organic compounds
Ethyl 5-amino-1-(4-chloro-2-nitrophenyl)-1H-pyrazole-4-carboxylate
aApplied Chemistry Research Centre, PCSIR Laboratories Complex, Lahore 54600, Pakistan, bChemistry Department, Loughborough University, Loughborough, Leicestershire LE11 3TU, England, and cInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan
*Correspondence e-mail: rehman_pcsir@hotmail.com
In the molecule of the title compound, C12H11ClN4O4, the pyrazole ring is coplanar with the amino and ethoxycarbonyl groups within 0.026 (2) and 0.105 (2) Å, respectively. The C6 ring of the 4-chloro-2-nitrophenyl group is twisted by 53.58 (4)° relative to the plane of the pyrazole ring. The planar structure of the pyrazole ring is stabilized by an intramolecular N—H⋯O hydrogen bond between its substituents. Neighbouring molecules are linked through intermolecular N—H⋯N and N—H⋯O hydrogen bonds, giving rise to one-dimensional tapes along the b axis. Molecules in the chain are linked to those of an adjacent chain through weak C—H⋯O interactions, forming a three-dimensional network.
Related literature
For the biological activity of pyrazole and its derivatives, see: Iovu et al. (2003); Mahajan et al. (1991); related literature, see: Akhtar et al. (2008); Baraldi et al. (1998); Bruno et al. (1990); Cottineau et al. (2002); Smith et al. (2001). For the use of pyrazole-based ligands in investigating the structure–activity relationship of the active site of metalloproteins, see: Dardari et al. (2006), and in the preparation of commercially important dyestuffs, see: Baroni & Kovyrzina (1961); Neunhoeffer et al. (1959). For the synthesis and biological evaluation of see: Akhtar et al. (2008); Zia-ur-Rehman et al. (2006, 2008).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2006); cell SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and local programs.
Supporting information
10.1107/S1600536809000488/bt2841sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809000488/bt2841Isup2.hkl
A mixture of 5-amino-1-(4-chloro-2-nitrophenyl)-1H-pyrazole-4-carboxylic acid (3.05 g; 10.0 mmoles), phosphoric acid (0.196 g; 2.0 mmoles) and ethyl alcohol (100 ml) was refluxed for a period of five hours. The reaction mixture was then concentrated (to a volume of 20 ml) by slow distillation of ethanol followed by cooling and addition of cold water. The precipitated solid was then filtered, washed with cold water and dried. Crystals suitable for single-crystal X-ray diffraction were grown by slow evaporation of a solution of the title compound in a mixture of ethanol and water (85: 15); yield: 73.68%.
H atoms bound to C were placed in geometric positions (C—H distance = 0.95 Å) using a riding model. H atoms on N had coordinates freely refined. Uiso values were set to 1.2Ueq (1.5Ueq for CH3).
Data collection: APEX2 (Bruker, 2006); cell
SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.C12H11ClN4O4 | F(000) = 640 |
Mr = 310.70 | Dx = 1.508 Mg m−3 |
Monoclinic, P21/n | Melting point: 435 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71073 Å |
a = 8.5899 (8) Å | Cell parameters from 6502 reflections |
b = 10.2413 (9) Å | θ = 2.6–30.6° |
c = 15.6633 (14) Å | µ = 0.30 mm−1 |
β = 96.5415 (13)° | T = 150 K |
V = 1369.0 (2) Å3 | Lath, colourless |
Z = 4 | 0.79 × 0.27 × 0.09 mm |
Bruker APEXII CCD diffractometer | 4189 independent reflections |
Radiation source: fine-focus sealed tube | 3588 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.022 |
ω rotation with narrow frames scans | θmax = 30.6°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | h = −12→12 |
Tmin = 0.797, Tmax = 0.973 | k = −14→14 |
15944 measured reflections | l = −22→22 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: all non-H atoms found by direct methods |
R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: geom except NH coords freely refined |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0507P)2 + 0.3692P] where P = (Fo2 + 2Fc2)/3 |
4189 reflections | (Δ/σ)max = 0.001 |
197 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C12H11ClN4O4 | V = 1369.0 (2) Å3 |
Mr = 310.70 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.5899 (8) Å | µ = 0.30 mm−1 |
b = 10.2413 (9) Å | T = 150 K |
c = 15.6633 (14) Å | 0.79 × 0.27 × 0.09 mm |
β = 96.5415 (13)° |
Bruker APEXII CCD diffractometer | 4189 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) | 3588 reflections with I > 2σ(I) |
Tmin = 0.797, Tmax = 0.973 | Rint = 0.022 |
15944 measured reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.096 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.44 e Å−3 |
4189 reflections | Δρmin = −0.27 e Å−3 |
197 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.16661 (12) | 0.37722 (10) | 0.87165 (6) | 0.01863 (19) | |
N1 | 0.00154 (11) | 0.39144 (9) | 0.83571 (6) | 0.02209 (18) | |
O1 | −0.04727 (11) | 0.32020 (9) | 0.77617 (6) | 0.0316 (2) | |
O2 | −0.07682 (10) | 0.47313 (9) | 0.86871 (6) | 0.03110 (19) | |
C2 | 0.19621 (13) | 0.36020 (11) | 0.95971 (7) | 0.0216 (2) | |
H2 | 0.1135 | 0.3609 | 0.9951 | 0.026* | |
C3 | 0.35046 (14) | 0.34216 (10) | 0.99458 (7) | 0.0224 (2) | |
Cl1 | 0.39123 (4) | 0.31052 (3) | 1.103127 (17) | 0.03302 (9) | |
C4 | 0.47238 (13) | 0.34677 (11) | 0.94341 (7) | 0.0229 (2) | |
H4 | 0.5777 | 0.3370 | 0.9685 | 0.028* | |
C5 | 0.43941 (13) | 0.36565 (10) | 0.85546 (7) | 0.0218 (2) | |
H5 | 0.5227 | 0.3691 | 0.8205 | 0.026* | |
C6 | 0.28554 (12) | 0.37949 (10) | 0.81810 (6) | 0.01836 (19) | |
N2 | 0.25381 (11) | 0.40263 (9) | 0.72882 (5) | 0.01940 (17) | |
N3 | 0.16947 (11) | 0.51311 (9) | 0.69958 (6) | 0.02197 (19) | |
C7 | 0.17042 (12) | 0.51027 (10) | 0.61560 (7) | 0.0206 (2) | |
H7 | 0.1215 | 0.5744 | 0.5778 | 0.025* | |
C8 | 0.25215 (12) | 0.40156 (10) | 0.58811 (6) | 0.01772 (19) | |
C9 | 0.30396 (12) | 0.33322 (10) | 0.66310 (6) | 0.01755 (19) | |
N4 | 0.39081 (12) | 0.22356 (9) | 0.67437 (6) | 0.0241 (2) | |
H4A | 0.4077 (18) | 0.1853 (14) | 0.6270 (11) | 0.029* | |
H4B | 0.3806 (18) | 0.1713 (14) | 0.7173 (10) | 0.029* | |
C10 | 0.28074 (12) | 0.36124 (10) | 0.50279 (6) | 0.01900 (19) | |
O3 | 0.35936 (10) | 0.26670 (8) | 0.48774 (5) | 0.02577 (17) | |
O4 | 0.20696 (9) | 0.43861 (8) | 0.44194 (5) | 0.02405 (17) | |
C11 | 0.23017 (13) | 0.40996 (12) | 0.35329 (7) | 0.0250 (2) | |
H11A | 0.1377 | 0.4396 | 0.3146 | 0.030* | |
H11B | 0.2407 | 0.3145 | 0.3460 | 0.030* | |
C12 | 0.37412 (17) | 0.47691 (14) | 0.32935 (9) | 0.0355 (3) | |
H12A | 0.3655 | 0.5711 | 0.3389 | 0.053* | |
H12B | 0.3845 | 0.4605 | 0.2686 | 0.053* | |
H12C | 0.4665 | 0.4429 | 0.3649 | 0.053* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0220 (5) | 0.0179 (4) | 0.0160 (4) | 0.0002 (4) | 0.0023 (4) | −0.0002 (3) |
N1 | 0.0232 (4) | 0.0248 (4) | 0.0183 (4) | −0.0023 (3) | 0.0024 (3) | 0.0032 (3) |
O1 | 0.0339 (5) | 0.0367 (5) | 0.0230 (4) | −0.0084 (4) | −0.0021 (3) | −0.0042 (3) |
O2 | 0.0271 (4) | 0.0339 (5) | 0.0330 (5) | 0.0062 (3) | 0.0063 (3) | −0.0003 (4) |
C2 | 0.0273 (5) | 0.0227 (5) | 0.0153 (4) | −0.0007 (4) | 0.0047 (4) | −0.0004 (4) |
C3 | 0.0319 (5) | 0.0202 (5) | 0.0146 (4) | 0.0005 (4) | 0.0007 (4) | −0.0002 (4) |
Cl1 | 0.04426 (18) | 0.03893 (17) | 0.01462 (13) | 0.00482 (13) | −0.00204 (11) | 0.00275 (10) |
C4 | 0.0253 (5) | 0.0213 (5) | 0.0213 (5) | 0.0024 (4) | −0.0011 (4) | 0.0009 (4) |
C5 | 0.0243 (5) | 0.0208 (5) | 0.0209 (5) | 0.0029 (4) | 0.0054 (4) | 0.0020 (4) |
C6 | 0.0256 (5) | 0.0164 (4) | 0.0134 (4) | 0.0016 (4) | 0.0035 (4) | 0.0008 (3) |
N2 | 0.0258 (4) | 0.0188 (4) | 0.0142 (4) | 0.0057 (3) | 0.0046 (3) | 0.0019 (3) |
N3 | 0.0291 (4) | 0.0192 (4) | 0.0179 (4) | 0.0085 (3) | 0.0044 (3) | 0.0019 (3) |
C7 | 0.0237 (5) | 0.0207 (5) | 0.0174 (4) | 0.0043 (4) | 0.0030 (4) | 0.0022 (4) |
C8 | 0.0202 (4) | 0.0185 (4) | 0.0149 (4) | 0.0013 (3) | 0.0038 (3) | 0.0015 (3) |
C9 | 0.0205 (4) | 0.0171 (4) | 0.0156 (4) | 0.0007 (3) | 0.0048 (3) | 0.0004 (3) |
N4 | 0.0361 (5) | 0.0188 (4) | 0.0187 (4) | 0.0091 (4) | 0.0090 (4) | 0.0037 (3) |
C10 | 0.0193 (4) | 0.0223 (5) | 0.0157 (4) | −0.0012 (4) | 0.0028 (3) | 0.0010 (4) |
O3 | 0.0318 (4) | 0.0266 (4) | 0.0196 (4) | 0.0076 (3) | 0.0058 (3) | −0.0015 (3) |
O4 | 0.0266 (4) | 0.0313 (4) | 0.0145 (3) | 0.0064 (3) | 0.0031 (3) | 0.0029 (3) |
C11 | 0.0238 (5) | 0.0369 (6) | 0.0141 (4) | −0.0005 (4) | 0.0019 (4) | 0.0012 (4) |
C12 | 0.0395 (7) | 0.0374 (7) | 0.0321 (6) | −0.0095 (6) | 0.0150 (5) | 0.0001 (5) |
C1—C2 | 1.3848 (14) | C7—C8 | 1.4096 (14) |
C1—C6 | 1.3940 (14) | C7—H7 | 0.9500 |
C1—N1 | 1.4719 (14) | C8—C9 | 1.3958 (14) |
N1—O1 | 1.2202 (13) | C8—C10 | 1.4462 (14) |
N1—O2 | 1.2245 (13) | C9—N4 | 1.3487 (13) |
C2—C3 | 1.3868 (16) | N4—H4A | 0.866 (16) |
C2—H2 | 0.9500 | N4—H4B | 0.871 (15) |
C3—C4 | 1.3902 (16) | C10—O3 | 1.2188 (13) |
C3—Cl1 | 1.7271 (11) | C10—O4 | 1.3418 (12) |
C4—C5 | 1.3881 (15) | O4—C11 | 1.4549 (13) |
C4—H4 | 0.9500 | C11—C12 | 1.4985 (17) |
C5—C6 | 1.3904 (15) | C11—H11A | 0.9900 |
C5—H5 | 0.9500 | C11—H11B | 0.9900 |
C6—N2 | 1.4140 (12) | C12—H12A | 0.9800 |
N2—C9 | 1.3607 (13) | C12—H12B | 0.9800 |
N2—N3 | 1.3925 (12) | C12—H12C | 0.9800 |
N3—C7 | 1.3166 (13) | ||
C2—C1—C6 | 122.51 (10) | C8—C7—H7 | 123.8 |
C2—C1—N1 | 116.93 (9) | C9—C8—C7 | 105.13 (9) |
C6—C1—N1 | 120.55 (9) | C9—C8—C10 | 124.27 (9) |
O1—N1—O2 | 125.00 (10) | C7—C8—C10 | 130.60 (9) |
O1—N1—C1 | 117.73 (9) | N4—C9—N2 | 123.64 (9) |
O2—N1—C1 | 117.26 (9) | N4—C9—C8 | 130.26 (9) |
C1—C2—C3 | 117.89 (10) | N2—C9—C8 | 106.06 (9) |
C1—C2—H2 | 121.1 | C9—N4—H4A | 114.1 (10) |
C3—C2—H2 | 121.1 | C9—N4—H4B | 120.7 (10) |
C2—C3—C4 | 121.15 (10) | H4A—N4—H4B | 115.1 (14) |
C2—C3—Cl1 | 119.35 (9) | O3—C10—O4 | 123.99 (9) |
C4—C3—Cl1 | 119.49 (9) | O3—C10—C8 | 124.18 (9) |
C5—C4—C3 | 119.67 (10) | O4—C10—C8 | 111.82 (9) |
C5—C4—H4 | 120.2 | C10—O4—C11 | 116.99 (9) |
C3—C4—H4 | 120.2 | O4—C11—C12 | 110.69 (10) |
C4—C5—C6 | 120.57 (10) | O4—C11—H11A | 109.5 |
C4—C5—H5 | 119.7 | C12—C11—H11A | 109.5 |
C6—C5—H5 | 119.7 | O4—C11—H11B | 109.5 |
C5—C6—C1 | 118.15 (9) | C12—C11—H11B | 109.5 |
C5—C6—N2 | 120.01 (9) | H11A—C11—H11B | 108.1 |
C1—C6—N2 | 121.74 (9) | C11—C12—H12A | 109.5 |
C9—N2—N3 | 111.92 (8) | C11—C12—H12B | 109.5 |
C9—N2—C6 | 128.23 (9) | H12A—C12—H12B | 109.5 |
N3—N2—C6 | 119.72 (8) | C11—C12—H12C | 109.5 |
C7—N3—N2 | 104.38 (8) | H12A—C12—H12C | 109.5 |
N3—C7—C8 | 112.50 (9) | H12B—C12—H12C | 109.5 |
N3—C7—H7 | 123.8 | ||
C2—C1—N1—O1 | −127.78 (11) | C9—N2—N3—C7 | −0.53 (12) |
C6—C1—N1—O1 | 51.47 (14) | C6—N2—N3—C7 | 175.66 (9) |
C2—C1—N1—O2 | 51.39 (13) | N2—N3—C7—C8 | 0.14 (12) |
C6—C1—N1—O2 | −129.37 (11) | N3—C7—C8—C9 | 0.27 (12) |
C6—C1—C2—C3 | −1.37 (16) | N3—C7—C8—C10 | 179.76 (10) |
N1—C1—C2—C3 | 177.85 (9) | N3—N2—C9—N4 | 178.62 (10) |
C1—C2—C3—C4 | 2.81 (16) | C6—N2—C9—N4 | 2.83 (17) |
C1—C2—C3—Cl1 | −176.02 (8) | N3—N2—C9—C8 | 0.70 (12) |
C2—C3—C4—C5 | −2.04 (17) | C6—N2—C9—C8 | −175.09 (10) |
Cl1—C3—C4—C5 | 176.78 (8) | C7—C8—C9—N4 | −178.30 (11) |
C3—C4—C5—C6 | −0.24 (16) | C10—C8—C9—N4 | 2.17 (18) |
C4—C5—C6—C1 | 1.62 (16) | C7—C8—C9—N2 | −0.57 (11) |
C4—C5—C6—N2 | 178.08 (10) | C10—C8—C9—N2 | 179.90 (10) |
C2—C1—C6—C5 | −0.81 (16) | C9—C8—C10—O3 | −3.61 (17) |
N1—C1—C6—C5 | 179.99 (9) | C7—C8—C10—O3 | 176.99 (11) |
C2—C1—C6—N2 | −177.21 (10) | C9—C8—C10—O4 | 174.82 (10) |
N1—C1—C6—N2 | 3.59 (15) | C7—C8—C10—O4 | −4.59 (16) |
C5—C6—N2—C9 | 52.72 (15) | O3—C10—O4—C11 | −3.17 (15) |
C1—C6—N2—C9 | −130.95 (11) | C8—C10—O4—C11 | 178.40 (9) |
C5—C6—N2—N3 | −122.79 (11) | C10—O4—C11—C12 | −86.64 (13) |
C1—C6—N2—N3 | 53.54 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···O3 | 0.866 (16) | 2.328 (16) | 2.9383 (13) | 127.7 (12) |
N4—H4A···O2i | 0.866 (16) | 2.610 (15) | 3.1356 (13) | 120.1 (12) |
N4—H4B···N3i | 0.871 (15) | 2.153 (16) | 3.0074 (13) | 166.8 (14) |
Symmetry code: (i) −x+1/2, y−1/2, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C12H11ClN4O4 |
Mr | 310.70 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 150 |
a, b, c (Å) | 8.5899 (8), 10.2413 (9), 15.6633 (14) |
β (°) | 96.5415 (13) |
V (Å3) | 1369.0 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.30 |
Crystal size (mm) | 0.79 × 0.27 × 0.09 |
Data collection | |
Diffractometer | Bruker APEXII CCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2007) |
Tmin, Tmax | 0.797, 0.973 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15944, 4189, 3588 |
Rint | 0.022 |
(sin θ/λ)max (Å−1) | 0.715 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.096, 1.04 |
No. of reflections | 4189 |
No. of parameters | 197 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.44, −0.27 |
Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and local programs.
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···O3 | 0.866 (16) | 2.328 (16) | 2.9383 (13) | 127.7 (12) |
N4—H4A···O2i | 0.866 (16) | 2.610 (15) | 3.1356 (13) | 120.1 (12) |
N4—H4B···N3i | 0.871 (15) | 2.153 (16) | 3.0074 (13) | 166.8 (14) |
Symmetry code: (i) −x+1/2, y−1/2, −z+3/2. |
Acknowledgements
The authors are grateful to the Pakistan Council of Scientific & Industrial Research Laboratories, Lahore, Pakistan, for the provision of necessary chemicals.
References
Akhtar, T., Hameed, S., Zia-ur-Rehman, M., Hussain Bukhari, T. & Khan, I. (2008). Acta Cryst. E64, o1388. Web of Science CSD CrossRef IUCr Journals Google Scholar
Baraldi, P. G., Manfredini, S., Romagnoli, R., Stevanato, L., Zaid, A. N. & Manservigi, R. (1998). Nucleosides Nucleotides, 17, 2165–2171. Web of Science CrossRef CAS Google Scholar
Baroni, E. E. & Kovyrzina, K. A. (1961). Zh. Obshch. Khim. 31, 1641–1645. CAS Google Scholar
Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruno, O., Bondavalli, F., Ranise, A., Schenone, P., Losasso, C., Cilenti, L., Matera, C. & Marmo, E. (1990). Farmaco, 45, 147–66. CAS PubMed Web of Science Google Scholar
Cottineau, B., Toto, P., Marot, C., Pipaud, A. & Chenault, J. (2002). Bioorg. Med. Chem. 12, 2105–2108. CrossRef CAS Google Scholar
Dardari, Z., Lemrani, M., Sebban, A., Bahloul, A., Hassair, M., Kitane, S., Berrada, M. & Boudouma, M. (2006). Arch. Pharm. 339, 291–298. Web of Science CrossRef CAS Google Scholar
Iovu, M., Zalaru, C., Dumitrascu, F., Draghici, C., Moraru, M. & Criste, E. (2003). Farmaco, 58, 301–307. CrossRef PubMed CAS Google Scholar
Mahajan, R. N., Havaldar, F. H. & Fernandes, P. S. (1991). J. Indian Chem. Soc. 68, 245–249. CAS Google Scholar
Neunhoeffer, O., Alsdorf, G. & Ulrich, H. (1959). Chem. Ber. 92, 252–256. CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2007). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, S. R., Denhardt, G. & Terminelli, C. (2001). Eur. J. Pharmacol. 432, 107–119. Web of Science CrossRef PubMed CAS Google Scholar
Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178. Web of Science CrossRef PubMed CAS Google Scholar
Zia-ur-Rehman, M., Elsegood, M. R. J., Akbar, N. & Shah Zaib Saleem, R. (2008). Acta Cryst. E64, o1312–o1313. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyrazole and its derivatives represent one of the most important classes of organic heterocyclic compounds, possessing a wide spectrum of biological activities such as antibacterial, fungicidal (Iovu et al., 2003), herbicidal (Mahajan et al.,1991) and antiviral (Baraldi et al., 1998) activities. Some of their derivatives have been reported to possess significant antiarrhythmic & sedative (Bruno et al., 1990), hypoglycemic (Cottineau et al., 2002) and anti-inflammatory (Smith et al., 2001) activities. In addition, pyrazole based ligands have also been used to investigate the structure-activity relationship of the active site of metalloproteins (Dardari et al., 2006) and for the preparation of commercially important dyestuffs (Baroni & Kovyrzina, 1961; Neunhoeffer et al.,1959). As part of our ongoing research on the synthesis and biological evaluation of heterocyclic compounds (Akhtar et al., 2008; Zia-ur-Rehman et al., 2006; Zia-ur-Rehman et al., 2008), crystal structure of the title compound, (I) was determined.
In I (Fig. 1) the pyrazole ring is approximately coplanar with the amino and ethyl carboxylate groups. The C6 ring of the 4-chloro-2-nitro phenyl group is essentially planar and is twisted by 53.58 (4)° relative to the plane of the pyrazole ring about the C6—N2 bond. The planar structure of the pyrazole ring is stabilized by an intramolecular N—H···O hydrogen bond between the amino and ethyl carboxylate substituents (Table 1). Neighbouring molecules are linked through one N—H···N and one N—H···O intermolecular hydrogen bond giving rise to one-dimensional tapes along the b axis (Fig. 2, Table 1). The nitro group is twisted by 37.98 (4)° relative to the C6 ring, driven by the desire to form the aforementioned H-bond. Each chain is cross-linked to the next through weak C–H···O interactions.