organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hy­droxy­phenyl 4-fluoro­benzoate

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea, and bDepartment of Food Science and Technology, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 16 December 2008; accepted 3 January 2009; online 8 January 2009)

In the title compound, C13H9FO3, the dihedral angle between the two benzene rings is 59.86 (4)°. In the crystal, inter­molecular O—H⋯H hydrogen bonds lead to molecular chains propagating in [010].

Related literature

For general background to whitening agents, see: Ha et al. (2007[Ha, Y. M., Chung, S. W., Song, S., Lee, H., Suh, H. & Chung, H. Y. (2007). Biol. Pharm. Bull. 30, 1711-1715.]); Dawley et al. (1993[Dawley, R. M. & Flurkey, W. H. (1993). J. Food Sci. 58, 609-610.]); Nerya et al. (2003[Nerya, O., Vaya, J., Musa, R., Izrael, S., Ben-Arie, R. & Tamir, S. (2003). J. Agric. Food Chem. 51, 1201-1207.]); Hong et al. (2008[Hong, W. K., Heo, J. Y., Han, B. H., Sung, C. K. & Kang, S. K. (2008). Acta Cryst. E64, o49.]); Lee et al. (2007[Lee, C. W., Son, E. M., Kim, H. S., Xu, P., Batmunkh, T., Lee, B.-J. & Koo, K. A. (2007). Bioorg. Med. Chem. Lett. 17, 5462-5464.]); Hussain et al. (2003[Hussain, H. H., Babic, G., Durst, T., Wright, J. S., Flueraru, M., Chichirau, A. & Chepelev, L. L. (2003). J. Org. Chem. 68, 7023-7032.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9FO3

  • Mr = 232.2

  • Monoclinic, P 21 /c

  • a = 24.938 (5) Å

  • b = 5.4789 (11) Å

  • c = 7.6858 (15) Å

  • β = 93.59 (3)°

  • V = 1048.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 174 (2) K

  • 0.12 × 0.09 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: none

  • 10972 measured reflections

  • 2597 independent reflections

  • 2054 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.105

  • S = 1.05

  • 2597 reflections

  • 158 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O16—H16⋯O16i 0.82 (2) 2.12 (2) 2.9368 (9) 172 (2)
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Melanin is the pigment responsible for the color of human skin and hair. Tyrosinase is the key enzyme (Ha et al., 2007) that converts tyrosine to melanin and its inhibitors are the target molecules to develop and research anti-pigmentation agents for application to skin. Therefore, treatments using potent inhibitory agents on tyrosinase and melanin formation may be cosmetically useful. Most skin whitening agents currently on the market (Dawley et al., 1993; Nerya et al., 2003) are hydroquinone, ascorbic acid, kojic acid, arbutin, azealic acid, and glycyrrhetinic acid. They contain aromatic, methoxy, hydroxyl (Hong et al., 2008; Lee et al., 2007), or carbonyl functional groups in their structures, and act as a specific functional group to make the skin white by inhibiting the production of melanin. However, most skin whitening agents have some problems, due to toxicity, low stability of formulation and poor skin permeation. In the course of our work on the development of new whitening agents, to complement the inadequacy of current whitening agents and maximize the inhibitory effects of melanin creation, we have synthesized the title compound via a general chemical pathway (Hussain et al., 2003) between hydroquinone and 4-fluorobenzoyl chloride.

The 4-fluorobenzoic acid moiety and the 4-hydroxyphenyl ring are essentially planar, with mean deviations of 0.002 and 0.004 Å, respectively, from the corresponding least-squares planes. The dihedral angle between the two benzene rings is 59.86 (4)°. The intermolecular O16—H16···O16i [symmetry code: (i) -x+1, y-1/2, -z+3/2) hydrogen bond allows to form an extensive one-dimensional network, which stabilizes the crystal structure.

Related literature top

For general background to whitening agents, see: Ha et al. (2007); Dawley et al. (1993); Nerya et al. (2003); Hong et al. (2008); Lee et al. (2007); Hussain et al. (2003).

Experimental top

Hydroquinone and 4-fluorobenzoyl chloride were purchased from Sigma Chemical Co. and used without further purification. The title compound was prepared from the reaction of 4-fluorobenzoyl chloride (0.159 g, 1 mmol) and hydroquinone (0.132 g, 1.2 mmol) in TEA (8.0 ml). After being stirred for 8 h at 333 K, the mixture was quenched and worked up with ethyl acetate. The mixture was chromatographed on silica gel (2/1 = dichloromethane / ethylacetate) to give the title compound as colorless solid (60%, m.p. 454 K). Single crystals were obtained by slow evaporation of a solution of the title compound in ethyl alcohol and methyl alcohol at room temperature.

Refinement top

Atom H16 of the OH group was located in a difference map and refined freely. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and with Uiso(H) = 1.2Ueq(carrier C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), showing the atom-numbering scheme and 30% probability displacement ellipsoids.
4-Hydroxyphenyl 4-fluorobenzoate top
Crystal data top
C13H9FO3F(000) = 480
Mr = 232.2Dx = 1.472 Mg m3
Monoclinic, P21/cMelting point: 454 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 24.938 (5) ÅCell parameters from 3698 reflections
b = 5.4789 (11) Åθ = 2.5–28.0°
c = 7.6858 (15) ŵ = 0.12 mm1
β = 93.59 (3)°T = 174 K
V = 1048.1 (4) Å3Block, colourless
Z = 40.12 × 0.09 × 0.06 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
Rint = 0.027
ϕ and ω scansθmax = 28.3°, θmin = 0.8°
10972 measured reflectionsh = 3133
2597 independent reflectionsk = 67
2054 reflections with I > 2σ(I)l = 1010
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0431P)2 + 0.436P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
2597 reflectionsΔρmax = 0.31 e Å3
158 parametersΔρmin = 0.24 e Å3
Crystal data top
C13H9FO3V = 1048.1 (4) Å3
Mr = 232.2Z = 4
Monoclinic, P21/cMo Kα radiation
a = 24.938 (5) ŵ = 0.12 mm1
b = 5.4789 (11) ÅT = 174 K
c = 7.6858 (15) Å0.12 × 0.09 × 0.06 mm
β = 93.59 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2054 reflections with I > 2σ(I)
10972 measured reflectionsRint = 0.027
2597 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.31 e Å3
2597 reflectionsΔρmin = 0.24 e Å3
158 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.17529 (5)0.4464 (2)0.47353 (17)0.0219 (3)
C20.13428 (5)0.2841 (3)0.50782 (18)0.0249 (3)
H20.14230.14230.57080.03*
C30.08163 (6)0.3318 (3)0.44905 (19)0.0275 (3)
H30.05410.2240.47110.033*
C40.07154 (5)0.5443 (3)0.35679 (18)0.0270 (3)
C50.11101 (6)0.7093 (3)0.32085 (18)0.0278 (3)
H50.10260.85080.25810.033*
C60.16347 (6)0.6597 (3)0.38026 (17)0.0250 (3)
H60.19080.76880.35790.03*
C70.23063 (5)0.3826 (3)0.54191 (18)0.0259 (3)
O80.24211 (4)0.2045 (2)0.62716 (18)0.0523 (4)
O90.26681 (4)0.55210 (17)0.49833 (12)0.0243 (2)
C100.32036 (5)0.5229 (2)0.56439 (16)0.0207 (3)
C110.35119 (5)0.3277 (2)0.51648 (16)0.0229 (3)
H110.33640.20650.44360.027*
C120.40460 (5)0.3149 (2)0.57859 (17)0.0226 (3)
H120.4260.18490.54740.027*
C130.42597 (5)0.4975 (2)0.68769 (17)0.0215 (3)
C140.39464 (5)0.6938 (2)0.73353 (17)0.0234 (3)
H140.40930.81570.8060.028*
C150.34135 (5)0.7073 (2)0.67088 (17)0.0225 (3)
H150.320.83850.70010.027*
O160.47887 (4)0.4939 (2)0.75328 (14)0.0302 (3)
H160.4915 (8)0.356 (4)0.742 (3)0.052 (6)*
F170.02021 (3)0.59316 (18)0.29800 (13)0.0424 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0203 (6)0.0223 (7)0.0231 (6)0.0016 (5)0.0006 (5)0.0004 (5)
C20.0238 (7)0.0220 (7)0.0289 (7)0.0006 (5)0.0015 (5)0.0022 (5)
C30.0209 (7)0.0267 (7)0.0349 (7)0.0026 (6)0.0016 (5)0.0021 (6)
C40.0198 (7)0.0289 (7)0.0317 (7)0.0047 (6)0.0043 (5)0.0060 (6)
C50.0295 (7)0.0230 (7)0.0302 (7)0.0045 (6)0.0035 (5)0.0010 (5)
C60.0249 (7)0.0227 (7)0.0273 (7)0.0019 (5)0.0005 (5)0.0011 (5)
C70.0208 (7)0.0285 (7)0.0284 (7)0.0003 (6)0.0017 (5)0.0061 (6)
O80.0238 (6)0.0539 (8)0.0787 (9)0.0006 (5)0.0009 (6)0.0418 (7)
O90.0185 (5)0.0237 (5)0.0300 (5)0.0015 (4)0.0038 (4)0.0041 (4)
C100.0169 (6)0.0239 (7)0.0210 (6)0.0009 (5)0.0015 (5)0.0036 (5)
C110.0255 (7)0.0206 (7)0.0224 (6)0.0028 (5)0.0003 (5)0.0013 (5)
C120.0225 (7)0.0202 (6)0.0252 (6)0.0020 (5)0.0024 (5)0.0001 (5)
C130.0174 (6)0.0231 (7)0.0237 (6)0.0021 (5)0.0003 (5)0.0038 (5)
C140.0242 (7)0.0209 (7)0.0248 (6)0.0032 (5)0.0013 (5)0.0034 (5)
C150.0225 (7)0.0206 (6)0.0245 (6)0.0019 (5)0.0027 (5)0.0012 (5)
O160.0186 (5)0.0288 (6)0.0423 (6)0.0007 (4)0.0052 (4)0.0018 (4)
F170.0223 (5)0.0426 (6)0.0605 (6)0.0056 (4)0.0106 (4)0.0019 (5)
Geometric parameters (Å, º) top
C1—C21.3928 (19)O9—C101.4078 (15)
C1—C61.3932 (18)C10—C111.3806 (19)
C1—C71.4872 (18)C10—C151.3824 (18)
C2—C31.3863 (19)C11—C121.3881 (18)
C2—H20.93C11—H110.93
C3—C41.378 (2)C12—C131.3900 (18)
C3—H30.93C12—H120.93
C4—F171.3572 (15)C13—O161.3826 (16)
C4—C51.377 (2)C13—C141.3874 (19)
C5—C61.3854 (19)C14—C151.3869 (18)
C5—H50.93C14—H140.93
C6—H60.93C15—H150.93
C7—O81.2000 (17)O16—H160.82 (2)
C7—O91.3514 (17)
C2—C1—C6119.93 (12)C7—O9—C10117.74 (10)
C2—C1—C7117.35 (12)C11—C10—C15121.83 (12)
C6—C1—C7122.72 (12)C11—C10—O9121.57 (12)
C3—C2—C1120.65 (13)C15—C10—O9116.47 (12)
C3—C2—H2119.7C10—C11—C12119.06 (12)
C1—C2—H2119.7C10—C11—H11120.5
C4—C3—C2117.74 (13)C12—C11—H11120.5
C4—C3—H3121.1C11—C12—C13119.64 (12)
C2—C3—H3121.1C11—C12—H12120.2
F17—C4—C5118.34 (13)C13—C12—H12120.2
F17—C4—C3118.43 (13)O16—C13—C14117.27 (12)
C5—C4—C3123.23 (13)O16—C13—C12122.04 (12)
C4—C5—C6118.52 (13)C14—C13—C12120.68 (12)
C4—C5—H5120.7C15—C14—C13119.72 (12)
C6—C5—H5120.7C15—C14—H14120.1
C5—C6—C1119.93 (13)C13—C14—H14120.1
C5—C6—H6120C10—C15—C14119.05 (12)
C1—C6—H6120C10—C15—H15120.5
O8—C7—O9123.63 (13)C14—C15—H15120.5
O8—C7—C1124.63 (13)C13—O16—H16109.7 (14)
O9—C7—C1111.73 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16···O16i0.82 (2)2.12 (2)2.9368 (9)172 (2)
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC13H9FO3
Mr232.2
Crystal system, space groupMonoclinic, P21/c
Temperature (K)174
a, b, c (Å)24.938 (5), 5.4789 (11), 7.6858 (15)
β (°) 93.59 (3)
V3)1048.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.12 × 0.09 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10972, 2597, 2054
Rint0.027
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.105, 1.05
No. of reflections2597
No. of parameters158
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16···O16i0.82 (2)2.12 (2)2.9368 (9)172 (2)
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

This study was supported financially by the Research Fund of Chungnam National University in 2008

References

First citationBruker (2002). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDawley, R. M. & Flurkey, W. H. (1993). J. Food Sci. 58, 609–610.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHa, Y. M., Chung, S. W., Song, S., Lee, H., Suh, H. & Chung, H. Y. (2007). Biol. Pharm. Bull. 30, 1711–1715.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHong, W. K., Heo, J. Y., Han, B. H., Sung, C. K. & Kang, S. K. (2008). Acta Cryst. E64, o49.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHussain, H. H., Babic, G., Durst, T., Wright, J. S., Flueraru, M., Chichirau, A. & Chepelev, L. L. (2003). J. Org. Chem. 68, 7023–7032.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, C. W., Son, E. M., Kim, H. S., Xu, P., Batmunkh, T., Lee, B.-J. & Koo, K. A. (2007). Bioorg. Med. Chem. Lett. 17, 5462–5464.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNerya, O., Vaya, J., Musa, R., Izrael, S., Ben-Arie, R. & Tamir, S. (2003). J. Agric. Food Chem. 51, 1201–1207.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds