organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N′-[1-(4-Chloro­phen­yl)ethyl­­idene]-2-hy­droxy­benzohydrazide

aCollege of Science, Northwest A and F University, Yangling, Shaanxi 712100, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: hxqiang2005@yahoo.com.cn

(Received 2 December 2008; accepted 18 January 2009; online 23 January 2009)

In the title compound, C15H13ClN2O2, the dihedral angle between the two benzene rings is 7.0 (1)°. An intra­molecular N—H⋯O hydrogen bond is present and inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into chains along [001].

Related literature

For related literature, see: Sumita et al. (1999[Sumita, N. R., Munshi, K. N., Nageswara, R. N., Bhadbhade, M. M. & Suresh, E. (1999). Polyhedron, 18, 2491-2497.]). For the crystal structure of the closely related compound (E)-2-hydr­oxy-N′-(2-naphthyl­methyl­ene)benzohydrazide, see: Qiu et al. (2006[Qiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006). Acta Cryst. E62, o3531-o3532.]).

[Scheme 1]

Experimental

Crystal data
  • C15H13ClN2O2

  • Mr = 288.72

  • Monoclinic, C 2/c

  • a = 27.900 (3) Å

  • b = 7.880 (1) Å

  • c = 13.4899 (15) Å

  • β = 113.530 (2)°

  • V = 2719.2 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 293 (2) K

  • 0.35 × 0.17 × 0.07 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.907, Tmax = 0.980

  • 4744 measured reflections

  • 1663 independent reflections

  • 901 reflections with I > 2σ(I)

  • Rint = 0.082

  • θmax = 22.0°

Refinement
  • R[F2 > 2σ(F2)] = 0.065

  • wR(F2) = 0.266

  • S = 0.96

  • 1663 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.96 2.645 (6) 135
O2—H2⋯O1i 0.82 1.92 2.676 (6) 153
Symmetry code: (i) [x, -y, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Salicyloyl hydrazide is an important organic intermediate, which can act as moulding board in inorganic complexes (Sumita et al., 1999). The title compound was obtained by reaction of salicyloyl hydrazide and 1-(4-chlorophenyl)ethanone. The bond lengths and angles are normal and comparable to those in the previously reported compound (E)-2-hydroxy-N'-(2-naphthylmethylene)-benzohydrazide (Qiu et al., 2006).

In the crystal structure, typical intramolecular N—H···O hydrogen bonds exist, and intermolecular O—H···O hydrogen bonds link the molecules into one-dimensional chains along [001].

Related literature top

For related literature, see: Sumita et al. (1999). For the crystal structure of the closely related compound (E)-2-hydroxy-N'-(2-naphthylmethylene)benzohydrazide, see: Qiu et al. (2006).

Experimental top

Salicyloyl hydrazide (0.3 mmol) and freshly prepared 1-(4-chlorophenyl)ethanone (0.3 mmol) were mixed in a 50 ml flask. After stirring for 30 min at 353 K, the mixture was cooled slowly to room temperature and the product was recrystallized from ethanol, affording the title compound as a green crystalline solid. Elemental analysis calculated: C 62.40, H 4.54, N 9.70%; found: C 62.58, H 4.45, N 9.64%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H = 0.86, O—H = 0.82 and C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2 Ueq(C,O,N). Diffraction was relatively weak and the data are truncated to 0.95 Å resolution, with 901 of 1663 unique reflections (ca 54%) observed. As a consequence, the refined structure is of relatively low precision.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure with displacement ellipsoids drawn at 30% probability for non-H atoms.
(E)-N'-[1-(4-Chlorophenyl)ethylidene]-2-hydroxybenzohydrazide top
Crystal data top
C15H13ClN2O2F(000) = 1200
Mr = 288.72Dx = 1.411 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 951 reflections
a = 27.900 (3) Åθ = 2.7–25.1°
b = 7.880 (1) ŵ = 0.28 mm1
c = 13.4899 (15) ÅT = 293 K
β = 113.530 (2)°Block, green
V = 2719.2 (5) Å30.35 × 0.17 × 0.07 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
1663 independent reflections
Radiation source: fine-focus sealed tube901 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ϕ and ω scansθmax = 22.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2920
Tmin = 0.907, Tmax = 0.980k = 88
4744 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.266H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.1726P)2]
where P = (Fo2 + 2Fc2)/3
1663 reflections(Δ/σ)max < 0.001
182 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C15H13ClN2O2V = 2719.2 (5) Å3
Mr = 288.72Z = 8
Monoclinic, C2/cMo Kα radiation
a = 27.900 (3) ŵ = 0.28 mm1
b = 7.880 (1) ÅT = 293 K
c = 13.4899 (15) Å0.35 × 0.17 × 0.07 mm
β = 113.530 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1663 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
901 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.980Rint = 0.082
4744 measured reflectionsθmax = 22.0°
Refinement top
R[F2 > 2σ(F2)] = 0.0650 restraints
wR(F2) = 0.266H-atom parameters constrained
S = 0.96Δρmax = 0.33 e Å3
1663 reflectionsΔρmin = 0.37 e Å3
182 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.16974 (8)0.5453 (3)0.40292 (16)0.0745 (9)
N10.07264 (19)0.1148 (7)0.0780 (4)0.0390 (15)
H10.07120.11930.14040.047*
N20.0332 (2)0.1842 (7)0.0112 (4)0.0372 (15)
O10.11636 (19)0.0271 (8)0.0221 (4)0.0714 (19)
O20.11905 (18)0.0618 (6)0.2888 (3)0.0531 (15)
H20.12520.06120.35350.080*
C10.1133 (2)0.0401 (10)0.0666 (5)0.0422 (19)
C20.1557 (2)0.0358 (9)0.1654 (5)0.0400 (18)
C30.1585 (2)0.0201 (9)0.2719 (5)0.0405 (19)
C40.2007 (3)0.0898 (10)0.3581 (5)0.050 (2)
H40.20270.07890.42830.060*
C50.2391 (3)0.1741 (11)0.3394 (6)0.063 (2)
H50.26710.21980.39750.075*
C60.2372 (3)0.1928 (11)0.2365 (6)0.060 (2)
H60.26270.25430.22420.071*
C70.1960 (3)0.1174 (9)0.1511 (6)0.0457 (19)
H70.19580.12250.08200.055*
C80.0107 (3)0.2598 (11)0.1122 (5)0.056 (2)
H8A0.00430.15050.14650.084*
H8B0.04520.29710.10050.084*
H8C0.01450.33970.15780.084*
C90.0057 (2)0.2471 (9)0.0044 (5)0.0405 (18)
C100.0473 (3)0.3259 (9)0.0938 (5)0.0387 (18)
C110.0867 (3)0.4294 (9)0.0915 (5)0.046 (2)
H110.08830.45450.02540.055*
C120.1242 (3)0.4970 (10)0.1857 (6)0.052 (2)
H120.15030.56740.18240.063*
C130.1227 (3)0.4592 (9)0.2842 (5)0.0430 (19)
C140.0845 (3)0.3575 (10)0.2901 (5)0.052 (2)
H140.08270.33660.35630.062*
C150.0479 (3)0.2847 (9)0.1954 (5)0.0450 (19)
H150.02360.20770.20010.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0664 (15)0.088 (2)0.0516 (14)0.0085 (12)0.0054 (11)0.0142 (12)
N10.039 (3)0.058 (4)0.023 (3)0.000 (3)0.016 (3)0.002 (3)
N20.038 (3)0.043 (4)0.032 (3)0.001 (3)0.016 (3)0.001 (3)
O10.061 (3)0.136 (6)0.026 (3)0.018 (3)0.027 (3)0.006 (3)
O20.062 (3)0.078 (4)0.025 (2)0.006 (3)0.023 (2)0.005 (2)
C10.038 (4)0.065 (5)0.028 (4)0.011 (4)0.018 (3)0.006 (3)
C20.036 (4)0.060 (5)0.028 (4)0.007 (4)0.016 (3)0.003 (3)
C30.038 (4)0.053 (5)0.036 (4)0.003 (3)0.020 (3)0.002 (3)
C40.057 (5)0.053 (6)0.034 (4)0.007 (4)0.013 (4)0.006 (4)
C50.045 (5)0.084 (7)0.054 (5)0.009 (4)0.014 (4)0.015 (5)
C60.040 (5)0.084 (7)0.055 (5)0.006 (4)0.019 (4)0.008 (5)
C70.051 (5)0.046 (5)0.047 (4)0.001 (4)0.027 (4)0.004 (4)
C80.056 (5)0.080 (7)0.037 (4)0.001 (4)0.025 (4)0.006 (4)
C90.042 (4)0.049 (5)0.033 (4)0.013 (4)0.018 (3)0.007 (3)
C100.042 (4)0.050 (5)0.028 (4)0.008 (4)0.019 (3)0.000 (3)
C110.044 (4)0.059 (6)0.038 (4)0.001 (4)0.020 (4)0.007 (4)
C120.048 (5)0.057 (6)0.052 (5)0.003 (4)0.021 (4)0.006 (4)
C130.037 (4)0.041 (5)0.042 (4)0.005 (4)0.006 (3)0.006 (4)
C140.060 (5)0.064 (6)0.033 (4)0.003 (4)0.021 (4)0.002 (4)
C150.042 (4)0.061 (6)0.035 (4)0.008 (4)0.019 (3)0.002 (4)
Geometric parameters (Å, º) top
Cl1—C131.752 (7)C6—H60.930
N1—C11.340 (8)C7—H70.930
N1—N21.379 (7)C8—C91.518 (8)
N1—H10.860C8—H8A0.960
N2—C91.284 (8)C8—H8B0.960
O1—C11.237 (7)C8—H8C0.960
O2—C31.372 (8)C9—C101.503 (9)
O2—H20.820C10—C111.380 (9)
C1—C21.508 (9)C10—C151.403 (8)
C2—C71.374 (9)C11—C121.390 (9)
C2—C31.412 (9)C11—H110.930
C3—C41.395 (9)C12—C131.379 (10)
C4—C51.367 (10)C12—H120.930
C4—H40.930C13—C141.361 (10)
C5—C61.375 (10)C14—C151.400 (9)
C5—H50.930C14—H140.930
C6—C71.395 (9)C15—H150.930
C1—N1—N2119.4 (5)C9—C8—H8B109.5
C1—N1—H1120.3H8A—C8—H8B109.5
N2—N1—H1120.3C9—C8—H8C109.5
C9—N2—N1116.2 (5)H8A—C8—H8C109.5
C3—O2—H2109.5H8B—C8—H8C109.5
O1—C1—N1122.4 (6)N2—C9—C10114.8 (5)
O1—C1—C2119.3 (6)N2—C9—C8126.1 (6)
N1—C1—C2118.3 (5)C10—C9—C8118.9 (6)
C7—C2—C3117.8 (6)C11—C10—C15117.4 (6)
C7—C2—C1117.3 (5)C11—C10—C9124.5 (5)
C3—C2—C1124.8 (6)C15—C10—C9118.0 (6)
O2—C3—C4120.8 (6)C10—C11—C12121.4 (6)
O2—C3—C2119.2 (6)C10—C11—H11119.3
C4—C3—C2120.0 (6)C12—C11—H11119.3
C5—C4—C3120.0 (6)C13—C12—C11119.8 (7)
C5—C4—H4120.0C13—C12—H12120.1
C3—C4—H4120.0C11—C12—H12120.1
C4—C5—C6121.3 (7)C14—C13—C12120.7 (6)
C4—C5—H5119.3C14—C13—Cl1119.6 (5)
C6—C5—H5119.3C12—C13—Cl1119.8 (6)
C5—C6—C7118.4 (7)C13—C14—C15119.4 (6)
C5—C6—H6120.8C13—C14—H14120.3
C7—C6—H6120.8C15—C14—H14120.3
C2—C7—C6122.3 (6)C14—C15—C10121.1 (7)
C2—C7—H7118.8C14—C15—H15119.4
C6—C7—H7118.8C10—C15—H15119.4
C9—C8—H8A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.962.645 (6)135
O2—H2···O1i0.821.922.676 (6)153
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H13ClN2O2
Mr288.72
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)27.900 (3), 7.880 (1), 13.4899 (15)
β (°) 113.530 (2)
V3)2719.2 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.35 × 0.17 × 0.07
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.907, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
4744, 1663, 901
Rint0.082
θmax (°)22.0
(sin θ/λ)max1)0.526
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.266, 0.96
No. of reflections1663
No. of parameters182
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.37

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.962.645 (6)135.2
O2—H2···O1i0.821.922.676 (6)152.5
Symmetry code: (i) x, y, z+1/2.
 

Acknowledgements

The authors acknowledge the support of the National Natural Science Foundation of Liaocheng University (grant No. X051040).

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationQiu, X.-Y., Luo, Z.-G., Yang, S.-L. & Liu, W.-S. (2006). Acta Cryst. E62, o3531–o3532.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSumita, N. R., Munshi, K. N., Nageswara, R. N., Bhadbhade, M. M. & Suresh, E. (1999). Polyhedron, 18, 2491–2497.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds