organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of 1-carb­oxy­cyclo­hexan-1-aminium chloride

aLaboratorio de Cristalografía, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela, and bCentro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 21827, Caracas 1020-A, Venezuela
*Correspondence e-mail: gerzon@ula.ve

(Received 2 December 2008; accepted 30 December 2008; online 8 January 2009)

The crystal structure of the title compound, C7H14NO2+·Cl, was reported previously [Chacko, Srinivasan & Zand (1975[Chacko, K. K., Srinivasan, R. & Zand, R. (1975). J. Cryst. Mol. Struct. 5, 353-357.]). J. Cryst. Mol. Struct. 5, 353–357] from Weissenberg photographic data with R = 0.113. It has now been redetermined, providing a significant increase in the precision of the derived geometric parameters, viz. mean σ(C—C) = 0.003 Å in the present work compared with 0.021 Å for the previous work. The complete cation is generated by crystallographic mirrror symmetry, with three C atoms, two O atoms and the N atom lying on the reflecting plane; the chloride anion also has m site symmetry. The crystal structure is established by a two-dimensional network of O—H⋯Cl and N—H⋯Cl hydrogen bonds, generating C12(4) and C12(7) chains, and R24(8) and R24(14) rings.

Related literature

For the earlier structure determination of the title salt, see: Chacko et al. (1971[Chacko, K. K., Srinivasan, R. & Zand, R. (1971). J. Cryst. Mol. Struct. 1, 261-269.], 1975[Chacko, K. K., Srinivasan, R. & Zand, R. (1975). J. Cryst. Mol. Struct. 5, 353-357.]). For related literature, see Rodríguez-Ropero et al. (2008[Rodríguez-Ropero, F., Zanuy, D., Casanovas, J., Nussinov, R. & Alemán, C. (2008). J. Chem. Inf. Model. 48, 333-343.]). For the crystal structure of the pure amino acid, see: Valle et al. (1988[Valle, G., Crisma, M., Toniolo, C., Sen, N., Sukumar, M. & Balaram, P. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 393-398.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For hydrogen-bond motifs in graph-set notation, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • C7H14NO2+·Cl

  • Mr = 179.64

  • Monoclinic, P 21 /m

  • a = 7.382 (3) Å

  • b = 6.357 (2) Å

  • c = 9.374 (3) Å

  • β = 96.239 (10)°

  • V = 437.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 298 (2) K

  • 0.31 × 0.27 × 0.18 mm

Data collection
  • Rigaku AFC-7S Mercury diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.880, Tmax = 0.930

  • 4638 measured reflections

  • 845 independent reflections

  • 789 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.088

  • S = 1.01

  • 845 reflections

  • 85 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯Cl 0.90 (3) 2.34 (3) 3.196 (2) 158 (2)
N1—H1A⋯Cli 0.88 (2) 2.58 (2) 3.3816 (13) 152.4 (17)
O1—H1⋯Clii 0.89 (4) 2.15 (4) 3.027 (2) 168 (3)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) x, y, z-1.

Data collection: CrystalClear (Rigaku, 2002[Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004[Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]) and publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

1-Amino-cyclohexanecarboxylic acid is a promising amino acid candidate to serve as basic piece in redesigned protein motifs which constitute the basic modules in synthetic nanoconstructs (Rodríguez-Ropero et al., 2008). It structure was reported by Valle et al. (1988). The title compound, (I), 1-amino-cyclohexanecarboxylic acid hydrochloride, C7H14NO2+.Cl-, was first reported in the noncentric space group P21 (Chacko et al., 1971) and later reported in the centrosymmetric space group P21/m (Chacko et al., 1975) with R = 0.113. The present paper reports a redetermination of the crystal structure of (I), with greater precision and accuracy. Both, the cation and anion are located on a mirror plane, which confirms the space group P21/m instead of P21. In this compound, the cyclohexane ring adopts a chair conformation, with the ammonium and carboxylate groups in axial and equatorial positions, respectively (Cremer & Pople, 1975), while the pure amino acid has an opposite conformation (Valle et al., 1988). In (I), 1-amino-cyclohexanecarboxylic acid is protonated and is linked to the Cl- anion by a O—H···Cl hydrogen bond (Fig. 1, Table 1). The hydrogen bonds O1—H1···Cl1 (x, y, z - 1) and N1—H1B···Cl1 (1 - x, y - 1/2, 1 - z) form infinite chains running along the [001] direction (Fig. 2) and may be described in graph-set notation as C12(7) (Etter, 1990). The intramolecular hydrogen bonds N1—H1A···Cl1 form infinite chains, with graph-set C12(4), running along the b cell axis. The combination of these interactions produces rings with graph-set R24(8) and R24(14), parallel to the bc plane (Fig. 2).

Related literature top

For the earlier structure determination of the title salt, see: Chacko et al. (1971, 1975). For related literature, see Rodríguez-Ropero et al. (2008). For the crystal structure of the pure amino acid, see: Valle et al. (1988). For ring conformation analysis, see: Cremer & Pople (1975). For hydrogen-bond motifs in graph-set notation, see: Etter (1990).

Experimental top

1-Amino-cyclohexanecarboxylic acid and hydrochloric acid in equal molar ratio were mixed together with enough water, and heated to a temperature where a clear solution was obtained. Colorless crystals of (I) suitable for X-ray diffraction analysis were grown by slow evaporation of this solution.

Refinement top

All H atoms were located in a difference map and their positions were freely refined, with the Uiso(H) values set at 1.2Ueq(carrier C), 1.5Ueq(carrier O) and 1.5Ueq(carrier N), respectively.

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: PLATON (Spek, 2003) and publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A partial packing view of (I). Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetry codes: (i) x, y, z - 1; (ii) 1 - x, y - 1/2, 1 - z.
1-carboxycyclohexan-1-aminium chloride top
Crystal data top
C7H14NO2+·ClF(000) = 192
Mr = 179.64Dx = 1.364 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybCell parameters from 1650 reflections
a = 7.382 (3) Åθ = 2.2–27.2°
b = 6.357 (2) ŵ = 0.39 mm1
c = 9.374 (3) ÅT = 298 K
β = 96.239 (10)°Block, colourless
V = 437.3 (3) Å30.31 × 0.27 × 0.18 mm
Z = 2
Data collection top
Rigaku AFC-7S Mercury
diffractometer
845 independent reflections
Radiation source: Normal-focus sealed tube789 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 14.6306 pixels mm-1θmax = 25.0°, θmin = 2.2°
ω scansh = 88
Absorption correction: multi-scan
(Jacobson, 1998)
k = 67
Tmin = 0.880, Tmax = 0.930l = 1111
4638 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.047P)2 + 0.1831P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
845 reflectionsΔρmax = 0.18 e Å3
85 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.042 (10)
Primary atom site location: structure-invariant direct methods
Crystal data top
C7H14NO2+·ClV = 437.3 (3) Å3
Mr = 179.64Z = 2
Monoclinic, P21/mMo Kα radiation
a = 7.382 (3) ŵ = 0.39 mm1
b = 6.357 (2) ÅT = 298 K
c = 9.374 (3) Å0.31 × 0.27 × 0.18 mm
β = 96.239 (10)°
Data collection top
Rigaku AFC-7S Mercury
diffractometer
845 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
789 reflections with I > 2σ(I)
Tmin = 0.880, Tmax = 0.930Rint = 0.023
4638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.088H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.18 e Å3
845 reflectionsΔρmin = 0.15 e Å3
85 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.41343 (8)0.25000.64377 (6)0.0414 (3)
O20.5446 (2)0.25000.04758 (18)0.0511 (5)
O10.2629 (3)0.25000.06850 (18)0.0528 (5)
H10.324 (5)0.25000.146 (4)0.079*
N10.4370 (3)0.25000.3054 (2)0.0343 (5)
H1A0.506 (3)0.138 (3)0.300 (2)0.051*
H1B0.398 (4)0.25000.393 (3)0.051*
C10.2863 (3)0.25000.1837 (2)0.0292 (5)
C20.1715 (2)0.4484 (3)0.19289 (19)0.0408 (5)
H2A0.251 (3)0.566 (3)0.1923 (19)0.049*
H2B0.090 (3)0.452 (3)0.107 (2)0.049*
C30.0597 (3)0.4450 (4)0.3193 (2)0.0539 (6)
H3A0.140 (3)0.449 (4)0.409 (2)0.065*
H3B0.018 (3)0.571 (4)0.315 (2)0.065*
C40.0557 (4)0.25000.3201 (3)0.0626 (9)
H4A0.145 (5)0.25000.232 (4)0.075*
H4B0.148 (5)0.25000.397 (4)0.075*
C50.3819 (3)0.25000.0475 (2)0.0358 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0457 (4)0.0544 (4)0.0238 (4)0.0000.0025 (2)0.000
O20.0359 (10)0.0837 (14)0.0345 (10)0.0000.0078 (7)0.000
O10.0443 (11)0.0932 (15)0.0205 (9)0.0000.0023 (7)0.000
N10.0335 (11)0.0449 (12)0.0238 (10)0.0000.0002 (8)0.000
C10.0303 (11)0.0355 (12)0.0211 (11)0.0000.0004 (8)0.000
C20.0439 (10)0.0402 (10)0.0373 (10)0.0074 (8)0.0004 (8)0.0024 (7)
C30.0497 (11)0.0707 (14)0.0412 (10)0.0221 (10)0.0052 (9)0.0058 (10)
C40.0386 (15)0.105 (3)0.0449 (17)0.0000.0076 (13)0.000
C50.0385 (13)0.0425 (13)0.0262 (12)0.0000.0025 (10)0.000
Geometric parameters (Å, º) top
O2—C51.201 (3)C2—C31.516 (3)
O1—C51.322 (3)C2—H2A0.95 (2)
O1—H10.89 (4)C2—H2B0.95 (2)
N1—C11.504 (3)C3—C41.505 (3)
N1—H1A0.88 (2)C3—H3A0.97 (2)
N1—H1B0.90 (3)C3—H3B0.98 (2)
C1—C51.524 (3)C4—H4A0.99 (3)
C1—C21.528 (2)C4—H4B1.05 (4)
C5—O1—H1109 (2)C4—C3—C2111.85 (19)
C1—N1—H1A110.2 (13)C4—C3—H3A107.9 (13)
C1—N1—H1B114.0 (18)C2—C3—H3A109.9 (12)
H1A—N1—H1B107.1 (16)C4—C3—H3B110.2 (13)
N1—C1—C5105.28 (18)C2—C3—H3B108.4 (13)
N1—C1—C2109.04 (12)H3A—C3—H3B108.5 (17)
C5—C1—C2110.97 (12)C3—C4—H4A108.6 (10)
C3—C2—C1112.64 (16)C3—C4—H4B114.6 (8)
C3—C2—H2A113.8 (11)H4A—C4—H4B99 (3)
C1—C2—H2A107.7 (12)O2—C5—O1125.2 (2)
C3—C2—H2B108.3 (11)O2—C5—C1123.6 (2)
C1—C2—H2B105.8 (12)O1—C5—C1111.2 (2)
H2A—C2—H2B108.2 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl0.90 (3)2.34 (3)3.196 (2)158 (2)
N1—H1A···Cli0.88 (2)2.58 (2)3.3816 (13)152.4 (17)
O1—H1···Clii0.89 (4)2.15 (4)3.027 (2)168 (3)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y, z1.

Experimental details

Crystal data
Chemical formulaC7H14NO2+·Cl
Mr179.64
Crystal system, space groupMonoclinic, P21/m
Temperature (K)298
a, b, c (Å)7.382 (3), 6.357 (2), 9.374 (3)
β (°) 96.239 (10)
V3)437.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.31 × 0.27 × 0.18
Data collection
DiffractometerRigaku AFC-7S Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.880, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
4638, 845, 789
Rint0.023
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.088, 1.01
No. of reflections845
No. of parameters85
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.15

Computer programs: CrystalClear (Rigaku, 2002), CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 1999), PLATON (Spek, 2003) and publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl0.90 (3)2.34 (3)3.196 (2)158 (2)
N1—H1A···Cli0.88 (2)2.58 (2)3.3816 (13)152.4 (17)
O1—H1···Clii0.89 (4)2.15 (4)3.027 (2)168 (3)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x, y, z1.
 

Acknowledgements

This work was supported by CDCHT-ULA (grant Nos. C-1618-08-A, C-1615-08-B and C-1620-08-08-Em) and FONACIT (grant No. LAB-97000821).

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChacko, K. K., Srinivasan, R. & Zand, R. (1971). J. Cryst. Mol. Struct. 1, 261–269.  CSD CrossRef CAS Google Scholar
First citationChacko, K. K., Srinivasan, R. & Zand, R. (1975). J. Cryst. Mol. Struct. 5, 353–357.  CSD CrossRef CAS Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationJacobson, R. (1998). Private communication to Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRodríguez-Ropero, F., Zanuy, D., Casanovas, J., Nussinov, R. & Alemán, C. (2008). J. Chem. Inf. Model. 48, 333–343.  Web of Science PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationValle, G., Crisma, M., Toniolo, C., Sen, N., Sukumar, M. & Balaram, P. (1988). J. Chem. Soc. Perkin Trans. 2, pp. 393–398.  CSD CrossRef Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds