metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m140-m141

Chloridobis[di­phenyl­glyoximato(1–)-κ2N,N′](1H-imidazole-κN3)cobalt(III) hemihydrate

aDepartment of Chemistry, Loyola College (Autonomous), Chennai 600 034, Tamil Nadu, India
*Correspondence e-mail: parthasarathy.meera@gmail.com

(Received 10 December 2008; accepted 20 December 2008; online 8 January 2009)

The Co centre in the title compound, [Co(C14H11N2O2)2Cl(C3H4N2)]·0.5H2O, shows a slightly distorted octa­hedral coordination geometry. The glyoximate units of the mol­ecule are linked by O—H⋯O hydrogen bonds with the H atom almost in the middle of the two O atoms. The crystal packing is stabilized through inter­molecular N—H⋯O, N—H⋯N and O—H⋯Cl hydrogen bonds. The uncoordinated water mol­ecule shows half-occupation.

Related literature

For related literature, see: Calleri et al. (1967[Calleri, M., Ferraris, G. & Viterbo, D. (1967). Acta Cryst. 22, 468-475.]); Gupta et al. (2001[Gupta, B. D., Tiwari, U., Barley, T. & Cordes, W. (2001). J. Organomet. Chem. 629, 83-92.], 2004[Gupta, B. D., Vijayaikanth, V. & Sing, V. (2004). Organometallics, 23, 2067-2079.]); Lopez et al. (1991[Lopez, C., Alavarez, S., Solans, X. & Font-Bardia, M. (1991). J. Organomet. Chem. 414, 245-259.]); Mandal & Gupta (2005[Mandal, D. & Gupta, B. D. (2005). J. Organomet. Chem. 690, 3746-3754.]); Silverstein & Bassler (1984[Silverstein, R. M. & Bassler, G. C. (1984). Spectrometric Identification of Organic Compounds, 2nd ed., pp. 459-460. New York: John Wiley & Sons.]); Toscano et al. (1983[Toscano, P. J., Swider, S., Marzilli, L. G., Bresciani Phor, N. & Randaccio, L. (1983). Inorg. Chem. 22, 3416-3421.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C14H11N2O2)2Cl(C3H4N2)]·0.5H2O

  • Mr = 649.97

  • Orthorhombic, P b c a

  • a = 19.1004 (11) Å

  • b = 12.0462 (7) Å

  • c = 26.9627 (18) Å

  • V = 6203.8 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.69 mm−1

  • T = 293 (2) K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.732, Tmax = 0.850

  • 28473 measured reflections

  • 5282 independent reflections

  • 3705 reflections with I > 2σ(I)

  • Rint = 0.051

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.104

  • S = 1.06

  • 5282 reflections

  • 415 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H2⋯O2 1.05 (4) 1.46 (4) 2.482 (3) 165 (3)
O3—H3⋯O1 1.07 (5) 1.39 (5) 2.456 (3) 174 (4)
N6—H6A⋯O2i 0.98 (4) 1.78 (4) 2.747 (4) 166 (3)
N6—H6A⋯N2i 0.98 (4) 2.50 (4) 3.326 (4) 141 (3)
O5—H5B⋯Cl1 0.946 (10) 2.69 (8) 3.331 (7) 126 (7)
Symmetry code: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The coordination geometry around cobalt is octahedral with the four nitrogen atoms of the diphenyl glyoximato ligand forming an approximate square plane. The bite angles N1—Co—N2 and N3—Co—N4 of the ligand are 81.40 (10)° and 80.32 (10)°, respectively. The coordinating chlorine and imidazole nitrogen [N5—Co1—Cl1 = 179.11 (7)°] are perpendicular to the equatorial plane composed by the four N atoms. The two glyoximate moieties are linked by strong O—H···O hydrogen bonds. Similar hydrogen bonds are found in nickel(II)glyoximate (Calleri, et al., 1967). The molecule is linked to its b-glide equivalent through a N—H···O hydrogen bond The water molecule forms a short O—H···Cl contact.

Related literature top

For related literature, see: Calleri et al. (1967); Gupta et al. (2001, 2004); Lopez et al. (1991); Mandal & Gupta (2005); Silverstein & Bassler (1984); Toscano et al. (1983). It would be much more useful to readers if the "Related literature" section had some kind of simple sub-division, so that, instead of just "For related literature, see···" it said, for example, "For general background, see···. For related structures, see···.? etc. Please revise this section as indicated.

Experimental top

Cobaltous chloride hexahydrate was thoroughly ground and exposed to microwave for 30 s. The dehydrated salt was mixed with diphenylglyoxime in 1:2 molar ratio in acetone medium and was stirred for an hour (Toscano, et al., 1983; Gupta, et al., 2001). Since the dichloro complex of diphenyl glyoxime was non-isolable, the complex solution was as such refluxed with equimolar ratio of imidazole for six hours to get the title compound. The resulting brown mass was filtered, washed with ether and dried in a vaccuum desiccator. The complex was dissolved in ethanol and kept in a dark room for crystallization. Brown crystals of the complex appeared in three days. The elemental analysis data, obtained by analytical methods agree well with the theoretical data expected for the formula of the complex proposed: Anal%, (cald%): C, 62.07(62.57); H, 4.82(4.71); N, 14.50(14.13). The C=N stretching vibration of oxime in the complex was observed at 1629 cm-1 and the intra molecular hydrogen bonded OH around 3400 cm-1. A moderate peak around 1252 cm-1 may be assigned to the C=N—O stretching of the oxime. The peak around 537 cm-1 could be attributed to cobalt(III)-nitrogen stretching. The 1H NMR spectra of the complex in acetone-d6 shows three different signals corresponding to diphenyl glyoximate ring protons (Gupta, et al., 2004; Lopez, et al., 1991). The ortho H atoms of the ring shows a doublet at d= 7.4 p.p.m., the meta protons and the para proton give triplets at d = 7.6 and 7.9 p.p.m. respectively. The oxime –OH resonates at d=8.3 p.p.m.. The axial protons also appeared as multiplets along with phenyl protons at 7.2 and 7.4 p.p.m. as three proton signal (Silverstein & Bassler, 1984; Mandal & Gupta, 2005).

Refinement top

All the hydrogen atoms could be located in difference Fourier maps. Nevertheless, the phenyl H atoms were geometrically positioned [C—H = 0.93 Å and U(H) = 1.2 Ueq(O)] and were refined using a riding model. H atoms bonded to O were refined isotropically with U(H) set to 1.2 Ueq(O). For the water molecule the O-H distances were restrained to 0.95 (1)Å and the H···H distance to 1.55 (1)Å. Refinement of the water oxygen with full occupancy showed abnormally high displacement parameters. Hence, the site occupancy factor set to 0.5.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altornare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The ORTEP representation
[Figure 2] Fig. 2. Packing of molecules in the unit cell. Hydrogen bonds are shown with dotted lines.
Chloridobis[diphenylglyoximato(1-)-κ2N,N'](1H- imidazole-κN3)cobalt(III) hemihydrate top
Crystal data top
[Co(C14H11N2O2)2Cl(C3H4N2)]·0.5H2ODx = 1.392 Mg m3
Mr = 649.97Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5466 reflections
a = 19.1004 (11) Åθ = 2.1–24.9°
b = 12.0462 (7) ŵ = 0.69 mm1
c = 26.9627 (18) ÅT = 293 K
V = 6203.8 (7) Å3Needle, brown
Z = 80.30 × 0.20 × 0.20 mm
F(000) = 2680
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5282 independent reflections
Radiation source: fine-focus sealed tube3705 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω and ϕ scansθmax = 24.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 2022
Tmin = 0.732, Tmax = 0.850k = 1413
28473 measured reflectionsl = 3118
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0434P)2 + 2.9454P]
where P = (Fo2 + 2Fc2)/3
5282 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 0.35 e Å3
3 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Co(C14H11N2O2)2Cl(C3H4N2)]·0.5H2OV = 6203.8 (7) Å3
Mr = 649.97Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 19.1004 (11) ŵ = 0.69 mm1
b = 12.0462 (7) ÅT = 293 K
c = 26.9627 (18) Å0.30 × 0.20 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
5282 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3705 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 0.850Rint = 0.051
28473 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.35 e Å3
5282 reflectionsΔρmin = 0.26 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.63561 (15)0.1880 (3)0.00280 (11)0.0409 (7)
C20.70947 (14)0.1624 (2)0.01198 (11)0.0381 (7)
C30.60509 (15)0.2080 (3)0.04659 (11)0.0464 (8)
C40.56950 (19)0.3038 (3)0.05731 (13)0.0639 (10)
H40.56580.35960.03360.077*
C50.5390 (2)0.3174 (4)0.10368 (17)0.0861 (14)
H50.51540.38270.11140.103*
C60.5438 (2)0.2339 (5)0.13802 (16)0.0882 (15)
H60.52240.24270.16880.106*
C70.5790 (2)0.1389 (5)0.12817 (15)0.0837 (13)
H70.58230.08320.15200.100*
C80.61007 (18)0.1258 (3)0.08218 (13)0.0624 (10)
H80.63460.06100.07510.075*
C90.76536 (15)0.1743 (3)0.02548 (10)0.0406 (7)
C100.76866 (18)0.2672 (3)0.05512 (12)0.0575 (9)
H100.73420.32150.05260.069*
C110.8230 (2)0.2803 (4)0.08864 (14)0.0707 (11)
H110.82510.34340.10840.085*
C120.8733 (2)0.2007 (4)0.09260 (14)0.0701 (11)
H120.90940.20940.11540.084*
C130.87115 (19)0.1089 (4)0.06346 (14)0.0664 (11)
H130.90600.05540.06600.080*
C140.81727 (17)0.0953 (3)0.03009 (12)0.0529 (9)
H140.81580.03200.01040.064*
C150.57331 (14)0.0802 (2)0.18684 (11)0.0364 (7)
C160.64821 (14)0.0580 (2)0.19665 (10)0.0365 (7)
C170.51700 (14)0.0551 (3)0.22257 (11)0.0402 (7)
C180.46087 (16)0.1271 (3)0.22873 (13)0.0550 (9)
H180.45890.19300.21080.066*
C190.40809 (19)0.1009 (4)0.26147 (15)0.0737 (12)
H190.37070.14950.26570.088*
C200.41012 (19)0.0049 (4)0.28760 (15)0.0781 (13)
H200.37430.01190.30970.094*
C210.46428 (19)0.0669 (4)0.28165 (15)0.0758 (12)
H210.46510.13310.29930.091*
C220.51801 (17)0.0419 (3)0.24951 (12)0.0554 (9)
H220.55530.09090.24600.067*
C230.67758 (14)0.0249 (3)0.24497 (11)0.0434 (8)
C240.66383 (18)0.0875 (3)0.28642 (13)0.0623 (10)
H240.63530.14990.28400.075*
C250.6919 (2)0.0584 (5)0.33133 (14)0.0855 (14)
H250.68240.10080.35940.103*
C260.7334 (2)0.0319 (5)0.33480 (17)0.0930 (16)
H260.75280.05070.36530.112*
C270.7473 (2)0.0954 (4)0.29465 (17)0.0851 (14)
H270.77520.15820.29780.102*
C280.71984 (18)0.0669 (3)0.24888 (14)0.0660 (10)
H280.72990.10960.22100.079*
C290.57488 (16)0.0595 (3)0.04757 (12)0.0548 (9)
H290.53860.01700.03460.066*
C300.58509 (18)0.1672 (3)0.03882 (13)0.0593 (9)
H300.55820.21300.01870.071*
C310.66589 (16)0.1065 (3)0.08821 (12)0.0488 (8)
H310.70530.10420.10840.059*
N10.59804 (12)0.1815 (2)0.04272 (9)0.0426 (6)
N20.72105 (11)0.13202 (19)0.05738 (9)0.0361 (6)
N30.56368 (11)0.1196 (2)0.14284 (9)0.0383 (6)
N40.68677 (11)0.0763 (2)0.15816 (8)0.0382 (6)
N50.62594 (11)0.0215 (2)0.07856 (9)0.0380 (6)
N60.64288 (15)0.1966 (3)0.06536 (11)0.0552 (7)
O10.52933 (10)0.1998 (2)0.04167 (8)0.0542 (6)
O20.78462 (9)0.10740 (17)0.07404 (7)0.0425 (5)
O30.49944 (10)0.14234 (19)0.12648 (8)0.0520 (6)
O40.75702 (10)0.0645 (2)0.16194 (8)0.0496 (6)
O50.5658 (4)0.4699 (6)0.0555 (3)0.127 (2)0.50
H5B0.611 (2)0.438 (7)0.055 (4)0.152*0.50
H5A0.535 (4)0.425 (7)0.074 (4)0.152*0.50
Co10.642761 (18)0.12847 (3)0.100084 (14)0.03524 (13)
Cl10.66393 (4)0.30158 (7)0.12458 (3)0.0560 (2)
H20.7759 (17)0.087 (3)0.1270 (14)0.070 (11)*
H30.509 (2)0.169 (4)0.0893 (17)0.106 (15)*
H6A0.6632 (18)0.272 (3)0.0650 (13)0.075 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0429 (17)0.0496 (19)0.0303 (18)0.0003 (14)0.0007 (14)0.0066 (14)
C20.0378 (16)0.0466 (18)0.0301 (18)0.0019 (13)0.0026 (13)0.0013 (13)
C30.0405 (17)0.065 (2)0.0334 (19)0.0075 (16)0.0008 (14)0.0093 (16)
C40.074 (2)0.067 (3)0.050 (2)0.002 (2)0.0123 (19)0.0156 (19)
C50.082 (3)0.102 (4)0.075 (3)0.002 (3)0.020 (2)0.043 (3)
C60.080 (3)0.138 (5)0.046 (3)0.030 (3)0.014 (2)0.015 (3)
C70.075 (3)0.131 (4)0.045 (3)0.014 (3)0.003 (2)0.012 (3)
C80.055 (2)0.089 (3)0.043 (2)0.0001 (19)0.0009 (17)0.003 (2)
C90.0409 (16)0.0508 (19)0.0301 (17)0.0089 (15)0.0017 (13)0.0025 (15)
C100.058 (2)0.066 (2)0.048 (2)0.0061 (18)0.0019 (17)0.0103 (18)
C110.080 (3)0.080 (3)0.052 (3)0.028 (2)0.011 (2)0.013 (2)
C120.059 (2)0.100 (3)0.052 (3)0.027 (2)0.0202 (19)0.009 (2)
C130.058 (2)0.084 (3)0.057 (3)0.001 (2)0.0203 (19)0.011 (2)
C140.059 (2)0.058 (2)0.042 (2)0.0033 (17)0.0129 (16)0.0043 (16)
C150.0348 (15)0.0451 (18)0.0293 (17)0.0025 (13)0.0024 (12)0.0010 (13)
C160.0341 (15)0.0463 (18)0.0293 (17)0.0019 (13)0.0021 (13)0.0015 (13)
C170.0342 (16)0.054 (2)0.0329 (17)0.0007 (14)0.0046 (13)0.0020 (15)
C180.0485 (19)0.060 (2)0.057 (2)0.0096 (17)0.0165 (16)0.0085 (17)
C190.054 (2)0.090 (3)0.078 (3)0.019 (2)0.031 (2)0.012 (2)
C200.057 (2)0.100 (3)0.077 (3)0.007 (2)0.034 (2)0.029 (3)
C210.061 (2)0.085 (3)0.082 (3)0.006 (2)0.028 (2)0.033 (2)
C220.0460 (19)0.063 (2)0.057 (2)0.0088 (16)0.0122 (16)0.0135 (19)
C230.0312 (15)0.070 (2)0.0294 (18)0.0010 (15)0.0004 (13)0.0039 (15)
C240.062 (2)0.088 (3)0.038 (2)0.0011 (19)0.0025 (17)0.0001 (19)
C250.079 (3)0.142 (4)0.035 (2)0.002 (3)0.011 (2)0.002 (2)
C260.069 (3)0.161 (5)0.049 (3)0.001 (3)0.014 (2)0.037 (3)
C270.068 (3)0.120 (4)0.068 (3)0.028 (2)0.005 (2)0.036 (3)
C280.057 (2)0.088 (3)0.053 (2)0.016 (2)0.0057 (18)0.015 (2)
C290.0425 (19)0.067 (3)0.054 (2)0.0026 (17)0.0135 (16)0.0037 (18)
C300.057 (2)0.063 (3)0.057 (2)0.0122 (18)0.0107 (18)0.0093 (19)
C310.0416 (17)0.058 (2)0.047 (2)0.0045 (16)0.0048 (15)0.0061 (16)
N10.0347 (13)0.0580 (17)0.0350 (15)0.0065 (12)0.0001 (11)0.0056 (12)
N20.0299 (12)0.0463 (14)0.0320 (14)0.0004 (11)0.0003 (10)0.0002 (11)
N30.0294 (12)0.0527 (15)0.0330 (15)0.0063 (11)0.0025 (10)0.0035 (12)
N40.0280 (12)0.0570 (16)0.0295 (14)0.0033 (11)0.0008 (10)0.0025 (11)
N50.0324 (12)0.0502 (15)0.0316 (14)0.0044 (11)0.0007 (11)0.0012 (12)
N60.0563 (18)0.0526 (19)0.057 (2)0.0056 (15)0.0025 (14)0.0056 (15)
O10.0346 (11)0.0849 (17)0.0429 (14)0.0141 (11)0.0007 (10)0.0164 (12)
O20.0293 (10)0.0635 (14)0.0347 (12)0.0020 (9)0.0022 (9)0.0051 (10)
O30.0279 (10)0.0848 (17)0.0432 (14)0.0143 (10)0.0013 (9)0.0154 (12)
O40.0258 (10)0.0886 (17)0.0343 (13)0.0043 (10)0.0010 (9)0.0078 (12)
O50.144 (7)0.109 (6)0.127 (7)0.037 (5)0.001 (5)0.011 (4)
Co10.0288 (2)0.0490 (2)0.0280 (2)0.00340 (18)0.00147 (16)0.00213 (18)
Cl10.0571 (5)0.0530 (5)0.0580 (6)0.0016 (4)0.0119 (4)0.0087 (4)
Geometric parameters (Å, º) top
C1—N11.296 (4)C21—C221.376 (4)
C1—C21.465 (4)C21—H210.9300
C1—C31.473 (4)C22—H220.9300
C2—N21.296 (3)C23—C281.373 (5)
C2—C91.477 (4)C23—C241.374 (5)
C3—C41.370 (5)C24—C251.370 (5)
C3—C81.382 (5)C24—H240.9300
C4—C51.389 (5)C25—C261.348 (6)
C4—H40.9300C25—H250.9300
C5—C61.370 (6)C26—C271.352 (6)
C5—H50.9300C26—H260.9300
C6—C71.354 (6)C27—C281.384 (5)
C6—H60.9300C27—H270.9300
C7—C81.384 (5)C28—H280.9300
C7—H70.9300C29—C301.333 (5)
C8—H80.9300C29—N51.364 (4)
C9—C101.377 (4)C29—H290.9300
C9—C141.380 (4)C30—N61.362 (4)
C10—C111.385 (5)C30—H300.9300
C10—H100.9300C31—N51.304 (4)
C11—C121.362 (6)C31—N61.324 (4)
C11—H110.9300C31—H310.9300
C12—C131.357 (5)N1—O11.331 (3)
C12—H120.9300N1—Co11.879 (2)
C13—C141.377 (5)N2—O21.328 (3)
C13—H130.9300N2—Co11.888 (2)
C14—H140.9300N3—O31.332 (3)
C15—N31.291 (3)N3—Co11.903 (2)
C15—C171.475 (4)N4—O41.353 (3)
C15—C161.479 (4)N4—Co11.885 (2)
C16—N41.291 (3)N5—Co11.924 (2)
C16—C231.474 (4)N6—H6A0.98 (4)
C17—C221.376 (4)O1—H31.39 (5)
C17—C181.389 (4)O2—H21.46 (4)
C18—C191.377 (4)O3—H31.07 (5)
C18—H180.9300O4—H21.05 (4)
C19—C201.355 (5)O5—H5B0.946 (10)
C19—H190.9300O5—H5A0.946 (10)
C20—C211.358 (5)Co1—Cl12.2244 (9)
C20—H200.9300
N1—C1—C2112.3 (3)C28—C23—C24119.5 (3)
N1—C1—C3122.8 (3)C28—C23—C16120.7 (3)
C2—C1—C3124.6 (3)C24—C23—C16119.8 (3)
N2—C2—C1112.5 (2)C25—C24—C23120.2 (4)
N2—C2—C9123.4 (3)C25—C24—H24119.9
C1—C2—C9124.0 (3)C23—C24—H24119.9
C4—C3—C8119.4 (3)C26—C25—C24119.9 (4)
C4—C3—C1121.6 (3)C26—C25—H25120.1
C8—C3—C1118.9 (3)C24—C25—H25120.1
C3—C4—C5119.8 (4)C25—C26—C27121.0 (4)
C3—C4—H4120.1C25—C26—H26119.5
C5—C4—H4120.1C27—C26—H26119.5
C6—C5—C4119.6 (4)C26—C27—C28120.0 (4)
C6—C5—H5120.2C26—C27—H27120.0
C4—C5—H5120.2C28—C27—H27120.0
C7—C6—C5121.4 (4)C23—C28—C27119.4 (4)
C7—C6—H6119.3C23—C28—H28120.3
C5—C6—H6119.3C27—C28—H28120.3
C6—C7—C8119.0 (4)C30—C29—N5109.3 (3)
C6—C7—H7120.5C30—C29—H29125.3
C8—C7—H7120.5N5—C29—H29125.3
C3—C8—C7120.7 (4)C29—C30—N6106.2 (3)
C3—C8—H8119.6C29—C30—H30126.9
C7—C8—H8119.6N6—C30—H30126.9
C10—C9—C14118.4 (3)N5—C31—N6110.9 (3)
C10—C9—C2120.6 (3)N5—C31—H31124.5
C14—C9—C2120.9 (3)N6—C31—H31124.5
C9—C10—C11120.4 (4)C1—N1—O1121.2 (2)
C9—C10—H10119.8C1—N1—Co1116.91 (19)
C11—C10—H10119.8O1—N1—Co1121.47 (18)
C12—C11—C10120.0 (4)C2—N2—O2122.6 (2)
C12—C11—H11120.0C2—N2—Co1116.56 (19)
C10—C11—H11120.0O2—N2—Co1120.84 (17)
C13—C12—C11120.5 (3)C15—N3—O3120.7 (2)
C13—C12—H12119.8C15—N3—Co1117.66 (18)
C11—C12—H12119.8O3—N3—Co1121.26 (18)
C12—C13—C14119.9 (4)C16—N4—O4119.1 (2)
C12—C13—H13120.1C16—N4—Co1118.04 (19)
C14—C13—H13120.1O4—N4—Co1122.67 (17)
C13—C14—C9120.9 (3)C31—N5—C29106.1 (3)
C13—C14—H14119.6C31—N5—Co1125.4 (2)
C9—C14—H14119.6C29—N5—Co1128.3 (2)
N3—C15—C17124.9 (2)C31—N6—C30107.5 (3)
N3—C15—C16111.6 (2)C31—N6—H6A129 (2)
C17—C15—C16123.5 (3)C30—N6—H6A124 (2)
N4—C16—C23122.7 (2)N1—O1—H3101.9 (17)
N4—C16—C15112.2 (2)N2—O2—H2105.3 (13)
C23—C16—C15125.1 (2)N3—O3—H3102 (2)
C22—C17—C18118.6 (3)N4—O4—H2104.2 (18)
C22—C17—C15120.6 (3)H5B—O5—H5A110.0 (17)
C18—C17—C15120.9 (3)N1—Co1—N4179.23 (11)
C19—C18—C17119.9 (3)N1—Co1—N281.39 (10)
C19—C18—H18120.0N4—Co1—N299.27 (10)
C17—C18—H18120.0N1—Co1—N399.02 (10)
C20—C19—C18120.6 (3)N4—Co1—N380.33 (10)
C20—C19—H19119.7N2—Co1—N3178.07 (10)
C18—C19—H19119.7N1—Co1—N589.71 (11)
C19—C20—C21120.3 (3)N4—Co1—N590.69 (10)
C19—C20—H20119.9N2—Co1—N588.25 (10)
C21—C20—H20119.9N3—Co1—N589.86 (10)
C20—C21—C22120.2 (4)N1—Co1—Cl190.47 (8)
C20—C21—H21119.9N4—Co1—Cl189.13 (8)
C22—C21—H21119.9N2—Co1—Cl190.91 (7)
C17—C22—C21120.5 (3)N3—Co1—Cl190.97 (8)
C17—C22—H22119.8N5—Co1—Cl1179.11 (7)
C21—C22—H22119.8
N1—C1—C2—N24.0 (4)C17—C15—N3—O30.9 (4)
C3—C1—C2—N2170.2 (3)C16—C15—N3—O3178.3 (2)
N1—C1—C2—C9173.5 (3)C17—C15—N3—Co1172.4 (2)
C3—C1—C2—C912.3 (5)C16—C15—N3—Co15.0 (3)
N1—C1—C3—C462.3 (4)C23—C16—N4—O40.2 (4)
C2—C1—C3—C4124.1 (4)C15—C16—N4—O4177.1 (2)
N1—C1—C3—C8114.9 (4)C23—C16—N4—Co1175.5 (2)
C2—C1—C3—C858.7 (4)C15—C16—N4—Co11.4 (3)
C8—C3—C4—C50.1 (5)N6—C31—N5—C290.4 (4)
C1—C3—C4—C5177.3 (3)N6—C31—N5—Co1175.6 (2)
C3—C4—C5—C61.1 (6)C30—C29—N5—C310.3 (4)
C4—C5—C6—C71.4 (7)C30—C29—N5—Co1174.7 (2)
C5—C6—C7—C80.7 (7)N5—C31—N6—C300.9 (4)
C4—C3—C8—C70.6 (5)C29—C30—N6—C311.0 (4)
C1—C3—C8—C7176.6 (3)C1—N1—Co1—N4154 (9)
C6—C7—C8—C30.3 (6)O1—N1—Co1—N433 (9)
N2—C2—C9—C10132.9 (3)C1—N1—Co1—N24.7 (2)
C1—C2—C9—C1044.3 (4)O1—N1—Co1—N2177.4 (2)
N2—C2—C9—C1444.1 (4)C1—N1—Co1—N3173.4 (2)
C1—C2—C9—C14138.7 (3)O1—N1—Co1—N30.7 (2)
C14—C9—C10—C110.0 (5)C1—N1—Co1—N583.6 (2)
C2—C9—C10—C11177.1 (3)O1—N1—Co1—N589.1 (2)
C9—C10—C11—C120.3 (6)C1—N1—Co1—Cl195.5 (2)
C10—C11—C12—C130.8 (6)O1—N1—Co1—Cl191.7 (2)
C11—C12—C13—C140.9 (6)C16—N4—Co1—N133 (9)
C12—C13—C14—C90.5 (6)O4—N4—Co1—N1142 (9)
C10—C9—C14—C130.1 (5)C16—N4—Co1—N2177.2 (2)
C2—C9—C14—C13177.0 (3)O4—N4—Co1—N27.3 (2)
N3—C15—C16—N44.0 (4)C16—N4—Co1—N30.9 (2)
C17—C15—C16—N4173.4 (3)O4—N4—Co1—N3174.6 (2)
N3—C15—C16—C23172.8 (3)C16—N4—Co1—N588.8 (2)
C17—C15—C16—C239.8 (5)O4—N4—Co1—N595.6 (2)
N3—C15—C17—C22136.0 (3)C16—N4—Co1—Cl192.1 (2)
C16—C15—C17—C2241.1 (4)O4—N4—Co1—Cl183.5 (2)
N3—C15—C17—C1842.1 (5)C2—N2—Co1—N12.2 (2)
C16—C15—C17—C18140.8 (3)O2—N2—Co1—N1176.0 (2)
C22—C17—C18—C190.4 (5)C2—N2—Co1—N4178.2 (2)
C15—C17—C18—C19178.5 (3)O2—N2—Co1—N43.6 (2)
C17—C18—C19—C200.4 (6)C2—N2—Co1—N3100 (3)
C18—C19—C20—C210.2 (7)O2—N2—Co1—N382 (3)
C19—C20—C21—C220.9 (7)C2—N2—Co1—N587.8 (2)
C18—C17—C22—C210.3 (5)O2—N2—Co1—N594.1 (2)
C15—C17—C22—C21177.9 (3)C2—N2—Co1—Cl192.5 (2)
C20—C21—C22—C170.9 (6)O2—N2—Co1—Cl185.63 (19)
N4—C16—C23—C2855.4 (4)C15—N3—Co1—N1176.9 (2)
C15—C16—C23—C28128.1 (3)O3—N3—Co1—N13.7 (2)
N4—C16—C23—C24123.3 (3)C15—N3—Co1—N43.5 (2)
C15—C16—C23—C2453.2 (4)O3—N3—Co1—N4176.7 (2)
C28—C23—C24—C250.2 (5)C15—N3—Co1—N275 (3)
C16—C23—C24—C25178.8 (3)O3—N3—Co1—N299 (3)
C23—C24—C25—C260.2 (6)C15—N3—Co1—N587.2 (2)
C24—C25—C26—C270.8 (7)O3—N3—Co1—N586.0 (2)
C25—C26—C27—C281.3 (7)C15—N3—Co1—Cl192.4 (2)
C24—C23—C28—C270.7 (5)O3—N3—Co1—Cl194.3 (2)
C16—C23—C28—C27179.3 (3)C31—N5—Co1—N1149.3 (3)
C26—C27—C28—C231.2 (6)C29—N5—Co1—N124.8 (3)
N5—C29—C30—N60.8 (4)C31—N5—Co1—N431.4 (3)
C2—C1—N1—O1178.7 (3)C29—N5—Co1—N4154.5 (3)
C3—C1—N1—O14.4 (5)C31—N5—Co1—N267.9 (3)
C2—C1—N1—Co15.9 (3)C29—N5—Co1—N2106.2 (3)
C3—C1—N1—Co1168.4 (2)C31—N5—Co1—N3111.7 (3)
C1—C2—N2—O2178.4 (2)C29—N5—Co1—N374.2 (3)
C9—C2—N2—O20.9 (4)C31—N5—Co1—Cl147 (5)
C1—C2—N2—Co10.3 (3)C29—N5—Co1—Cl1127 (5)
C9—C2—N2—Co1177.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H2···O21.05 (4)1.46 (4)2.482 (3)165 (3)
O3—H3···O11.07 (5)1.39 (5)2.456 (3)174 (4)
N6—H6A···O2i0.98 (4)1.78 (4)2.747 (4)166 (3)
N6—H6A···N2i0.98 (4)2.50 (4)3.326 (4)141 (3)
O5—H5B···Cl10.95 (1)2.69 (8)3.331 (7)126 (7)
Symmetry code: (i) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Co(C14H11N2O2)2Cl(C3H4N2)]·0.5H2O
Mr649.97
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)19.1004 (11), 12.0462 (7), 26.9627 (18)
V3)6203.8 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.69
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.732, 0.850
No. of measured, independent and
observed [I > 2σ(I)] reflections
28473, 5282, 3705
Rint0.051
(sin θ/λ)max1)0.589
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.104, 1.06
No. of reflections5282
No. of parameters415
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.26

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SIR92 (Altornare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H2···O21.05 (4)1.46 (4)2.482 (3)165 (3)
O3—H3···O11.07 (5)1.39 (5)2.456 (3)174 (4)
N6—H6A···O2i0.98 (4)1.78 (4)2.747 (4)166 (3)
N6—H6A···N2i0.98 (4)2.50 (4)3.326 (4)141 (3)
O5—H5B···Cl10.946 (10)2.69 (8)3.331 (7)126 (7)
Symmetry code: (i) x+3/2, y1/2, z.
 

Acknowledgements

The authors are thankful to Rev. Fr A. Albert Muthumalai, S.J., Principal, Loyola College (Autonomous), Chennai, India, for providing the necessary facilities, the head, SAIF, CDRI, Lucknow, India, for supplying elemental data and the head, SAIF, IIT Madras, Chennai, India, for recording the NMR spectra and for the X-ray data collection.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalleri, M., Ferraris, G. & Viterbo, D. (1967). Acta Cryst. 22, 468–475.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGupta, B. D., Tiwari, U., Barley, T. & Cordes, W. (2001). J. Organomet. Chem. 629, 83–92.  Web of Science CSD CrossRef CAS Google Scholar
First citationGupta, B. D., Vijayaikanth, V. & Sing, V. (2004). Organometallics, 23, 2067–2079.  Web of Science CSD CrossRef Google Scholar
First citationLopez, C., Alavarez, S., Solans, X. & Font-Bardia, M. (1991). J. Organomet. Chem. 414, 245–259.  CSD CrossRef CAS Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMandal, D. & Gupta, B. D. (2005). J. Organomet. Chem. 690, 3746–3754.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSilverstein, R. M. & Bassler, G. C. (1984). Spectrometric Identification of Organic Compounds, 2nd ed., pp. 459-460. New York: John Wiley & Sons.  Google Scholar
First citationToscano, P. J., Swider, S., Marzilli, L. G., Bresciani Phor, N. & Randaccio, L. (1983). Inorg. Chem. 22, 3416–3421.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages m140-m141
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds