organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o275-o276

Ethyl 5-amino-1-(4-chloro-2-nitro­phen­yl)-1H-pyrazole-4-carboxyl­ate

aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, bChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England, and cInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan
*Correspondence e-mail: rehman_pcsir@hotmail.com

(Received 20 December 2008; accepted 6 January 2009; online 10 January 2009)

In the mol­ecule of the title compound, C12H11ClN4O4, the pyrazole ring is coplanar with the amino and ethoxy­carbonyl groups within 0.026 (2) and 0.105 (2) Å, respectively. The C6 ring of the 4-chloro-2-nitro­phenyl group is twisted by 53.58 (4)° relative to the plane of the pyrazole ring. The planar structure of the pyrazole ring is stabilized by an intra­molecular N—H⋯O hydrogen bond between its substituents. Neighbouring mol­ecules are linked through inter­molecular N—H⋯N and N—H⋯O hydrogen bonds, giving rise to one-dimensional tapes along the b axis. Mol­ecules in the chain are linked to those of an adjacent chain through weak C—H⋯O inter­actions, forming a three-dimensional network.

Related literature

For the biological activity of pyrazole and its derivatives, see: Iovu et al. (2003[Iovu, M., Zalaru, C., Dumitrascu, F., Draghici, C., Moraru, M. & Criste, E. (2003). Farmaco, 58, 301-307.]); Mahajan et al. (1991[Mahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245-249.]); related literature, see: Akhtar et al. (2008[Akhtar, T., Hameed, S., Zia-ur-Rehman, M., Hussain Bukhari, T. & Khan, I. (2008). Acta Cryst. E64, o1388.]); Baraldi et al. (1998[Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165-2171.]); Bruno et al. (1990[Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147-66.]); Cottineau et al. (2002[Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105-2108.]); Smith et al. (2001[Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107-119.]). For the use of pyrazole-based ligands in investigating the structure–activity relationship of the active site of metalloproteins, see: Dardari et al. (2006[Dardari, Z., Lemrani, M., Sebban, A., Bahloul, A., Hassair, M., Kitane, S., Berrada, M. & Boudouma, M. (2006). Arch. Pharm. 339, 291-298.]), and in the preparation of commercially important dyestuffs, see: Baroni & Kovyrzina (1961[Baroni, E. E. & Kovyrzina, K. A. (1961). Zh. Obshch. Khim. 31, 1641-1645.]); Neunhoeffer et al. (1959[Neunhoeffer, O., Alsdorf, G. & Ulrich, H. (1959). Chem. Ber. 92, 252-256.]). For the synthesis and biological evaluation of heterocyclic compounds, see: Akhtar et al. (2008[Akhtar, T., Hameed, S., Zia-ur-Rehman, M., Hussain Bukhari, T. & Khan, I. (2008). Acta Cryst. E64, o1388.]); Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.], 2008[Zia-ur-Rehman, M., Elsegood, M. R. J., Akbar, N. & Shah Zaib Saleem, R. (2008). Acta Cryst. E64, o1312-o1313.]).

[Scheme 1]

Experimental

Crystal data
  • C12H11ClN4O4

  • Mr = 310.70

  • Monoclinic, P 21 /n

  • a = 8.5899 (8) Å

  • b = 10.2413 (9) Å

  • c = 15.6633 (14) Å

  • β = 96.5415 (13)°

  • V = 1369.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 150 (2) K

  • 0.79 × 0.27 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.]) Tmin = 0.797, Tmax = 0.973

  • 15944 measured reflections

  • 4189 independent reflections

  • 3588 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.096

  • S = 1.04

  • 4189 reflections

  • 197 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.44 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O3 0.866 (16) 2.328 (16) 2.9383 (13) 127.7 (12)
N4—H4A⋯O2i 0.866 (16) 2.610 (15) 3.1356 (13) 120.1 (12)
N4—H4B⋯N3i 0.871 (15) 2.153 (16) 3.0074 (13) 166.8 (14)
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

Pyrazole and its derivatives represent one of the most important classes of organic heterocyclic compounds, possessing a wide spectrum of biological activities such as antibacterial, fungicidal (Iovu et al., 2003), herbicidal (Mahajan et al.,1991) and antiviral (Baraldi et al., 1998) activities. Some of their derivatives have been reported to possess significant antiarrhythmic & sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002) and anti-inflammatory (Smith et al., 2001) activities. In addition, pyrazole based ligands have also been used to investigate the structure-activity relationship of the active site of metalloproteins (Dardari et al., 2006) and for the preparation of commercially important dyestuffs (Baroni & Kovyrzina, 1961; Neunhoeffer et al.,1959). As part of our ongoing research on the synthesis and biological evaluation of heterocyclic compounds (Akhtar et al., 2008; Zia-ur-Rehman et al., 2006; Zia-ur-Rehman et al., 2008), crystal structure of the title compound, (I) was determined.

In I (Fig. 1) the pyrazole ring is approximately coplanar with the amino and ethyl carboxylate groups. The C6 ring of the 4-chloro-2-nitro phenyl group is essentially planar and is twisted by 53.58 (4)° relative to the plane of the pyrazole ring about the C6—N2 bond. The planar structure of the pyrazole ring is stabilized by an intramolecular N—H···O hydrogen bond between the amino and ethyl carboxylate substituents (Table 1). Neighbouring molecules are linked through one N—H···N and one N—H···O intermolecular hydrogen bond giving rise to one-dimensional tapes along the b axis (Fig. 2, Table 1). The nitro group is twisted by 37.98 (4)° relative to the C6 ring, driven by the desire to form the aforementioned H-bond. Each chain is cross-linked to the next through weak C–H···O interactions.

Related literature top

For the biological activity of pyrazole and its derivatives, see: Iovu et al. (2003); Mahajan et al. (1991); related literature, see: Akhtar et al. (2008); Baraldi et al. (1998); Bruno et al. (1990); Cottineau et al. (2002); Smith et al. (2001). For the use of pyrazole-based ligands in investigating the structure–activity relationship of the active site of metalloproteins, see: Dardari et al., 2006), and in the preparation of commercially important dyestuffs, see: Baroni & Kovyrzina (1961); Neunhoeffer et al. (1959). For the synthesis and biological evaluation of heterocyclic compounds, see: Akhtar et al. (2008); Zia-ur-Rehman et al. (2006, 2008).

Experimental top

A mixture of 5-amino-1-(4-chloro-2-nitrophenyl)-1H-pyrazole-4-carboxylic acid (3.05 g; 10.0 mmoles), phosphoric acid (0.196 g; 2.0 mmoles) and ethyl alcohol (100 ml) was refluxed for a period of five hours. The reaction mixture was then concentrated (to a volume of 20 ml) by slow distillation of ethanol followed by cooling and addition of cold water. The precipitated solid was then filtered, washed with cold water and dried. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution of the title compound in a mixture of ethanol and water (85: 15); yield: 73.68%.

Refinement top

H atoms bound to C were placed in geometric positions (C—H distance = 0.95 Å) using a riding model. H atoms on N had coordinates freely refined. Uiso values were set to 1.2Ueq (1.5Ueq for CH3).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound highlighting the intramolecular H-bond. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Perspective view of the crystal packing showing hydrogen-bond interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetry operator i = -x + 1/2, y - 1/2, -z + 3/2.
Ethyl 1-(4-chloro-2-nitrophenyl)-5-nitro-4, 5-dihydro-1H-pyrazole-4-carboxylate top
Crystal data top
C12H11ClN4O4F(000) = 640
Mr = 310.70Dx = 1.508 Mg m3
Monoclinic, P21/nMelting point: 435 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 8.5899 (8) ÅCell parameters from 6502 reflections
b = 10.2413 (9) Åθ = 2.6–30.6°
c = 15.6633 (14) ŵ = 0.30 mm1
β = 96.5415 (13)°T = 150 K
V = 1369.0 (2) Å3Lath, colourless
Z = 40.79 × 0.27 × 0.09 mm
Data collection top
Bruker APEXII CCD
diffractometer
4189 independent reflections
Radiation source: fine-focus sealed tube3588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω rotation with narrow frames scansθmax = 30.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
h = 1212
Tmin = 0.797, Tmax = 0.973k = 1414
15944 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: all non-H atoms found by direct methods
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: geom except NH coords freely refined
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.3692P]
where P = (Fo2 + 2Fc2)/3
4189 reflections(Δ/σ)max = 0.001
197 parametersΔρmax = 0.44 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C12H11ClN4O4V = 1369.0 (2) Å3
Mr = 310.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.5899 (8) ŵ = 0.30 mm1
b = 10.2413 (9) ÅT = 150 K
c = 15.6633 (14) Å0.79 × 0.27 × 0.09 mm
β = 96.5415 (13)°
Data collection top
Bruker APEXII CCD
diffractometer
4189 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3588 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.973Rint = 0.022
15944 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.44 e Å3
4189 reflectionsΔρmin = 0.27 e Å3
197 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16661 (12)0.37722 (10)0.87165 (6)0.01863 (19)
N10.00154 (11)0.39144 (9)0.83571 (6)0.02209 (18)
O10.04727 (11)0.32020 (9)0.77617 (6)0.0316 (2)
O20.07682 (10)0.47313 (9)0.86871 (6)0.03110 (19)
C20.19621 (13)0.36020 (11)0.95971 (7)0.0216 (2)
H20.11350.36090.99510.026*
C30.35046 (14)0.34216 (10)0.99458 (7)0.0224 (2)
Cl10.39123 (4)0.31052 (3)1.103127 (17)0.03302 (9)
C40.47238 (13)0.34677 (11)0.94341 (7)0.0229 (2)
H40.57770.33700.96850.028*
C50.43941 (13)0.36565 (10)0.85546 (7)0.0218 (2)
H50.52270.36910.82050.026*
C60.28554 (12)0.37949 (10)0.81810 (6)0.01836 (19)
N20.25381 (11)0.40263 (9)0.72882 (5)0.01940 (17)
N30.16947 (11)0.51311 (9)0.69958 (6)0.02197 (19)
C70.17042 (12)0.51027 (10)0.61560 (7)0.0206 (2)
H70.12150.57440.57780.025*
C80.25215 (12)0.40156 (10)0.58811 (6)0.01772 (19)
C90.30396 (12)0.33322 (10)0.66310 (6)0.01755 (19)
N40.39081 (12)0.22356 (9)0.67437 (6)0.0241 (2)
H4A0.4077 (18)0.1853 (14)0.6270 (11)0.029*
H4B0.3806 (18)0.1713 (14)0.7173 (10)0.029*
C100.28074 (12)0.36124 (10)0.50279 (6)0.01900 (19)
O30.35936 (10)0.26670 (8)0.48774 (5)0.02577 (17)
O40.20696 (9)0.43861 (8)0.44194 (5)0.02405 (17)
C110.23017 (13)0.40996 (12)0.35329 (7)0.0250 (2)
H11A0.13770.43960.31460.030*
H11B0.24070.31450.34600.030*
C120.37412 (17)0.47691 (14)0.32935 (9)0.0355 (3)
H12A0.36550.57110.33890.053*
H12B0.38450.46050.26860.053*
H12C0.46650.44290.36490.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0220 (5)0.0179 (4)0.0160 (4)0.0002 (4)0.0023 (4)0.0002 (3)
N10.0232 (4)0.0248 (4)0.0183 (4)0.0023 (3)0.0024 (3)0.0032 (3)
O10.0339 (5)0.0367 (5)0.0230 (4)0.0084 (4)0.0021 (3)0.0042 (3)
O20.0271 (4)0.0339 (5)0.0330 (5)0.0062 (3)0.0063 (3)0.0003 (4)
C20.0273 (5)0.0227 (5)0.0153 (4)0.0007 (4)0.0047 (4)0.0004 (4)
C30.0319 (5)0.0202 (5)0.0146 (4)0.0005 (4)0.0007 (4)0.0002 (4)
Cl10.04426 (18)0.03893 (17)0.01462 (13)0.00482 (13)0.00204 (11)0.00275 (10)
C40.0253 (5)0.0213 (5)0.0213 (5)0.0024 (4)0.0011 (4)0.0009 (4)
C50.0243 (5)0.0208 (5)0.0209 (5)0.0029 (4)0.0054 (4)0.0020 (4)
C60.0256 (5)0.0164 (4)0.0134 (4)0.0016 (4)0.0035 (4)0.0008 (3)
N20.0258 (4)0.0188 (4)0.0142 (4)0.0057 (3)0.0046 (3)0.0019 (3)
N30.0291 (4)0.0192 (4)0.0179 (4)0.0085 (3)0.0044 (3)0.0019 (3)
C70.0237 (5)0.0207 (5)0.0174 (4)0.0043 (4)0.0030 (4)0.0022 (4)
C80.0202 (4)0.0185 (4)0.0149 (4)0.0013 (3)0.0038 (3)0.0015 (3)
C90.0205 (4)0.0171 (4)0.0156 (4)0.0007 (3)0.0048 (3)0.0004 (3)
N40.0361 (5)0.0188 (4)0.0187 (4)0.0091 (4)0.0090 (4)0.0037 (3)
C100.0193 (4)0.0223 (5)0.0157 (4)0.0012 (4)0.0028 (3)0.0010 (4)
O30.0318 (4)0.0266 (4)0.0196 (4)0.0076 (3)0.0058 (3)0.0015 (3)
O40.0266 (4)0.0313 (4)0.0145 (3)0.0064 (3)0.0031 (3)0.0029 (3)
C110.0238 (5)0.0369 (6)0.0141 (4)0.0005 (4)0.0019 (4)0.0012 (4)
C120.0395 (7)0.0374 (7)0.0321 (6)0.0095 (6)0.0150 (5)0.0001 (5)
Geometric parameters (Å, º) top
C1—C21.3848 (14)C7—C81.4096 (14)
C1—C61.3940 (14)C7—H70.9500
C1—N11.4719 (14)C8—C91.3958 (14)
N1—O11.2202 (13)C8—C101.4462 (14)
N1—O21.2245 (13)C9—N41.3487 (13)
C2—C31.3868 (16)N4—H4A0.866 (16)
C2—H20.9500N4—H4B0.871 (15)
C3—C41.3902 (16)C10—O31.2188 (13)
C3—Cl11.7271 (11)C10—O41.3418 (12)
C4—C51.3881 (15)O4—C111.4549 (13)
C4—H40.9500C11—C121.4985 (17)
C5—C61.3904 (15)C11—H11A0.9900
C5—H50.9500C11—H11B0.9900
C6—N21.4140 (12)C12—H12A0.9800
N2—C91.3607 (13)C12—H12B0.9800
N2—N31.3925 (12)C12—H12C0.9800
N3—C71.3166 (13)
C2—C1—C6122.51 (10)C8—C7—H7123.8
C2—C1—N1116.93 (9)C9—C8—C7105.13 (9)
C6—C1—N1120.55 (9)C9—C8—C10124.27 (9)
O1—N1—O2125.00 (10)C7—C8—C10130.60 (9)
O1—N1—C1117.73 (9)N4—C9—N2123.64 (9)
O2—N1—C1117.26 (9)N4—C9—C8130.26 (9)
C1—C2—C3117.89 (10)N2—C9—C8106.06 (9)
C1—C2—H2121.1C9—N4—H4A114.1 (10)
C3—C2—H2121.1C9—N4—H4B120.7 (10)
C2—C3—C4121.15 (10)H4A—N4—H4B115.1 (14)
C2—C3—Cl1119.35 (9)O3—C10—O4123.99 (9)
C4—C3—Cl1119.49 (9)O3—C10—C8124.18 (9)
C5—C4—C3119.67 (10)O4—C10—C8111.82 (9)
C5—C4—H4120.2C10—O4—C11116.99 (9)
C3—C4—H4120.2O4—C11—C12110.69 (10)
C4—C5—C6120.57 (10)O4—C11—H11A109.5
C4—C5—H5119.7C12—C11—H11A109.5
C6—C5—H5119.7O4—C11—H11B109.5
C5—C6—C1118.15 (9)C12—C11—H11B109.5
C5—C6—N2120.01 (9)H11A—C11—H11B108.1
C1—C6—N2121.74 (9)C11—C12—H12A109.5
C9—N2—N3111.92 (8)C11—C12—H12B109.5
C9—N2—C6128.23 (9)H12A—C12—H12B109.5
N3—N2—C6119.72 (8)C11—C12—H12C109.5
C7—N3—N2104.38 (8)H12A—C12—H12C109.5
N3—C7—C8112.50 (9)H12B—C12—H12C109.5
N3—C7—H7123.8
C2—C1—N1—O1127.78 (11)C9—N2—N3—C70.53 (12)
C6—C1—N1—O151.47 (14)C6—N2—N3—C7175.66 (9)
C2—C1—N1—O251.39 (13)N2—N3—C7—C80.14 (12)
C6—C1—N1—O2129.37 (11)N3—C7—C8—C90.27 (12)
C6—C1—C2—C31.37 (16)N3—C7—C8—C10179.76 (10)
N1—C1—C2—C3177.85 (9)N3—N2—C9—N4178.62 (10)
C1—C2—C3—C42.81 (16)C6—N2—C9—N42.83 (17)
C1—C2—C3—Cl1176.02 (8)N3—N2—C9—C80.70 (12)
C2—C3—C4—C52.04 (17)C6—N2—C9—C8175.09 (10)
Cl1—C3—C4—C5176.78 (8)C7—C8—C9—N4178.30 (11)
C3—C4—C5—C60.24 (16)C10—C8—C9—N42.17 (18)
C4—C5—C6—C11.62 (16)C7—C8—C9—N20.57 (11)
C4—C5—C6—N2178.08 (10)C10—C8—C9—N2179.90 (10)
C2—C1—C6—C50.81 (16)C9—C8—C10—O33.61 (17)
N1—C1—C6—C5179.99 (9)C7—C8—C10—O3176.99 (11)
C2—C1—C6—N2177.21 (10)C9—C8—C10—O4174.82 (10)
N1—C1—C6—N23.59 (15)C7—C8—C10—O44.59 (16)
C5—C6—N2—C952.72 (15)O3—C10—O4—C113.17 (15)
C1—C6—N2—C9130.95 (11)C8—C10—O4—C11178.40 (9)
C5—C6—N2—N3122.79 (11)C10—O4—C11—C1286.64 (13)
C1—C6—N2—N353.54 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O30.866 (16)2.328 (16)2.9383 (13)127.7 (12)
N4—H4A···O2i0.866 (16)2.610 (15)3.1356 (13)120.1 (12)
N4—H4B···N3i0.871 (15)2.153 (16)3.0074 (13)166.8 (14)
Symmetry code: (i) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC12H11ClN4O4
Mr310.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)8.5899 (8), 10.2413 (9), 15.6633 (14)
β (°) 96.5415 (13)
V3)1369.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.79 × 0.27 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.797, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
15944, 4189, 3588
Rint0.022
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.04
No. of reflections4189
No. of parameters197
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.27

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···O30.866 (16)2.328 (16)2.9383 (13)127.7 (12)
N4—H4A···O2i0.866 (16)2.610 (15)3.1356 (13)120.1 (12)
N4—H4B···N3i0.871 (15)2.153 (16)3.0074 (13)166.8 (14)
Symmetry code: (i) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors are grateful to the Pakistan Council of Scientific & Industrial Research Laboratories, Lahore, Pakistan, for the provision of necessary chemicals.

References

First citationAkhtar, T., Hameed, S., Zia-ur-Rehman, M., Hussain Bukhari, T. & Khan, I. (2008). Acta Cryst. E64, o1388.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBaraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171.  Web of Science CrossRef CAS Google Scholar
First citationBaroni, E. E. & Kovyrzina, K. A. (1961). Zh. Obshch. Khim. 31, 1641–1645.  CAS Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147–66.  CAS PubMed Web of Science Google Scholar
First citationCottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105–2108.  CrossRef CAS Google Scholar
First citationDardari, Z., Lemrani, M., Sebban, A., Bahloul, A., Hassair, M., Kitane, S., Berrada, M. & Boudouma, M. (2006). Arch. Pharm. 339, 291–298.  Web of Science CrossRef CAS Google Scholar
First citationIovu, M., Zalaru, C., Dumitrascu, F., Draghici, C., Moraru, M. & Criste, E. (2003). Farmaco, 58, 301–307.  CrossRef PubMed CAS Google Scholar
First citationMahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245–249.  CAS Google Scholar
First citationNeunhoeffer, O., Alsdorf, G. & Ulrich, H. (1959). Chem. Ber. 92, 252–256.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2007). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107–119.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZia-ur-Rehman, M., Elsegood, M. R. J., Akbar, N. & Shah Zaib Saleem, R. (2008). Acta Cryst. E64, o1312–o1313.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 2| February 2009| Pages o275-o276
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds