211 (13)0.07614 (13)0.8014 (2)0.0973 (8)
O60.21336 (19)0.07237 (18)0.6732 (2)0.1386 (14)
O70.1036 (2)0.0548 (3)0.6931 (3)0.1689 (17)
H70.13280.06070.66470.253*
O80.42499 (11)0.08236 (12)0.7546 (3)0.1120 (11)
H1W0.43570.04370.74350.168*
H2W0.44770.11370.74510.168*
N10.32803 (11)0.15690 (14)0.57097 (16)0.0647 (6)
N20.34711 (10)0.20176 (11)0.75410 (16)0.0563 (6)
C10.3151 (2)0.0612 (2)0.4651 (3)0.1138 (15)
H1A0.35000.04020.49150.171*
H1B0.31020.05210.39770.171*
H1C0.28280.04310.49570.171*
C20.31853 (16)0.1361 (2)0.4812 (2)0.0828 (10)
C30.31289 (17)0.1831 (3)0.4035 (2)0.0924 (12)
H3A0.30730.16740.34090.111*
C40.31578 (18)0.2507 (2)0.4215 (3)0.0972 (12)
H4A0.31130.28130.37090.117*
C50.32514 (15)0.2746 (2)0.5132 (2)0.0789 (9)
C60.32921 (17)0.34444 (19)0.5369 (3)0.0901 (11)
H60.32470.37630.48790.108*
C70.33927 (18)0.36627 (19)0.6262 (3)0.0951 (12)
H7A0.34180.41260.63850.114*
C80.34610 (14)0.31949 (16)0.7028 (3)0.0744 (9)
C90.35821 (17)0.3382 (2)0.7977 (3)0.0914 (11)
H90.36180.38400.81320.110*
C100.36477 (17)0.2919 (2)0.8670 (3)0.0868 (11)
H100.37340.30540.93000.104*
C110.35866 (14)0.22276 (17)0.8445 (2)0.0685 (8)
C120.36389 (18)0.1703 (2)0.9209 (2)0.0926 (12)
H12A0.32620.15400.93300.139*
H12B0.38200.18980.97830.139*
H12C0.38690.13320.90070.139*
C130.34150 (12)0.24857 (14)0.6833 (2)0.0598 (7)
C140.33147 (13)0.22509 (15)0.5877 (2)0.0622 (7)
C150.37894 (15)0.05680 (16)0.6906 (3)0.0752 (9)
C160.36092 (14)0.12862 (14)0.6736 (2)0.0616 (7)
C170.30455 (15)0.14487 (16)0.6432 (2)0.0712 (8)
H170.27700.11090.63250.085*0.50
O40.4564 (3)0.1659 (4)0.7233 (5)0.1179 (19)*0.50
H4D0.46450.12780.70470.177*0.50
C180.2891 (2)0.2119 (2)0.6277 (3)0.0975 (13)
H180.25140.22280.60630.117*
C190.3292 (3)0.2622 (2)0.6438 (3)0.1088 (16)
H190.31820.30710.63340.131*
C200.3841 (3)0.24798 (19)0.6744 (3)0.1033 (14)
H200.41070.28300.68490.124*
C210.40101 (18)0.18138 (17)0.6903 (3)0.0817 (10)
H210.43880.17140.71230.098*0.50
O30.2628 (2)0.0972 (3)0.6327 (4)0.0854 (13)*0.50
H3D0.27620.06020.64910.128*0.50
C220.22287 (19)0.06925 (16)0.7612 (3)0.0768 (9)
C230.17424 (14)0.05748 (13)0.8236 (2)0.0645 (8)
C240.1176 (2)0.0519 (2)0.7857 (4)0.1016 (13)
C250.0734 (2)0.0432 (3)0.8492 (6)0.132 (2)
H250.03510.03970.82530.158*
C260.0871 (3)0.0399 (3)0.9424 (6)0.137 (2)
H260.05750.03490.98310.165*
C270.1427 (3)0.0436 (2)0.9813 (4)0.1140 (17)
H270.15090.03951.04700.137*
C280.18578 (16)0.05344 (15)0.9226 (2)0.0727 (9)
H280.22360.05750.94880.087*
C290.4784 (4)0.1418 (3)0.5219 (3)0.161 (5)0.50
H29A0.51060.11260.53940.241*0.50
H29B0.47740.15170.45470.241*0.50
H29C0.44320.11950.53580.241*0.50
C300.4845 (3)0.2056 (3)0.5768 (3)0.125 (3)0.50
C310.4823 (2)0.2698 (3)0.5390 (2)0.145 (3)0.50
H310.47670.27530.47310.174*0.50
C320.4880 (3)0.3258 (3)0.5959 (3)0.143 (3)0.50
H320.48600.36900.56880.172*0.50
C330.4969 (2)0.31839 (18)0.6938 (3)0.124 (2)0.50
C340.49936 (18)0.25172 (16)0.7319 (2)0.0965 (18)0.50
C350.5041 (3)0.37274 (15)0.7589 (4)0.143 (3)0.50
H350.50240.41680.73490.171*0.50
N30.4929 (2)0.1958 (2)0.6702 (3)0.0967 (19)0.50
C29'0.5197 (4)0.0964 (2)0.9930 (4)0.124 (3)0.50
H29D0.52210.06800.93780.186*0.50
H29E0.48510.08591.02340.186*0.50
H29F0.55270.08841.03710.186*0.50
C30'0.5187 (2)0.1684 (2)0.9634 (3)0.104 (2)0.50
C31'0.52517 (19)0.2231 (3)1.0247 (2)0.115 (2)0.50
H31'0.53070.21591.09030.139*0.50
C32'0.5236 (2)0.2876 (2)0.9901 (3)0.131 (3)0.50
H32'0.52810.32401.03220.158*0.50
C33'0.5152 (2)0.29941 (17)0.8935 (3)0.114 (2)0.50
C34'0.50877 (17)0.24249 (15)0.8322 (2)0.0898 (19)0.50
C35'0.5130 (3)0.36443 (15)0.8510 (3)0.131 (3)0.50
H35'0.51800.40250.89000.157*0.50
N3'0.5108 (2)0.17597 (16)0.8701 (3)0.0930 (19)0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0702 (3)0.0426 (2)0.0647 (3)0.00241 (19)0.0088 (2)0.00082 (18)
O10.0740 (14)0.0444 (11)0.129 (2)0.0033 (10)0.0054 (13)0.0120 (12)
O20.0761 (17)0.0733 (18)0.231 (4)0.0028 (13)0.030 (2)0.038 (2)
O50.0916 (19)0.0795 (17)0.125 (2)0.0098 (14)0.0375 (17)0.0049 (15)
O60.223 (4)0.126 (3)0.0712 (19)0.038 (3)0.038 (2)0.0291 (17)
O70.183 (4)0.187 (4)0.125 (3)0.009 (4)0.066 (3)0.005 (3)
O80.0700 (15)0.0613 (14)0.202 (3)0.0088 (11)0.0083 (18)0.0295 (17)
N10.0730 (16)0.0756 (17)0.0456 (13)0.0130 (13)0.0055 (11)0.0043 (11)
N20.0652 (14)0.0512 (13)0.0524 (13)0.0012 (10)0.0040 (10)0.0015 (10)
C10.141 (4)0.116 (3)0.086 (3)0.021 (3)0.012 (3)0.041 (3)
C20.087 (2)0.102 (3)0.0592 (19)0.017 (2)0.0081 (16)0.0144 (18)
C30.097 (3)0.135 (4)0.0450 (18)0.010 (3)0.0034 (17)0.001 (2)
C40.103 (3)0.121 (4)0.067 (2)0.014 (3)0.002 (2)0.023 (2)
C50.075 (2)0.092 (3)0.069 (2)0.0074 (18)0.0006 (16)0.0210 (18)
C60.095 (3)0.064 (2)0.110 (3)0.0003 (19)0.003 (2)0.037 (2)
C70.107 (3)0.056 (2)0.121 (3)0.0011 (19)0.001 (3)0.014 (2)
C80.074 (2)0.0536 (18)0.096 (3)0.0012 (15)0.0059 (18)0.0041 (17)
C90.099 (3)0.067 (2)0.107 (3)0.0013 (19)0.004 (2)0.028 (2)
C100.098 (3)0.080 (2)0.082 (2)0.002 (2)0.005 (2)0.031 (2)
C110.0689 (19)0.072 (2)0.0648 (19)0.0012 (15)0.0073 (14)0.0141 (15)
C120.110 (3)0.117 (3)0.0497 (18)0.001 (2)0.0023 (18)0.0007 (19)
C130.0626 (17)0.0503 (15)0.0661 (18)0.0010 (13)0.0027 (13)0.0063 (13)
C140.0654 (18)0.0583 (17)0.0629 (18)0.0053 (14)0.0034 (14)0.0127 (14)
C150.075 (2)0.0547 (18)0.095 (2)0.0048 (16)0.0003 (18)0.0109 (16)
C160.084 (2)0.0441 (15)0.0564 (16)0.0013 (14)0.0062 (15)0.0026 (12)
C170.087 (2)0.0599 (18)0.0681 (19)0.0136 (16)0.0133 (16)0.0041 (15)
C180.118 (3)0.071 (2)0.107 (3)0.037 (2)0.026 (2)0.016 (2)
C190.178 (5)0.050 (2)0.102 (3)0.026 (3)0.038 (3)0.006 (2)
C200.163 (5)0.050 (2)0.098 (3)0.022 (2)0.020 (3)0.0111 (19)
C210.104 (3)0.062 (2)0.078 (2)0.0064 (18)0.0002 (19)0.0021 (16)
C220.110 (3)0.0456 (16)0.077 (2)0.0060 (18)0.024 (2)0.0095 (15)
C230.078 (2)0.0359 (14)0.079 (2)0.0028 (13)0.0055 (16)0.0021 (13)
C240.106 (3)0.079 (3)0.116 (3)0.002 (2)0.020 (3)0.014 (2)
C250.083 (3)0.112 (4)0.202 (6)0.022 (3)0.017 (4)0.034 (4)
C260.127 (5)0.091 (3)0.204 (7)0.024 (3)0.078 (5)0.037 (4)
C270.178 (5)0.072 (3)0.099 (3)0.018 (3)0.061 (3)0.014 (2)
C280.099 (2)0.0497 (17)0.072 (2)0.0065 (16)0.0232 (18)0.0021 (14)
C290.127 (10)0.212 (10)0.141 (9)0.047 (10)0.005 (9)0.002 (8)
C300.086 (5)0.157 (6)0.134 (6)0.016 (6)0.007 (5)0.050 (5)
C310.103 (6)0.176 (7)0.157 (7)0.002 (7)0.009 (6)0.069 (5)
C320.105 (6)0.146 (7)0.180 (7)0.013 (6)0.023 (6)0.067 (5)
C330.093 (4)0.097 (4)0.185 (6)0.013 (4)0.022 (6)0.041 (4)
C340.065 (3)0.079 (3)0.148 (5)0.006 (5)0.020 (4)0.030 (3)
C350.111 (5)0.085 (4)0.233 (7)0.002 (7)0.025 (6)0.016 (6)
N30.066 (4)0.110 (4)0.116 (5)0.006 (4)0.017 (4)0.030 (4)
C29'0.109 (7)0.143 (7)0.119 (7)0.008 (7)0.005 (6)0.035 (6)
C30'0.079 (5)0.122 (5)0.111 (5)0.008 (4)0.015 (5)0.005 (4)
C31'0.082 (4)0.147 (6)0.120 (5)0.008 (5)0.018 (4)0.026 (4)
C32'0.093 (5)0.141 (5)0.163 (6)0.011 (5)0.026 (5)0.043 (5)
C33'0.077 (5)0.090 (4)0.179 (5)0.001 (4)0.032 (5)0.016 (4)
C34'0.061 (4)0.069 (3)0.142 (5)0.000 (3)0.023 (4)0.003 (3)
C35'0.100 (5)0.076 (4)0.220 (7)0.011 (4)0.038 (7)0.019 (5)
N3'0.075 (4)0.091 (4)0.114 (4)0.002 (3)0.015 (4)0.005 (3)
Geometric parameters (Å, º) top
Mn1—O52.105 (3)O4—H210.4385
Mn1—O12.108 (2)C18—C191.366 (6)
Mn1—O82.135 (3)C18—H180.9300
Mn1—N22.252 (2)C19—C201.344 (7)
Mn1—N12.262 (2)C19—H190.9300
O1—C151.262 (4)C20—C211.382 (5)
O2—C151.249 (4)C20—H200.9300
O5—C221.243 (5)C21—H210.9300
O6—C221.238 (4)O3—H170.4262
O7—C241.315 (6)O3—H3D0.8200
O7—H70.8200C22—C231.499 (5)
O8—H1W0.8200C23—C241.386 (5)
O8—H2W0.8288C23—C281.396 (5)
N1—C21.326 (4)C24—C251.418 (8)
N1—C141.364 (4)C25—C261.323 (8)
N2—C111.342 (4)C25—H250.9300
N2—C131.354 (4)C26—C271.366 (8)
C1—C21.494 (6)C26—H260.9300
C1—H1A0.9600C27—C281.357 (6)
C1—H1B0.9600C27—H270.9300
C1—H1C0.9600C28—H280.9300
C2—C31.428 (6)C29—C301.4759
C3—C41.356 (6)C29—H29A0.9600
C3—H3A0.9300C29—H29B0.9600
C4—C51.371 (5)C29—H29C0.9600
C4—H4A0.9300C30—N31.3240
C5—C61.415 (5)C30—C311.3702
C5—C141.429 (4)C31—C321.3611
C6—C71.329 (6)C31—H310.9300
C6—H60.9300C32—C331.3816
C7—C81.414 (5)C32—H320.9300
C7—H7A0.9300C33—C351.4076
C8—C91.389 (5)C33—C341.4164
C8—C131.425 (4)C34—N31.4017
C9—C101.333 (6)C34—C34'1.4192
C9—H90.9300C35—C35'1.3035
C10—C111.402 (5)C35—H350.9300
C10—H100.9300C29'—C30'1.4763
C11—C121.486 (5)C29'—H29D0.9600
C12—H12A0.9600C29'—H29E0.9600
C12—H12B0.9600C29'—H29F0.9600
C12—H12C0.9600C30'—N3'1.3159
C13—C141.420 (4)C30'—C31'1.3801
C15—C161.489 (4)C31'—C32'1.3576
C16—C171.383 (4)C31'—H31'0.9300
C16—C211.403 (5)C32'—C33'1.3740
C17—O31.350 (6)C32'—H32'0.9300
C17—C181.380 (5)C33'—C35'1.4111
C17—H170.9300C33'—C34'1.4130
O4—C211.368 (7)C34'—N3'1.4129
O4—H4D0.8200C35'—H35'0.9300
O1—Mn1—N2169.01 (9)C18—C17—H17119.6
O5—Mn1—O8119.39 (14)C16—C17—H17120.5
O5—Mn1—N1127.02 (11)C21—O4—H4D109.2
O8—Mn1—N1110.00 (12)H4D—O4—H21110.2
O5—Mn1—O190.77 (10)C19—C18—C17120.1 (4)
O1—Mn1—O884.46 (9)C19—C18—H18120.0
O5—Mn1—N291.58 (10)C17—C18—H18120.0
O8—Mn1—N285.04 (9)C20—C19—C18121.4 (4)
O1—Mn1—N1112.67 (10)C20—C19—H19119.3
N2—Mn1—N174.11 (9)C18—C19—H19119.3
C15—O1—Mn1134.8 (2)C19—C20—C21120.0 (4)
C22—O5—Mn1113.5 (3)C19—C20—H20120.0
C24—O7—H7109.5C21—C20—H20120.0
Mn1—O8—H1W109.3O4—C21—C20121.0 (5)
Mn1—O8—H2W119.0O4—C21—C16119.1 (4)
H1W—O8—H2W117.1C20—C21—C16119.9 (4)
C2—N1—C14118.0 (3)C20—C21—H21120.2
C2—N1—Mn1128.2 (2)C16—C21—H21119.9
C14—N1—Mn1113.69 (18)C17—O3—H3D109.4
C11—N2—C13119.0 (3)H17—O3—H3D106.6
C11—N2—Mn1126.0 (2)O6—C22—O5122.3 (4)
C13—N2—Mn1114.98 (18)O6—C22—C23120.3 (4)
C2—C1—H1A109.5O5—C22—C23117.4 (3)
C2—C1—H1B109.5C24—C23—C28118.9 (4)
H1A—C1—H1B109.5C24—C23—C22121.6 (4)
C2—C1—H1C109.5C28—C23—C22119.6 (3)
H1A—C1—H1C109.5O7—C24—C23122.2 (5)
H1B—C1—H1C109.5O7—C24—C25119.2 (5)
N1—C2—C3121.6 (4)C23—C24—C25118.6 (5)
N1—C2—C1116.8 (3)C26—C25—C24119.7 (5)
C3—C2—C1121.6 (3)C26—C25—H25120.1
C4—C3—C2119.6 (3)C24—C25—H25120.1
C4—C3—H3A120.2C25—C26—C27122.7 (5)
C2—C3—H3A120.2C25—C26—H26118.6
C3—C4—C5120.9 (4)C27—C26—H26118.6
C3—C4—H4A119.5C28—C27—C26119.0 (5)
C5—C4—H4A119.5C28—C27—H27120.5
C4—C5—C6123.8 (4)C26—C27—H27120.5
C4—C5—C14116.9 (4)C27—C28—C23121.1 (4)
C6—C5—C14119.3 (3)C27—C28—H28119.5
C7—C6—C5122.6 (3)C23—C28—H28119.5
C7—C6—H6118.7N3—C30—C31121.1
C5—C6—H6118.7N3—C30—C29113.1
C6—C7—C8120.4 (4)C31—C30—C29125.8
C6—C7—H7A119.8C32—C31—C30121.4
C8—C7—H7A119.8C32—C31—H31119.3
C9—C8—C7123.9 (4)C30—C31—H31119.3
C9—C8—C13116.8 (3)C31—C32—C33119.8
C7—C8—C13119.3 (3)C31—C32—H32120.1
C10—C9—C8121.4 (3)C33—C32—H32120.1
C10—C9—H9119.3C32—C33—C35124.4
C8—C9—H9119.3C32—C33—C34118.1
C9—C10—C11119.8 (3)C35—C33—C34117.5
C9—C10—H10120.1N3—C34—C33119.8
C11—C10—H10120.1N3—C34—C34'120.8
N2—C11—C10121.4 (3)C33—C34—C34'119.4
N2—C11—C12117.8 (3)C35'—C35—C33123.3
C10—C11—C12120.8 (3)C35'—C35—H35118.4
C11—C12—H12A109.5C33—C35—H35118.4
C11—C12—H12B109.5C30—N3—C34119.7
H12A—C12—H12B109.5N3'—C30'—C31'122.0
C11—C12—H12C109.5N3'—C30'—C29'112.8
H12A—C12—H12C109.5C31'—C30'—C29'125.2
H12B—C12—H12C109.5C32'—C31'—C30'120.6
N2—C13—C14118.0 (3)C32'—C31'—H31'119.7
N2—C13—C8121.6 (3)C30'—C31'—H31'119.7
C14—C13—C8120.3 (3)C31'—C32'—C33'120.6
N1—C14—C13119.1 (2)C31'—C32'—H32'119.7
N1—C14—C5123.0 (3)C33'—C32'—H32'119.7
C13—C14—C5117.9 (3)C32'—C33'—C35'124.6
O2—C15—O1124.4 (3)C32'—C33'—C34'117.7
O2—C15—C16118.3 (3)C35'—C33'—C34'117.7
O1—C15—C16117.3 (3)N3'—C34'—C33'120.5
C17—C16—C21118.8 (3)N3'—C34'—C34119.3
C17—C16—C15121.1 (3)C33'—C34'—C34120.2
C21—C16—C15120.1 (3)C35—C35'—C33'122.0
O3—C17—C18118.1 (4)C35—C35'—H35'119.0
O3—C17—C16121.9 (3)C33'—C35'—H35'119.0
C18—C17—C16119.9 (4)C30'—N3'—C34'118.5
O5—Mn1—O1—C15115.4 (4)O1—C15—C16—C170.5 (5)
O8—Mn1—O1—C154.0 (4)O2—C15—C16—C212.4 (5)
N2—Mn1—O1—C1513.1 (8)O1—C15—C16—C21178.1 (3)
N1—Mn1—O1—C15113.4 (4)C21—C16—C17—O3174.9 (4)
O1—Mn1—O5—C2281.1 (2)C15—C16—C17—O33.7 (5)
O8—Mn1—O5—C22165.2 (2)C21—C16—C17—C181.6 (5)
N2—Mn1—O5—C22109.6 (2)C15—C16—C17—C18179.8 (3)
N1—Mn1—O5—C2238.4 (3)O3—C17—C18—C19175.6 (4)
O5—Mn1—N1—C2100.0 (3)C16—C17—C18—C191.0 (6)
O1—Mn1—N1—C29.4 (3)C17—C18—C19—C200.2 (7)
O8—Mn1—N1—C2101.8 (3)C18—C19—C20—C210.0 (7)
N2—Mn1—N1—C2179.7 (3)C19—C20—C21—O4178.7 (5)
O5—Mn1—N1—C1477.4 (2)C19—C20—C21—C160.6 (6)
O1—Mn1—N1—C14173.16 (19)C17—C16—C21—O4177.9 (4)
O8—Mn1—N1—C1480.8 (2)C15—C16—C21—O40.7 (6)
N2—Mn1—N1—C142.3 (2)C17—C16—C21—C201.4 (5)
O5—Mn1—N2—C1154.5 (3)C15—C16—C21—C20180.0 (3)
O1—Mn1—N2—C1147.8 (6)Mn1—O5—C22—O60.1 (4)
O8—Mn1—N2—C1164.9 (3)Mn1—O5—C22—C23179.5 (2)
N1—Mn1—N2—C11177.3 (3)O6—C22—C23—C242.1 (5)
O5—Mn1—N2—C13125.9 (2)O5—C22—C23—C24177.4 (3)
O1—Mn1—N2—C13131.8 (5)O6—C22—C23—C28179.4 (3)
O8—Mn1—N2—C13114.7 (2)O5—C22—C23—C281.2 (4)
N1—Mn1—N2—C132.30 (19)C28—C23—C24—O7179.5 (4)
C14—N1—C2—C31.0 (5)C22—C23—C24—O71.9 (6)
Mn1—N1—C2—C3178.3 (3)C28—C23—C24—C250.7 (5)
C14—N1—C2—C1179.9 (3)C22—C23—C24—C25177.8 (4)
Mn1—N1—C2—C12.8 (5)O7—C24—C25—C26179.7 (6)
N1—C2—C3—C41.7 (6)C23—C24—C25—C260.5 (7)
C1—C2—C3—C4179.4 (4)C24—C25—C26—C271.0 (9)
C2—C3—C4—C51.2 (6)C25—C26—C27—C282.4 (8)
C3—C4—C5—C6179.3 (4)C26—C27—C28—C232.1 (6)
C3—C4—C5—C140.1 (6)C24—C23—C28—C270.6 (5)
C4—C5—C6—C7178.8 (4)C22—C23—C28—C27179.2 (3)
C14—C5—C6—C70.6 (6)N3—C30—C31—C320.6
C5—C6—C7—C80.4 (7)C29—C30—C31—C32179.5
C6—C7—C8—C9178.2 (4)C30—C31—C32—C330.6
C6—C7—C8—C130.6 (6)C31—C32—C33—C35179.2
C7—C8—C9—C10179.3 (4)C31—C32—C33—C340.3
C13—C8—C9—C100.5 (6)C32—C33—C34—N30.0
C8—C9—C10—C110.8 (6)C35—C33—C34—N3179.5
C13—N2—C11—C100.3 (4)C32—C33—C34—C34'179.6
Mn1—N2—C11—C10179.9 (2)C35—C33—C34—C34'0.1
C13—N2—C11—C12179.3 (3)C32—C33—C35—C35'179.3
Mn1—N2—C11—C121.1 (4)C34—C33—C35—C35'0.2
C9—C10—C11—N21.0 (6)C31—C30—N3—C340.3
C9—C10—C11—C12178.0 (4)C29—C30—N3—C34179.8
C11—N2—C13—C14177.6 (3)C33—C34—N3—C300.0
Mn1—N2—C13—C142.0 (3)C34'—C34—N3—C30179.6
C11—N2—C13—C81.6 (4)N3'—C30'—C31'—C32'0.1
Mn1—N2—C13—C8178.7 (2)C29'—C30'—C31'—C32'179.9
C9—C8—C13—N21.7 (5)C30'—C31'—C32'—C33'0.2
C7—C8—C13—N2179.3 (3)C31'—C32'—C33'—C35'180.0
C9—C8—C13—C14177.5 (3)C31'—C32'—C33'—C34'0.3
C7—C8—C13—C141.4 (5)C32'—C33'—C34'—N3'0.1
C2—N1—C14—C13179.9 (3)C35'—C33'—C34'—N3'179.8
Mn1—N1—C14—C132.2 (3)C32'—C33'—C34'—C34179.2
C2—N1—C14—C50.2 (5)C35'—C33'—C34'—C341.1
Mn1—N1—C14—C5177.5 (2)N3—C34—C34'—N3'0.9
N2—C13—C14—N10.1 (4)C33—C34—C34'—N3'179.5
C8—C13—C14—N1179.1 (3)N3—C34—C34'—C33'180.0
N2—C13—C14—C5179.5 (3)C33—C34—C34'—C33'0.4
C8—C13—C14—C51.2 (4)C33—C35—C35'—C33'1.0
C4—C5—C14—N10.6 (5)C32'—C33'—C35'—C35179.0
C6—C5—C14—N1179.9 (3)C34'—C33'—C35'—C351.4
C4—C5—C14—C13179.7 (3)C31'—C30'—N3'—C34'0.2
C6—C5—C14—C130.2 (5)C29'—C30'—N3'—C34'179.9
Mn1—O1—C15—O210.6 (7)C33'—C34'—N3'—C30'0.1
Mn1—O1—C15—C16169.9 (2)C34—C34'—N3'—C30'179.0
O2—C15—C16—C17179.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H2W···N30.832.523.083 (5)127
O8—H2W···N30.832.233.026 (5)160
O8—H1W···O20.821.792.571 (3)159
O7—H7···O60.821.882.609 (6)147
O4—H4D···O20.821.822.453 (7)133
O3—H3D···O10.821.792.514 (5)146
C12—H12C···O80.962.503.309 (5)142
O8—H2W···N3i0.832.383.070 (4)141
O8—H2W···N3i0.832.303.013 (6)145
C6—H6···O6ii0.932.573.450 (5)158
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C7H5O3)2(C14H12N2)(H2O)]·0.5C14H12N2
Mr659.56
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)23.225 (2), 19.6902 (17), 14.0225 (12)
β (°) 94.342 (1)
V3)6394.2 (10)
Z8
Radiation typeMo Kα
µ (mm1)0.47
Crystal size (mm)0.49 × 0.43 × 0.36
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.804, 0.849
No. of measured, independent and
observed [I > 2σ(I)] reflections
23566, 5959, 4384
Rint0.022
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.157, 1.02
No. of reflections5959
No. of parameters449
No. of restraints152
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.33

Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2009).

Selected geometric parameters (Å, º) top
Mn1—O52.105 (3)Mn1—N22.252 (2)
Mn1—O12.108 (2)Mn1—N12.262 (2)
Mn1—O82.135 (3)
O1—Mn1—N2169.01 (9)O5—Mn1—N1127.02 (11)
O5—Mn1—O8119.39 (14)O8—Mn1—N1110.00 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H2W···N3'0.832.523.083 (5)126.5
O8—H2W···N30.832.233.026 (5)160.4
O8—H1W···O20.821.792.571 (3)158.7
O7—H7···O60.821.882.609 (6)147.3
O4—H4D···O20.821.822.453 (7)132.6
O3—H3D···O10.821.792.514 (5)146.1
C12—H12C···O80.962.503.309 (5)142.0
O8—H2W···N3i0.832.383.070 (4)140.9
O8—H2W···N3'i0.832.303.013 (6)144.7
C6—H6···O6ii0.932.573.450 (5)158.0
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y+1/2, z+1.
 

Acknowledgements

Financial support from the Science Fund of Henan Province for Distinguished Young Scholars (No. 074100510005) is gratefully acknowledged.

References

First citationBruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNaing, K., Takahashi, M., Taniguchi, M. & Yamagishi, A. (1995). Inorg. Chem. 34, 350–356.  CrossRef CAS Web of Science Google Scholar
First citationPan, T.-T., Su, J.-R. & Xu, D.-J. (2006). Acta Cryst. E62, m1403–m1404.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPan, T.-T. & Xu, D.-J. (2005). Acta Cryst. E61, m740–m742.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRüttinger, W. & Dismukes, G. C. (1997). Chem. Rev. 97, 1–24.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, Y.-L., Sun, S.-L. & Song, W.-D. (2007). Acta Cryst. E63, m1309–m1311.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShen, X.-P. & Yuan, A.-H. (2004). Acta Cryst. E60, m1074–m1075.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSu, J.-R., Zhang, L. & Xu, D.-J. (2005). Acta Cryst. E61, m939–m941.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWall, M., Linkletter, B., Williams, D., Lebuis, A.-M., Hynes, R. C. & Chin, J. (1999). J. Am. Chem. Soc. 121, 4710–4711.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, J., Cai, X., Rivas, G., Shiraishi, H., Farias, P. A. M. & Dontha, N. (1996). Anal. Chem. 68, 2629–2634.  CrossRef CAS PubMed Web of Science Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar
First citationXuan, X., Zhao, P. & Zhang, S. (2007). Acta Cryst. E63, m2813–m2814.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, P.-Z., Xuan, X.-P. & Wang, J.-G. (2007). Acta Cryst. E63, m2127.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m194-m195
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds