organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tri­methyl 1-(2-methyl-1-phenylsulfonyl-1H-indol-3-yl)propane-1,2,3-tricarbox­ylate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600025, India.
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 17 December 2008; accepted 19 December 2008; online 8 January 2009)

In the title compound, C24H25NO8S, the indole unit is planar and makes a dihedral angle of 79.73 (11)° with the phenyl ring of the sulfonyl substituent. The mol­ecules in the unit cell are stabilized by C—H⋯O and C—H⋯π inter­molecular inter­actions in addition to van der Waals forces.

Related literature

For the bological activity and applications of indole derivatives, see: Ho et al. (1986[Ho, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118-121.]); Rajeswaran et al. (1999[Rajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369-1371.]); Stevenson et al. (2000[Stevenson, G. I., Smith, A. L., Lewis, S. G., Neduvelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697-2704.]). For the Thorpe-Ingold effect, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C24H25NO8S

  • Mr = 487.51

  • Monoclinic, P 21 /c

  • a = 11.0975 (3) Å

  • b = 9.8255 (3) Å

  • c = 22.0027 (6) Å

  • β = 98.605 (2)°

  • V = 2372.13 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 (2) K

  • 0.40 × 0.30 × 0.15 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.]) Tmin = 0.835, Tmax = 0.973

  • 25507 measured reflections

  • 5592 independent reflections

  • 3885 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.135

  • S = 1.02

  • 5592 reflections

  • 308 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯O3i 0.97 2.57 3.476 (3) 156
C13—H13⋯Cg1ii 0.93 2.73 3.633 (3) 163
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y, -z. Cg1 is the centroid of the N1/C2–C5 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). SAINT and APEX2 . Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). SAINT and APEX2 . Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]).

Supporting information


Comment top

Indole derivatives are used as bioactive drugs (Stevenson et al., 2000) and they exibit anti-allergic, central nervous system depressant and muscle relaxant properties (Ho et al., 1986). Indoles also have been proved to display high aldose reductase inhibitory activity (Rajeswaran et al., 1999).

The bond lengths N1- C2 [1.421 (2) Å] and N1- C5 [1.408 (2) Å] are longer than the mean value of 1.355 (1) Å reported for the indole moiety (Allen et al., 1987). The S atom shows a distorted tetrahedral geometry, with O1—S1—O2 [119.99 (11)°] and N1—S1—C10 [105.05 (9)°] angles deviating from ideal tetrahedral values, are attributed to the Thorpe-Ingold effect (Bassindale, 1984). The indole ring is planar and the sulfonyl bound phenyl ring is almost perpendicular to the indole ring system, with a dihedral angle of 79.73 (11)°. The sum of bond angles around N1 (359.5°) indicates that N1 is in sp2 hybridization. The ester groups attached to the indole ring system assume extended conformation [C23- C24- O8- C25 = -178.8 (2)°; C20- C21- O6- C22 = -179.2 (2)° and C17- C18- O4- C19 = 177.7 (2)°].

The molecules in the crystal structure extend along the b axis via intermolecular C—H···O hydrogen bonds involving atoms C23 and O3 (-x,y + 1/2,- z + 1/2). Dimerization of the molecules occurs through C—H···π interactions [C13—H13 =0.93, H13···Cg1 = 2.7340, C13···Cg1 = 3.633 (3) Å and C13—H13···Cg1 = 162.73 °, where Cg1 is the centroid of the ring N1—C5].

Related literature top

For the bological activity and applications of indole derivatives, see: Ho et al. (1986); Rajeswaran et al. (1999); Stevenson et al. (2000). For the Thorpe-Ingold effect, see: Bassindale (1984). For bond-length data, see: Allen et al. (1987).Cg1 is the centroid of the N1–C5 ring.

Experimental top

To a stirred solution of dimethyl 2-(2-methyl-1-(phenylsulfonyl)-1H-indol-3-yl) maleate (0.4 g, 0.96 mmol) in dry DMF (1.5 ml), dimethyl acetamide dimethyl acetal (257 mg, 1.9 mmol) was added. Reaction mixture was heated to 110° C for 3hrs under nitrogen atmosphere. Then it was poured to 2% aqueous HCl (15 ml) solution and extracted with CHCl3. Organic layer was dried over Na2SO4 and evaporated. The crude compound was recrystallized from methanol.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(Cmethyl) and 1.2Ueq(C). The components of the anisotropic displacement parameters of C11 and C12 in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.001.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. ORTEP plot of the molecule with displacement ellipsoids drawn at 20% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular packing of the compound viewed down the b axis is shown. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted.
Trimethyl 1-(2-methyl-1-phenylsulfonyl-1H-indol-3-yl)propane-1,2,3-tricarboxylate top
Crystal data top
C24H25NO8SF(000) = 1024
Mr = 487.51Dx = 1.365 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5592 reflections
a = 11.0975 (3) Åθ = 2.3–27.8°
b = 9.8255 (3) ŵ = 0.19 mm1
c = 22.0027 (6) ÅT = 293 K
β = 98.605 (2)°Needle, colourless
V = 2372.13 (12) Å30.40 × 0.30 × 0.15 mm
Z = 4
Data collection top
Bruker KAPPA APEXII
diffractometer
5592 independent reflections
Radiation source: fine-focus sealed tube3885 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scanθmax = 27.8°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1414
Tmin = 0.835, Tmax = 0.973k = 1212
25507 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0566P)2 + 0.8871P]
where P = (Fo2 + 2Fc2)/3
5592 reflections(Δ/σ)max < 0.001
308 parametersΔρmax = 0.25 e Å3
1 restraintΔρmin = 0.27 e Å3
Crystal data top
C24H25NO8SV = 2372.13 (12) Å3
Mr = 487.51Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.0975 (3) ŵ = 0.19 mm1
b = 9.8255 (3) ÅT = 293 K
c = 22.0027 (6) Å0.40 × 0.30 × 0.15 mm
β = 98.605 (2)°
Data collection top
Bruker KAPPA APEXII
diffractometer
5592 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3885 reflections with I > 2σ(I)
Tmin = 0.835, Tmax = 0.973Rint = 0.027
25507 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.135H-atom parameters constrained
S = 1.02Δρmax = 0.25 e Å3
5592 reflectionsΔρmin = 0.27 e Å3
308 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.20679 (17)0.1921 (2)0.08315 (8)0.0503 (4)
C30.19449 (15)0.11193 (18)0.13178 (8)0.0433 (4)
C40.29851 (15)0.13314 (17)0.17830 (8)0.0418 (4)
C50.37387 (16)0.22937 (18)0.15615 (8)0.0433 (4)
C60.48157 (17)0.2729 (2)0.19067 (9)0.0539 (5)
H60.53190.33520.17500.065*
C70.51138 (19)0.2207 (2)0.24880 (10)0.0604 (5)
H70.58260.24950.27310.072*
C80.4380 (2)0.1263 (2)0.27211 (9)0.0600 (5)
H80.46020.09340.31180.072*
C90.33297 (17)0.0807 (2)0.23731 (8)0.0508 (4)
H90.28510.01540.25290.061*
C100.46121 (19)0.2643 (2)0.00851 (9)0.0540 (5)
C110.4134 (3)0.2268 (3)0.04999 (10)0.0781 (7)
H110.33670.25650.06800.094*
C120.4830 (4)0.1428 (4)0.08160 (13)0.1017 (10)
H120.45310.11720.12170.122*
C130.5936 (3)0.0974 (3)0.05521 (16)0.0975 (9)
H130.63810.03950.07690.117*
C140.6397 (3)0.1361 (3)0.00258 (16)0.0978 (9)
H140.71610.10520.02040.117*
C150.5745 (2)0.2208 (3)0.03505 (12)0.0742 (6)
H150.60670.24830.07460.089*
C160.1242 (2)0.2032 (3)0.02344 (10)0.0815 (7)
H16A0.05820.13970.02280.122*
H16B0.16880.18310.00960.122*
H16C0.09210.29400.01870.122*
C170.08720 (16)0.02092 (19)0.13676 (9)0.0485 (4)
H170.02810.03180.09930.058*
C180.12894 (18)0.1261 (2)0.14060 (10)0.0561 (5)
C190.1671 (3)0.3195 (3)0.08387 (17)0.1092 (11)
H19A0.15990.34990.04200.164*
H19B0.11870.37680.10600.164*
H19C0.25080.32410.10260.164*
C200.02316 (16)0.0556 (2)0.19188 (9)0.0493 (4)
H200.07500.01990.22840.059*
C210.09641 (18)0.0204 (2)0.18689 (11)0.0588 (5)
C220.2746 (2)0.0409 (3)0.23308 (17)0.1057 (11)
H22A0.30990.00190.26630.159*
H22B0.26350.13700.23970.159*
H22C0.32780.02570.19510.159*
C230.00794 (17)0.2075 (2)0.20302 (9)0.0510 (4)
H23A0.02370.21930.24150.061*
H23B0.08760.25030.20760.061*
C240.0740 (2)0.2789 (2)0.15365 (10)0.0601 (5)
C250.1514 (3)0.4926 (3)0.11907 (15)0.1146 (12)
H25A0.14320.58670.13080.172*
H25B0.23460.46470.11810.172*
H25C0.12830.48090.07910.172*
N10.31622 (14)0.26844 (17)0.09733 (7)0.0501 (4)
O10.45912 (16)0.45716 (15)0.08815 (7)0.0753 (5)
O20.27957 (16)0.42841 (17)0.00952 (7)0.0764 (5)
O30.16646 (16)0.18474 (16)0.18733 (8)0.0770 (5)
O40.12431 (16)0.17999 (17)0.08525 (8)0.0783 (5)
O50.12856 (16)0.1090 (2)0.15146 (9)0.0887 (6)
O60.15876 (13)0.02166 (17)0.23022 (8)0.0749 (5)
O70.13414 (19)0.2252 (2)0.11119 (9)0.1051 (7)
O80.07383 (19)0.41121 (17)0.16292 (8)0.0862 (5)
S10.37776 (5)0.37135 (5)0.04991 (2)0.05603 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0531 (10)0.0538 (11)0.0440 (9)0.0028 (8)0.0067 (8)0.0011 (8)
C30.0434 (9)0.0440 (9)0.0427 (9)0.0047 (7)0.0073 (7)0.0023 (7)
C40.0428 (9)0.0397 (9)0.0436 (9)0.0063 (7)0.0084 (7)0.0009 (7)
C50.0472 (9)0.0412 (9)0.0422 (9)0.0056 (7)0.0090 (7)0.0009 (7)
C60.0508 (10)0.0504 (11)0.0605 (11)0.0032 (8)0.0086 (9)0.0026 (9)
C70.0528 (11)0.0553 (12)0.0676 (13)0.0011 (9)0.0090 (9)0.0034 (10)
C80.0663 (12)0.0561 (12)0.0525 (11)0.0088 (10)0.0078 (9)0.0088 (9)
C90.0538 (10)0.0478 (10)0.0500 (10)0.0038 (8)0.0050 (8)0.0081 (8)
C100.0688 (12)0.0471 (10)0.0494 (10)0.0065 (9)0.0200 (9)0.0035 (8)
C110.0970 (18)0.0868 (18)0.0511 (12)0.0039 (14)0.0131 (11)0.0042 (11)
C120.131 (3)0.112 (2)0.0685 (16)0.0052 (19)0.0349 (17)0.0295 (16)
C130.108 (2)0.086 (2)0.113 (2)0.0005 (17)0.060 (2)0.0206 (18)
C140.0734 (17)0.112 (2)0.115 (2)0.0110 (16)0.0366 (17)0.009 (2)
C150.0618 (13)0.0907 (18)0.0722 (14)0.0026 (12)0.0165 (11)0.0093 (13)
C160.0815 (16)0.107 (2)0.0499 (12)0.0113 (15)0.0089 (11)0.0143 (13)
C170.0444 (9)0.0502 (10)0.0501 (10)0.0013 (8)0.0050 (8)0.0035 (8)
C180.0487 (10)0.0503 (11)0.0705 (13)0.0022 (9)0.0124 (9)0.0050 (10)
C190.117 (2)0.0646 (17)0.148 (3)0.0101 (16)0.027 (2)0.0415 (19)
C200.0422 (9)0.0526 (11)0.0536 (10)0.0018 (8)0.0085 (8)0.0017 (8)
C210.0488 (10)0.0526 (12)0.0760 (14)0.0018 (9)0.0121 (10)0.0042 (11)
C220.0609 (14)0.092 (2)0.175 (3)0.0002 (14)0.0522 (18)0.017 (2)
C230.0485 (10)0.0534 (11)0.0521 (10)0.0001 (8)0.0107 (8)0.0055 (9)
C240.0615 (12)0.0592 (13)0.0586 (12)0.0057 (10)0.0053 (10)0.0031 (10)
C250.156 (3)0.079 (2)0.099 (2)0.031 (2)0.010 (2)0.0267 (17)
N10.0567 (9)0.0531 (9)0.0413 (8)0.0020 (7)0.0102 (7)0.0041 (7)
O10.1135 (13)0.0496 (9)0.0662 (9)0.0231 (8)0.0248 (9)0.0078 (7)
O20.0989 (12)0.0637 (10)0.0682 (9)0.0233 (9)0.0176 (9)0.0220 (8)
O30.0903 (12)0.0548 (9)0.0878 (11)0.0109 (8)0.0190 (9)0.0118 (9)
O40.0842 (11)0.0650 (10)0.0850 (11)0.0087 (8)0.0105 (9)0.0285 (9)
O50.0715 (10)0.0827 (12)0.1152 (14)0.0247 (9)0.0244 (10)0.0281 (11)
O60.0568 (8)0.0733 (10)0.1017 (12)0.0007 (7)0.0357 (8)0.0018 (9)
O70.1096 (15)0.0845 (13)0.1019 (14)0.0232 (11)0.0467 (12)0.0187 (11)
O80.1247 (15)0.0551 (9)0.0718 (10)0.0118 (10)0.0082 (10)0.0064 (8)
S10.0792 (4)0.0419 (3)0.0498 (3)0.0007 (2)0.0190 (2)0.0046 (2)
Geometric parameters (Å, º) top
C2—C31.352 (3)C17—C181.516 (3)
C2—N11.421 (2)C17—C201.533 (3)
C2—C161.489 (3)C17—H170.9800
C3—C41.439 (2)C18—O31.198 (3)
C3—C171.506 (3)C18—O41.322 (3)
C4—C91.396 (2)C19—O41.452 (3)
C4—C51.397 (2)C19—H19A0.9600
C5—C61.384 (3)C19—H19B0.9600
C5—N11.408 (2)C19—H19C0.9600
C6—C71.372 (3)C20—C211.512 (3)
C6—H60.9300C20—C231.526 (3)
C7—C81.382 (3)C20—H200.9800
C7—H70.9300C21—O51.187 (3)
C8—C91.371 (3)C21—O61.325 (3)
C8—H80.9300C22—O61.434 (3)
C9—H90.9300C22—H22A0.9600
C10—C111.368 (3)C22—H22B0.9600
C10—C151.373 (3)C22—H22C0.9600
C10—S11.745 (2)C23—C241.484 (3)
C11—C121.386 (4)C23—H23A0.9700
C11—H110.9300C23—H23B0.9700
C12—C131.353 (4)C24—O71.188 (3)
C12—H120.9300C24—O81.316 (3)
C13—C141.352 (4)C25—O81.436 (3)
C13—H130.9300C25—H25A0.9600
C14—C151.371 (4)C25—H25B0.9600
C14—H140.9300C25—H25C0.9600
C15—H150.9300N1—S11.6706 (16)
C16—H16A0.9600O1—S11.4165 (16)
C16—H16B0.9600O2—S11.4148 (16)
C16—H16C0.9600
C3—C2—N1108.53 (16)C20—C17—H17108.1
C3—C2—C16128.23 (19)O3—C18—O4124.0 (2)
N1—C2—C16123.25 (18)O3—C18—C17124.8 (2)
C2—C3—C4108.26 (16)O4—C18—C17111.16 (19)
C2—C3—C17125.32 (16)O4—C19—H19A109.5
C4—C3—C17126.38 (16)O4—C19—H19B109.5
C9—C4—C5118.63 (16)H19A—C19—H19B109.5
C9—C4—C3133.41 (17)O4—C19—H19C109.5
C5—C4—C3107.95 (15)H19A—C19—H19C109.5
C6—C5—C4122.01 (17)H19B—C19—H19C109.5
C6—C5—N1131.02 (17)C21—C20—C23112.17 (16)
C4—C5—N1106.95 (15)C21—C20—C17109.78 (16)
C7—C6—C5117.66 (19)C23—C20—C17114.83 (16)
C7—C6—H6121.2C21—C20—H20106.5
C5—C6—H6121.2C23—C20—H20106.5
C6—C7—C8121.56 (19)C17—C20—H20106.5
C6—C7—H7119.2O5—C21—O6124.3 (2)
C8—C7—H7119.2O5—C21—C20125.7 (2)
C9—C8—C7120.73 (18)O6—C21—C20109.94 (19)
C9—C8—H8119.6O6—C22—H22A109.5
C7—C8—H8119.6O6—C22—H22B109.5
C8—C9—C4119.37 (18)H22A—C22—H22B109.5
C8—C9—H9120.3O6—C22—H22C109.5
C4—C9—H9120.3H22A—C22—H22C109.5
C11—C10—C15121.2 (2)H22B—C22—H22C109.5
C11—C10—S1119.50 (18)C24—C23—C20114.51 (17)
C15—C10—S1119.32 (17)C24—C23—H23A108.6
C10—C11—C12117.8 (3)C20—C23—H23A108.6
C10—C11—H11121.1C24—C23—H23B108.6
C12—C11—H11121.1C20—C23—H23B108.6
C13—C12—C11121.3 (3)H23A—C23—H23B107.6
C13—C12—H12119.4O7—C24—O8123.3 (2)
C11—C12—H12119.4O7—C24—C23125.2 (2)
C14—C13—C12120.2 (3)O8—C24—C23111.51 (18)
C14—C13—H13119.9O8—C25—H25A109.5
C12—C13—H13119.9O8—C25—H25B109.5
C13—C14—C15120.4 (3)H25A—C25—H25B109.5
C13—C14—H14119.8O8—C25—H25C109.5
C15—C14—H14119.8H25A—C25—H25C109.5
C14—C15—C10119.2 (3)H25B—C25—H25C109.5
C14—C15—H15120.4C5—N1—C2108.28 (15)
C10—C15—H15120.4C5—N1—S1124.53 (13)
C2—C16—H16A109.5C2—N1—S1126.71 (13)
C2—C16—H16B109.5C18—O4—C19115.4 (2)
H16A—C16—H16B109.5C21—O6—C22117.8 (2)
C2—C16—H16C109.5C24—O8—C25117.3 (2)
H16A—C16—H16C109.5O2—S1—O1119.99 (11)
H16B—C16—H16C109.5O2—S1—N1106.49 (9)
C3—C17—C18109.37 (15)O1—S1—N1105.85 (8)
C3—C17—C20113.00 (15)O2—S1—C10109.26 (10)
C18—C17—C20109.98 (16)O1—S1—C10109.13 (10)
C3—C17—H17108.1N1—S1—C10105.05 (9)
C18—C17—H17108.1
N1—C2—C3—C41.3 (2)C3—C17—C20—C2341.5 (2)
C16—C2—C3—C4178.3 (2)C18—C17—C20—C23164.05 (16)
N1—C2—C3—C17176.42 (16)C23—C20—C21—O5139.6 (2)
C16—C2—C3—C174.0 (3)C17—C20—C21—O510.7 (3)
C2—C3—C4—C9178.73 (19)C23—C20—C21—O643.5 (2)
C17—C3—C4—C91.1 (3)C17—C20—C21—O6172.46 (17)
C2—C3—C4—C50.2 (2)C21—C20—C23—C2460.8 (2)
C17—C3—C4—C5177.43 (16)C17—C20—C23—C2465.5 (2)
C9—C4—C5—C60.6 (3)C20—C23—C24—O77.2 (3)
C3—C4—C5—C6179.38 (16)C20—C23—C24—O8173.73 (18)
C9—C4—C5—N1177.85 (15)C6—C5—N1—C2179.95 (19)
C3—C4—C5—N10.92 (19)C4—C5—N1—C21.68 (19)
C4—C5—C6—C71.6 (3)C6—C5—N1—S17.5 (3)
N1—C5—C6—C7176.41 (19)C4—C5—N1—S1174.21 (12)
C5—C6—C7—C81.0 (3)C3—C2—N1—C51.8 (2)
C6—C7—C8—C90.6 (3)C16—C2—N1—C5177.8 (2)
C7—C8—C9—C41.7 (3)C3—C2—N1—S1174.17 (14)
C5—C4—C9—C81.1 (3)C16—C2—N1—S15.4 (3)
C3—C4—C9—C8177.31 (19)O3—C18—O4—C190.8 (3)
C15—C10—C11—C120.2 (4)C17—C18—O4—C19177.7 (2)
S1—C10—C11—C12179.3 (2)O5—C21—O6—C222.2 (4)
C10—C11—C12—C131.1 (5)C20—C21—O6—C22179.2 (2)
C11—C12—C13—C141.5 (5)O7—C24—O8—C250.3 (4)
C12—C13—C14—C150.5 (5)C23—C24—O8—C25178.8 (2)
C13—C14—C15—C100.8 (5)C5—N1—S1—O2156.71 (15)
C11—C10—C15—C141.2 (4)C2—N1—S1—O232.14 (19)
S1—C10—C15—C14179.7 (2)C5—N1—S1—O127.97 (18)
C2—C3—C17—C18116.4 (2)C2—N1—S1—O1160.89 (16)
C4—C3—C17—C1866.4 (2)C5—N1—S1—C1087.45 (16)
C2—C3—C17—C20120.8 (2)C2—N1—S1—C1083.70 (18)
C4—C3—C17—C2056.5 (2)C11—C10—S1—O213.0 (2)
C3—C17—C18—O388.7 (2)C15—C10—S1—O2166.18 (18)
C20—C17—C18—O336.0 (3)C11—C10—S1—O1145.95 (18)
C3—C17—C18—O488.3 (2)C15—C10—S1—O133.2 (2)
C20—C17—C18—O4147.10 (17)C11—C10—S1—N1100.93 (19)
C3—C17—C20—C21169.00 (15)C15—C10—S1—N179.91 (19)
C18—C17—C20—C2168.48 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O3i0.972.573.476 (3)156
C13—H13···Cg1ii0.932.733.633 (3)163
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC24H25NO8S
Mr487.51
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.0975 (3), 9.8255 (3), 22.0027 (6)
β (°) 98.605 (2)
V3)2372.13 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.40 × 0.30 × 0.15
Data collection
DiffractometerBruker KAPPA APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.835, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
25507, 5592, 3885
Rint0.027
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.135, 1.02
No. of reflections5592
No. of parameters308
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.27

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), ORTEP (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23A···O3i0.972.573.476 (3)155.8
C13—H13···Cg1ii0.932.733.633 (3)162.7
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y, z.
 

Acknowledgements

TK thanks Dr Babu Varghese, SAIF, IIT–Madras, Chennai, India, for his help with the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBruker (2004). SAINT and APEX2 . Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHo, C. Y., Haegman, W. E. & Perisco, F. (1986). J. Med. Chem. 29, 118–121.  Google Scholar
First citationRajeswaran, W. G., Labroo, R. B., Cohen, L. A. & King, M. M. (1999). J. Org. Chem. 64, 1369–1371.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevenson, G. I., Smith, A. L., Lewis, S. G., Neduvelil, J. G., Patel, S., Marwood, R. & Castro, J. L. (2000). Bioorg. Med. Chem. Lett. 10, 2697–2704.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds