organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-(Cyclo­hexane-1,1-di­yl)diphenol methanol solvate

aSchool of Chemical Engineering and Technology, Tianjin University, Tianjin 300071, People's Republic of China, and bTianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China
*Correspondence e-mail: shuaiself@yahoo.cn

(Received 7 December 2008; accepted 6 January 2009; online 10 January 2009)

The title compound, crystallized as a methanol solvate, C18H20O2·CH3OH, is an inter­mediate in the synthesis of the anti­lipidemic agent clinofibrate. Mol­ecules are packed together with the methanol solvent molecule via two O—H⋯O hydrogen bonds. The third O—H⋯O hydrogen bond is between neighboring 4,4′-(cyclo­hexane-1,1-di­yl)diphenol mol­ecules. The dihedral angle between two benzene rings planes is 81.69 (6).

Related literature

For details of the anti-lipidemic agent clinofibrate, see: Nishizawa et al. (1993[Nishizawa, Y., Shoji, T., Nishitani, H., Yamakawa, M., Konishi, T., Kawasaki, K., Morii, H. & Nishizawa MD, Y. (1993). Kidney Int. 44, 1352-1359.]). For the synthesis of clinofibrate, see: Zimmerman et al. (1974[Zimmerman, H. E., Robbins, J. D., McKelvey, R. D., Samuel, C. J. & Sousa, L. R. (1974). J. Am. Chem. Soc. 96, 4630-4643.]). For a similar structure, see: Nassimbeni et al. (2007[Nassimbeni, L. R. & Su, H. (2007). Acta Cryst. C63, o319-o322.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20O2·CH4O

  • Mr = 300.38

  • Triclinic, [P \overline 1]

  • a = 6.2245 (12) Å

  • b = 10.889 (2) Å

  • c = 12.712 (3) Å

  • α = 90.02 (3)°

  • β = 100.82 (3)°

  • γ = 90.03 (3)°

  • V = 846.3 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 (2) K

  • 0.16 × 0.12 × 0.08 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.988, Tmax = 0.994

  • 8706 measured reflections

  • 2946 independent reflections

  • 2042 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.182

  • S = 1.08

  • 2946 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.82 1.60 2.415 (2) 173
O2—H2⋯O3ii 0.82 2.08 2.860 (3) 159
O3—H3⋯O1iii 0.82 1.96 2.767 (2) 166
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) x-1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Clinofibrate is an anti-lipidemic agent which is effective for the treatment of decreasing Blood lipid (Nishizawa et al., 1993). 4,4'-(cyclohexane-1,1-diyl)diphenol is an important intermediate in the synthesis of clinofibrate (Zimmerman et al., 1974). A similar structure, 4, 4'-(cyclohexane-1,1-diyl)diphenol±3-chlorophenol and 4, 4'-(cyclohexane-1,1-diyl)diphenol±4-chlorophenol (Nassimbeni et al., 2007), has been reported previously. Now we present the crystal structure of the title compound(I). The molecules of (I) are crystallized with the solvent molecule methanol (Fig. 1.). Adjacent molecules of (I) are linked via intermolecular O—H···O interactions between the O1—H1 and O2 from a neighboring molecule. The other two H bonds (O2—H2···O3 and O3—H3···O1) are formed between methanol and two neighboring (I) (Table 1.). Planar molecules are usually stabilized by ππ intermolecular interactions. However, (I) is not planar (the dihedral angle between two benzene rings planes is 81.69 (6)°), indicating an absence of ππ coupling.

Related literature top

For details of the anti-lipidemic agent clinofibrate, see: Nishizawa et al. (1993). For the synthesis of clinofibrate, see: Zimmerman et al. (1974). For a similar structure, see: Nassimbeni et al. (2007).

Experimental top

A mixture of cyclohexanone (196.g, 0.2 mol) and phenol (37,6 g, 0.4 mol) in hydrochloric acid (40 ml) and glacial acetic acid (20 ml) was heated at 328 K for 12 h. The mixture was stirred overnight at room temperature, and the resultant precipitates were collected by filtration. The filtrates were dissolved in acetone (200 ml); the solutions decolorize by active carbon, and concentrated under reduced pressure. The residue was washed by toluene (20 ml) to get white powder. The powder was dissolved in methanol and standing under 277 K, then the white crystals were generated slowly.

Refinement top

All the H atoms was located on their parent atoms with C—H=0.93 (aromatic CH), 0.97 (CH2) and 0.96 (CH3), and O—H=0.82 (Uiso(H)=1.5Ueq(O)), thereafter refined isotropically.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme.
[Figure 2] Fig. 2. The packing of the title complex. Dashed lines show intermolecular O—H···O hydrogen bonds.
4,4'-(cyclohexane-1,1-diyl)diphenol methanol solvate top
Crystal data top
C18H20O2·CH4OZ = 2
Mr = 300.38F(000) = 324
Triclinic, P1Dx = 1.179 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.2245 (12) ÅCell parameters from 2488 reflections
b = 10.889 (2) Åθ = 2.5–27.5°
c = 12.712 (3) ŵ = 0.08 mm1
α = 90.02 (3)°T = 113 K
β = 100.82 (3)°Block, colorless
γ = 90.03 (3)°0.16 × 0.12 × 0.08 mm
V = 846.3 (3) Å3
Data collection top
Rigaku Saturn
diffractometer
2946 independent reflections
Radiation source: rotating anode2042 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.042
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 77
Tmin = 0.988, Tmax = 0.994k = 1212
8706 measured reflectionsl = 1514
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.1196P)2]
where P = (Fo2 + 2Fc2)/3
2946 reflections(Δ/σ)max = 0.002
203 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
C18H20O2·CH4Oγ = 90.03 (3)°
Mr = 300.38V = 846.3 (3) Å3
Triclinic, P1Z = 2
a = 6.2245 (12) ÅMo Kα radiation
b = 10.889 (2) ŵ = 0.08 mm1
c = 12.712 (3) ÅT = 113 K
α = 90.02 (3)°0.16 × 0.12 × 0.08 mm
β = 100.82 (3)°
Data collection top
Rigaku Saturn
diffractometer
2946 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2042 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.994Rint = 0.042
8706 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.182H-atom parameters constrained
S = 1.08Δρmax = 0.33 e Å3
2946 reflectionsΔρmin = 0.47 e Å3
203 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6975 (2)0.24041 (13)0.37035 (12)0.0310 (4)
H10.60220.19030.37640.046*
O20.4365 (3)1.08574 (14)0.39912 (12)0.0299 (4)
H20.31991.10920.41330.045*
O30.1059 (3)0.19930 (17)0.49467 (14)0.0468 (6)
H30.00390.21320.44950.070*
C10.4012 (3)0.69382 (19)0.01335 (15)0.0191 (5)
H1A0.37320.61620.02420.023*
H1B0.55800.70330.03610.023*
C20.3017 (3)0.80790 (19)0.06599 (15)0.0210 (5)
H2A0.35500.88350.02990.025*
H2B0.36620.80220.12960.025*
C30.0496 (3)0.8225 (2)0.10442 (16)0.0239 (5)
H3A0.02020.89740.14590.029*
H3B0.00580.75400.15040.029*
C40.0694 (3)0.82727 (19)0.00891 (16)0.0219 (5)
H4A0.22610.81840.03250.026*
H4B0.04010.90410.02980.026*
C50.0328 (3)0.70978 (18)0.06654 (15)0.0199 (5)
H5A0.04020.70850.12760.024*
H5B0.01240.63600.02550.024*
C60.2867 (3)0.69626 (18)0.11244 (15)0.0164 (5)
C70.3890 (3)0.57198 (18)0.18020 (15)0.0168 (5)
C80.2680 (3)0.48381 (18)0.19927 (16)0.0212 (5)
H80.11780.48690.17430.025*
C90.3686 (3)0.37378 (19)0.26271 (15)0.0228 (5)
H90.27040.31290.27380.027*
C100.5952 (3)0.34952 (19)0.30856 (15)0.0205 (5)
C110.7200 (3)0.43517 (19)0.29044 (16)0.0206 (5)
H110.87030.43100.31490.025*
C120.6166 (3)0.54470 (18)0.22754 (15)0.0202 (5)
H120.71540.60560.21710.024*
C130.3242 (3)0.80415 (17)0.18613 (15)0.0161 (5)
C140.2027 (3)0.83272 (18)0.26803 (15)0.0201 (5)
H140.08560.78120.27260.024*
C150.2381 (3)0.92511 (18)0.33890 (15)0.0212 (5)
H150.15140.93870.38990.025*
C160.4000 (3)0.99216 (18)0.33016 (15)0.0186 (5)
C170.5266 (3)0.96472 (18)0.25107 (15)0.0188 (5)
H170.64601.01510.24810.023*
C180.4885 (3)0.87244 (18)0.18052 (15)0.0171 (5)
H180.57670.85880.13020.021*
C190.1690 (4)0.3024 (2)0.54959 (18)0.0327 (6)
H19A0.04520.33910.57250.049*
H19B0.22820.35890.50450.049*
H19C0.27860.28300.61110.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0309 (9)0.0222 (9)0.0363 (9)0.0127 (7)0.0028 (7)0.0079 (7)
O20.0336 (9)0.0277 (9)0.0282 (9)0.0155 (7)0.0057 (7)0.0146 (7)
O30.0422 (11)0.0542 (12)0.0436 (11)0.0301 (9)0.0073 (8)0.0248 (9)
C10.0167 (10)0.0204 (11)0.0205 (11)0.0082 (8)0.0039 (8)0.0053 (8)
C20.0215 (11)0.0245 (12)0.0170 (10)0.0090 (9)0.0039 (9)0.0021 (8)
C30.0229 (11)0.0257 (12)0.0214 (11)0.0088 (9)0.0004 (9)0.0027 (9)
C40.0142 (10)0.0233 (12)0.0266 (12)0.0064 (9)0.0000 (9)0.0022 (9)
C50.0179 (11)0.0201 (11)0.0213 (11)0.0076 (8)0.0023 (9)0.0008 (8)
C60.0139 (10)0.0164 (11)0.0185 (11)0.0077 (8)0.0019 (8)0.0020 (8)
C70.0183 (10)0.0164 (11)0.0157 (10)0.0083 (8)0.0035 (8)0.0048 (8)
C80.0180 (11)0.0214 (12)0.0228 (11)0.0100 (9)0.0005 (9)0.0016 (9)
C90.0196 (11)0.0212 (12)0.0263 (12)0.0115 (9)0.0010 (9)0.0004 (9)
C100.0247 (11)0.0173 (11)0.0177 (10)0.0077 (9)0.0004 (9)0.0009 (8)
C110.0154 (10)0.0219 (11)0.0232 (11)0.0081 (9)0.0005 (9)0.0014 (9)
C120.0190 (11)0.0191 (11)0.0219 (11)0.0119 (9)0.0020 (9)0.0042 (8)
C130.0159 (10)0.0165 (11)0.0149 (10)0.0056 (8)0.0000 (8)0.0012 (8)
C140.0177 (10)0.0200 (11)0.0229 (11)0.0109 (9)0.0049 (8)0.0000 (8)
C150.0236 (11)0.0226 (12)0.0193 (11)0.0103 (9)0.0091 (9)0.0022 (9)
C160.0229 (11)0.0159 (11)0.0150 (10)0.0068 (9)0.0011 (8)0.0008 (8)
C170.0178 (10)0.0182 (11)0.0197 (11)0.0104 (9)0.0017 (9)0.0023 (8)
C180.0165 (10)0.0186 (11)0.0163 (10)0.0069 (8)0.0033 (8)0.0009 (8)
C190.0352 (13)0.0298 (14)0.0313 (13)0.0126 (11)0.0018 (11)0.0088 (10)
Geometric parameters (Å, º) top
O1—C101.499 (2)C7—C81.271 (3)
O1—H10.8200C7—C121.462 (3)
O2—C161.335 (2)C8—C91.513 (3)
O2—H20.8200C8—H80.9300
O3—C191.341 (3)C9—C101.446 (3)
O3—H30.8200C9—H90.9300
C1—C61.560 (3)C10—C111.262 (3)
C1—C21.647 (3)C11—C121.511 (3)
C1—H1A0.9700C11—H110.9300
C1—H1B0.9700C12—H120.9300
C2—C31.562 (3)C13—C181.277 (3)
C2—H2A0.9700C13—C141.431 (3)
C2—H2B0.9700C14—C151.341 (3)
C3—C41.537 (3)C14—H140.9300
C3—H3A0.9700C15—C161.266 (3)
C3—H3B0.9700C15—H150.9300
C4—C51.653 (3)C16—C171.421 (3)
C4—H4A0.9700C17—C181.338 (3)
C4—H4B0.9700C17—H170.9300
C5—C61.586 (3)C18—H180.9300
C5—H5A0.9700C19—H19A0.9600
C5—H5B0.9700C19—H19B0.9600
C6—C131.493 (3)C19—H19C0.9600
C6—C71.666 (3)
C10—O1—H1109.5C12—C7—C6128.71 (15)
C16—O2—H2109.5C7—C8—C9119.95 (19)
C19—O3—H3109.5C7—C8—H8120.0
C6—C1—C2107.79 (16)C9—C8—H8120.0
C6—C1—H1A110.1C10—C9—C8129.39 (16)
C2—C1—H1A110.1C10—C9—H9115.3
C6—C1—H1B110.1C8—C9—H9115.3
C2—C1—H1B110.1C11—C10—C9112.22 (19)
H1A—C1—H1B108.5C11—C10—O1117.78 (18)
C3—C2—C1120.64 (15)C9—C10—O1129.99 (16)
C3—C2—H2A107.2C10—C11—C12117.69 (19)
C1—C2—H2A107.2C10—C11—H11121.2
C3—C2—H2B107.2C12—C11—H11121.2
C1—C2—H2B107.2C7—C12—C11131.45 (16)
H2A—C2—H2B106.8C7—C12—H12114.3
C4—C3—C2111.17 (16)C11—C12—H12114.3
C4—C3—H3A109.4C18—C13—C14116.89 (18)
C2—C3—H3A109.4C18—C13—C6117.07 (18)
C4—C3—H3B109.4C14—C13—C6125.86 (15)
C2—C3—H3B109.4C15—C14—C13127.54 (17)
H3A—C3—H3B108.0C15—C14—H14116.2
C3—C4—C5104.04 (16)C13—C14—H14116.2
C3—C4—H4A110.9C16—C15—C14114.0 (2)
C5—C4—H4A110.9C16—C15—H15123.0
C3—C4—H4B110.9C14—C15—H15123.0
C5—C4—H4B110.9C15—C16—O2114.96 (19)
H4A—C4—H4B109.0C15—C16—C17119.83 (18)
C6—C5—C4122.27 (14)O2—C16—C17125.21 (16)
C6—C5—H5A106.8C18—C17—C16125.45 (17)
C4—C5—H5A106.8C18—C17—H17117.3
C6—C5—H5B106.8C16—C17—H17117.3
C4—C5—H5B106.8C13—C18—C17116.28 (19)
H5A—C5—H5B106.6C13—C18—H18121.9
C13—C6—C1118.62 (15)C17—C18—H18121.9
C13—C6—C5100.64 (16)O3—C19—H19A109.5
C1—C6—C5106.23 (15)O3—C19—H19B109.5
C13—C6—C7108.39 (14)H19A—C19—H19B109.5
C1—C6—C7102.45 (15)O3—C19—H19C109.5
C5—C6—C7121.61 (14)H19A—C19—H19C109.5
C8—C7—C12109.31 (19)H19B—C19—H19C109.5
C8—C7—C6121.98 (18)
C6—C1—C2—C353.3 (2)C9—C10—C11—C120.5 (3)
C1—C2—C3—C454.9 (2)O1—C10—C11—C12179.62 (15)
C2—C3—C4—C548.21 (19)C8—C7—C12—C110.3 (3)
C3—C4—C5—C657.8 (2)C6—C7—C12—C11179.37 (17)
C2—C1—C6—C1364.5 (2)C10—C11—C12—C70.7 (3)
C2—C1—C6—C547.66 (18)C1—C6—C13—C1817.5 (3)
C2—C1—C6—C7176.22 (12)C5—C6—C13—C18132.79 (19)
C4—C5—C6—C1365.4 (2)C7—C6—C13—C1898.6 (2)
C4—C5—C6—C158.8 (2)C1—C6—C13—C14167.53 (18)
C4—C5—C6—C7175.10 (15)C5—C6—C13—C1452.3 (2)
C13—C6—C7—C8114.6 (2)C7—C6—C13—C1476.4 (2)
C1—C6—C7—C8119.2 (2)C18—C13—C14—C151.6 (3)
C5—C6—C7—C81.0 (3)C6—C13—C14—C15176.5 (2)
C13—C6—C7—C1264.4 (2)C13—C14—C15—C160.5 (3)
C1—C6—C7—C1261.8 (2)C14—C15—C16—O2179.16 (18)
C5—C6—C7—C12179.96 (18)C14—C15—C16—C170.8 (3)
C12—C7—C8—C90.2 (3)C15—C16—C17—C181.3 (3)
C6—C7—C8—C9179.03 (15)O2—C16—C17—C18178.71 (19)
C7—C8—C9—C100.2 (3)C14—C13—C18—C171.1 (3)
C8—C9—C10—C110.2 (3)C6—C13—C18—C17176.46 (17)
C8—C9—C10—O1179.14 (17)C16—C17—C18—C130.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.602.415 (2)173
O2—H2···O3ii0.822.082.860 (3)159
O3—H3···O1iii0.821.962.767 (2)166
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC18H20O2·CH4O
Mr300.38
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)6.2245 (12), 10.889 (2), 12.712 (3)
α, β, γ (°)90.02 (3), 100.82 (3), 90.03 (3)
V3)846.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.16 × 0.12 × 0.08
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.988, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
8706, 2946, 2042
Rint0.042
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.182, 1.08
No. of reflections2946
No. of parameters203
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.47

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.821.602.415 (2)173.4
O2—H2···O3ii0.822.082.860 (3)158.7
O3—H3···O1iii0.821.962.767 (2)166.3
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x1, y, z.
 

Acknowledgements

The authors thank Mr Haibin Song, Nankai University, for the X-ray crystallographic determination, helpful discussions and theoretical analysis.

References

First citationNassimbeni, L. R. & Su, H. (2007). Acta Cryst. C63, o319–o322.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNishizawa, Y., Shoji, T., Nishitani, H., Yamakawa, M., Konishi, T., Kawasaki, K., Morii, H. & Nishizawa MD, Y. (1993). Kidney Int. 44, 1352–1359.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZimmerman, H. E., Robbins, J. D., McKelvey, R. D., Samuel, C. J. & Sousa, L. R. (1974). J. Am. Chem. Soc. 96, 4630–4643.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds